
i

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

201 West 103rd Street
Indianapolis, IN 46290

Peter Belesis

Arman Danesh

Rick Darnell

Craig Eddy

Brian A. Gallagher

John J. Kottler

Trevor Lohrbeer

Ryan Peters

Stephanos Piperoglou

Jeff Rouyer

William Randolph Royere III

David Wiley

Matthew Zandstra

Dy
na

mi
c

 H

TM
L

Dynamic HTML

UNLEASHED
ii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

President Richard K. Swadley

Publisher Jordan Gold

Executive Editor Mark Taber

Managing Editor Patrick Kanouse

Senior Indexer Ginny Bess

Director of Software and
User Services Cheryl Willoughby

Brand Director Alan Bower

Acquisitions Editor
Randi Roger

Development Editor
Bob Correll

Production Editor
Heather E. Butler

Copy Editors
Kris Simmons
Marilyn J. Stone

Indexer
Christine Nelsen

Technical Reviewer
Brett Bonenberger

Editorial Coordinators
Mandie Rowell
Katie Wise

Technical Edit Coordinator
Lorraine E. Schaffer

Resource Coordinators
Deborah Frisby
Charlotte Clapp

Editorial Assistants
Carol Ackerman
Andi Richter
Rhonda Tinch-Mize
Karen Williams

Cover Designer
Jason Grisham

Book Designer
Gary Adair

Copy Writer
David Reichwein

Production Team Supervisor
Andrew Stone

Production Team
Elizabeth Deeter
Shawn Ring

Copyright © 1998 by Sams.net Publishing
SECOND EDITION

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein. For informa-
tion, address Sams.net Publishing, 201 W. 103rd St., Indianapolis, IN
46290.

International Standard Book Number: 0-57521-353-2

Library of Congress Catalog Card Number: 97-68546

2001 2000 99 98 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is
the year of the book’s printing; the rightmost single-digit, the number of the
book’s printing. For example, a printing code of 98-1 shows that the first
printing of the book occurred in 1998.

Composed in AGaramond and MCPdigital by Macmillan Computer
Publishing

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams.net Publishing cannot
attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark or service mark.

iii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Dedications
For Des, who knows why, and Ion and Lena.
—Peter Belesis

Special thanks to my wife, Penny, for her love and encouragement, which is a continuous blessing. Thanks
also to my parents for lovingly believing in me.
—Jay Kottler

Thanks to my girlfriend, Amanda, for her understanding and patience while I worked till 3 a.m., and to
Susan for her support and constructive criticism of my writing.
—Ryan Peters

Special thanks to Peter Belesis.
—Stephanos Piperoglou

For Michelle.
—William Randolph Royere III

For David Enoch.
—David Wiley

To Louise. Thanks.
—Matt Zandstra

Dynamic HTML

UNLEASHED
iv

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Introduction 24

Part I Getting Started with Dynamic HTML
1 Introducing Dynamic HTML 3

2 Choosing a Standard 19

3 Dynamic HTML Fundamentals 35

Part II Cascading Style Sheets
4 Cascading Style Sheets Basics 61

5 Working with Color 75

6 Text and Fonts with Style 87

7 Formatting and Positioning 103

Part III Scripting
8 Scripting Overview 121

9 Using JavaScript with Dynamic HTML 135

10 Using JavaScript for Internet Explorer Dynamic HTML 161

11 Dynamically Changing Content 187

12 Dynamic Positioning 219

13 Using VBScript as an Alternative Language 269

Part IV The Document Object Model
14 What Is a Document Object Model? 295

15 Document Object Model Comparison 307

16 The Internet Explorer 4.0 Event Model: Event Bubbling 343

17 The Communicator 4.0 Event Model: Event Capturing 363

Part V Data Awareness
18 Presenting Your Data with Dynamic HTML 389

19 Client-side Data Manipulation 409

20 Updating the Data 437

21 Summing Up—A Practical Application 457

Overview

v

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Part VI Other Dynamic Techniques
22 Using Layers 483

23 Transition Effects 501

24 IE 4.0 Multimedia Effects with Dynamic HTML 523

25 Using Netscape Navigator’s Canvas Mode 547

Part VII Managing Dynamic HTML
26 Creating a Site for the 4.0 Browsers 573

27 Degrading DHTML Gracefully 593

28 Netcasting Your DHTML Site 613

29 Debugging Your Dynamic HTML 627

30 Publishing and Managing Your Content 655

Index 687

Dynamic HTML

UNLEASHED
vi

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Contents
Introduction 24

Part I Getting Started with Dynamic HTML

1 Introducing Dynamic HTML 3
The Current Approach to Dynamic Web Pages 4

CGI Scripts ... 4
Java Applets ... 5
Plug-ins and ActiveX Controls ... 7
Client-pull ... 7
Server-push .. 8

Implementing Dynamic HTML with HTML 4 8
The Document Object Model ... 10
Controlling the Document with Scripts 10

Some Features of DHTML .. 11
Changing Tags and Content .. 11
Live Positioning of Elements ... 12
Dynamic Fonts .. 15
Data Binding ... 15

Moving from Static to Dynamic HTML .. 16
Summary.. 18

2 Choosing a Standard 19
World Wide Web Consortium... 21
Netscape .. 25
Microsoft ... 28
Summary.. 32

3 Dynamic HTML Fundamentals 35
Creating Dynamic Web Pages .. 36

Creating the Base HTML Page .. 37
Adding a Style Sheet .. 40
Making the Page Dynamic .. 44

DHTML and Netscape 4.02 .. 50
Standards Revisited for DHTML Fundamentals 56
Summary.. 56

Part II Cascading Style Sheets

4 Cascading Style Sheets Basics 61
What Are Cascading Style Sheets? .. 62

So What Can I Do with CSS?.. 62

vii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Why Would I Want to Use CSS? ... 62
General Syntax .. 62
Including CSS in HTML .. 63
Grouping Styles ... 65
Inheritance .. 66
Taking Control .. 66
Cascading .. 71

Summary .. 73

5 Working with Color 75
Color and Background Colors .. 76

Colors .. 76
Background Colors .. 77

Background Images and Their Properties 78
background-image ... 78
background-repeat ... 79
background-position ... 80
background-attachment ... 81
background .. 82

Cumulative Example .. 84
Summary .. 86

6 Text and Fonts with Style 87
Working with Fonts ... 88

font-family .. 89
font-style .. 90
font-variant .. 90
font-weight .. 91
font-size ... 92
font Shortcut .. 94

Working with Text .. 95
word-spacing .. 95
letter-spacing .. 95
text-decoration .. 96
vertical-align .. 97
text-transform .. 99
text-align .. 99
text-indent .. 100
line-height .. 100

Cumulative Example .. 100
Summary .. 102

Dynamic HTML

UNLEASHED
viii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

7 Formatting and Positioning 103
The CSS Formatting Model ... 106

Block-Level Elements .. 107
Replaced Elements ... 110
The CSS Canvas .. 110

Box Properties .. 110
Margins ... 111
Padding ... 111
Borders .. 112
Width and Height ... 113
Float .. 113
Clear .. 114

Positioning and Examples .. 114
Summary .. 117

Part III Scripting

8 Scripting Overview 121
Scripting Basics .. 122

In the Beginning… .. 122
Getting the Objective: Programming with Objects 124

The Scripting “Standards” .. 126
JavaScript .. 127
Microsoft’s JScript ... 127
VBScript .. 128
The Push for a True Standard: ECMA-262 Specification 129

Scripting Different Languages Together 129
Summary .. 134

9 Using JavaScript with Dynamic HTML 135
What’s New in JavaScript 1.2 ... 136

New Objects in JavaScript 1.2 ... 138
The screen Object .. 147

Events in JavaScript 1.2 .. 149
What Are Events? .. 150
Capturing Events ... 153

Using External Scripts .. 155
Signing Your Scripts ... 156

Request Expanded Privileges .. 156
Use ARCHIVE and ID Attributes .. 157
Sign Your Scripts ... 158

Summary .. 159

ix

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

10 Using JavaScript for Internet Explorer Dynamic HTML 161
A Brief History ... 162
Using JScript in the HTML Page ... 163
The JScript Script Engine ... 164
The SRC= Attribute ... 165
What’s New in JScript for Explorer 4 ... 167

New Features Unique to JScript (JavaScript 1.2
Compatible) .. 168

New Features Shared with Other Script Engines
(not JavaScript 1.2 Compatible) .. 168

Program Flow Control ... 169
do...while .. 169
Labeled Statements .. 170
switch ... 171

New Properties and Methods for Existing Objects 171
The Date Object .. 172
The String Object .. 173

Regular Expressions .. 178
Step by Step ... 181

Scripting for Both Explorer and Navigator 183
Determining the Script to Be Exposed 183

The Image Object Example .. 183
Version 4 Browsers .. 184
Using the Browser Variables .. 184

Summary .. 185

11 Dynamically Changing Content 187
Changing Content in Netscape Navigator 188

The LAYER Tag .. 188
Changing Content in Elements Positioned with Cascading

Style Sheets ... 192
Changing Content in Internet Explorer 194

Changing CSS Property Values ... 194
Dynamically Changing Text and HTML 197

Binding Content Change to Elapsed Time 207
Using the Timer Methods ... 208

The Dynamic HTML Unleashed Author Quiz 210
How Does the Quiz Work? ... 213
The Code .. 214

Summary .. 218

Contents

Dynamic HTML

UNLEASHED
x

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

12 Dynamic Positioning 219
Cross-Browser Issues .. 220

Positioning: The Basics .. 221
Absolute and Relative Positioning .. 221
height and width .. 226
overflow ... 226
visibility .. 226
z-index ... 227
clip ... 227

Scripting Dynamic Elements .. 227
Entente in the Browser War: The layerTool Object 229
Shuffling the Pack: Dynamically Changing
z-index ... 232

Cutting Corners: Dynamic Image Maps Using Only
Two Images ... 239

(Nearly) Object-Oriented Code in JavaScript 245
Making It Move ... 246
A Smart layerObject ... 250
Getting to the Point ... 251
Managing Movement ... 253
Bringing It All Together ... 256

The JavaScript Inheritance ... 265
Summary.. 267
Possible Further Applications ... 268
Useful Resources .. 268

13 Using VBScript as an Alternative Language 269
Document Object Model ... 271
Elements and Collections ... 272

Naming HTML Elements ... 272
Using Collections .. 275

Triggering Events ... 280
Basic Event Handling .. 280
Creating Specific Event Scripts .. 281
VBScript Event Handling .. 282
Event Bubbling .. 283
Valid Events .. 286

Summary.. 292

xi

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Part IV The Document Object Model

14 What Is a Document Object Model? 295
History of the DOM .. 296
Why Is a DOM Useful? ... 297
The Object Model ... 297

Exposing Page Elements .. 297
Navigating Page Elements .. 299
Manipulating Page Elements ... 300
Exposing User-Agent and Meta Information 300

The Style Sheet Object Model .. 301
Exposing Style Sheets ... 301
Manipulating Style Sheets .. 303

The Event Model ... 303
Generating Events ... 304
Delivering Events .. 304
Exposing Event Attributes ... 305

Page Updates .. 305
Summary .. 306

15 Document Object Model Comparison 307
Why Different Models? ... 308
How Does This Affect Development? 308
Organization of This Chapter .. 309

The Object Model ... 309
Exposing Page Elements .. 309
Navigating Page Elements .. 319
Manipulating Page Elements ... 323
Exposing User Agent and Meta Information 327

The Style Sheet Object Model .. 328
Exposing Style Sheets ... 328
Manipulating Style Sheets .. 336

The Event Model ... 339
The Communicator 4.0 Approach ... 339
The IE4 Approach ... 340
Making Them Work Together .. 340

Page Updates .. 341
The Communicator 4.0 Approach ... 341
The IE4 Approach ... 341
Making Them Work Together .. 341

Summary .. 342

Contents

Dynamic HTML

UNLEASHED
xii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

16 The Internet Explorer 4.0 Event Model: Event Bubbling 343
What Is Event Bubbling? .. 344

The Bottom-Up Approach .. 344
Why Bubble Events? .. 345

How Does Event Bubbling Work? ... 346
Event Generation... 346
Event Delivery ... 347
Event Bubbling .. 348
The Default Action.. 350

The Event Object ... 351
Event Source Properties ... 351
Event Position Properties ... 352
Keyboard Properties .. 354
Event Action Properties ... 355

New and Updated Events ... 356
Mouse Events .. 356
Keyboard Events .. 357
Selection Events ... 357
Load and Unload Events ... 358
General User Events .. 359
Page Element Events .. 360
Data Binding Events .. 360

Summary.. 361

17 The Communicator 4.0 Event Model: Event Capturing 363
What Is Event Capturing? .. 364

The Top-down Approach .. 364
Why Capture Events? .. 364

How Does Event Capturing Work? .. 365
Binding Events .. 366
Capturing Events ... 366
Routing Events .. 367
Handling Events .. 375
Releasing Events .. 376

The event Object .. 377
Event Source Properties ... 377
Event Position Properties ... 377
Keyboard Properties .. 380
Additional Properties ... 381

New and Updated Events ... 381
Mouse Events .. 382
Keyboard Events .. 384
Window Events ... 385

Summary.. 386

xiii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Part V Data Awareness

18 Presenting Your Data with Dynamic HTML 389
Introducing Data Source Objects ... 390

The Tabular Data Control ... 391
The JDBC Data Provider .. 391
The Microsoft Remote Data Services 392
Creating Your Own Data Source Objects 393

Utilizing a Data Source Object ... 394
HTML Extensions Supporting Data Binding 394

DATASRC ... 395
DATAFLD ... 395
DATAFORMATAS .. 395
DATAPAGESIZE .. 395

Tabular Data Source Properties and Methods 396
The AppendData Property .. 396
The CharSet Property ... 396
The DataURL Property ... 396
The EscapeChar Property .. 397
The FieldDelim Property .. 397
The Filter Property ... 398
The Language Property .. 398
The RowDelim Property .. 398
The Sort and SortColumn Properties 398
The TextQualifier Property .. 399
The UseHeader Property .. 399
The Recordset Property .. 399
The Reset Method .. 399

Creating the Data File for the Tabular
Data Control ... 400

Using Data-bound HTML Elements ... 401
Creating a Data-bound Table ... 405
Summary .. 407

19 Client-side Data Manipulation 409
Reviewing the Trading Card Database ... 410
Sorting the Database .. 411

Using the TDC’s Sort Property .. 411
Providing the User Interface for Sorting Data 412
Another Example of Sorting Data .. 416

Filtering the Returned Data ... 421
Using the TDC’s Filter Property ... 421
A Data-Filtering Example .. 422

Contents

Dynamic HTML

UNLEASHED
xiv

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Using Table Paging .. 428
The DATAPAGESIZE Attribute.. 428
The nextPage and previousPage Methods 428
A Table-Paging Example ... 429

Summary.. 435

20 Updating the Data 437
Creating an ODBC Data Source .. 438
Server-side Data Updates ... 440

Creating an Active Server Page .. 441
Introducing the ActiveX Data Objects 442
Updating Data with the ActiveX Data Objects 443

Introducing the Remote Data Services ... 445
The Advanced Data Control .. 446

Properties .. 446
Methods .. 449

Updating Data Using the ADC .. 450
Creating a Data Editing Page ... 450
Updating with SQL ... 454
Using the SubmitChanges Method ... 455

Summary.. 455

21 Summing Up—A Practical Application 457
Software Requirements ... 458
Setting Up the Web ... 459
Setting Up the Trading Card Database .. 461
Creating the Home Page .. 462
The Application Setup Page ... 464
The Editing and New Card Pages .. 466
The Card List Page... 474
Summary.. 480

Part VI Other Dynamic Techniques

22 Using Layers 483
An Introduction to Layers .. 484

A Divergence in Standards ... 484
What About the Other Guys? .. 484

Creating Your First Layer ... 485
Adding More Layers ... 489

The Lowdown on Layering .. 489
Layers and Their Properties ... 491
JavaScript Layers Versus CSS ... 495
Contingency Plans: <NOLAYER> .. 496

Summary.. 499

xv

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

23 Transition Effects 501
Core Scripting Concepts .. 502

Accessing Layers with JavaScript .. 502
Easier and Faster Animations ... 506

Animating Layers with JavaScript .. 506
How Layers Stack Up .. 509
Dynamically Creating Animated Layers 511
Changing and Creating Layer Content 513

Advanced Scripting Concerns ... 515
Scripts Within Layers .. 515

Using Animations .. 516
Real-World Dynamic HTML .. 517

Avoiding Overload ... 521
Summary .. 521

24 IE 4.0 Multimedia Effects with Dynamic HTML 523
Where Multimedia Has Been .. 524
Where Multimedia Is Headed.. 525

Up, Up, and Away ... 526
Moving Objects ... 529
Blowing Up Balloons ... 530
You Before Me, Except After Z.. 531

Adding Special Effects .. 532
Applying Filters ... 532
Chaining Filters Together .. 533
The Filter List .. 534

Transitions ... 542
Using Transitions .. 542
Transition Properties ... 543
Transition Methods ... 544
Transition Example ... 545

Summary .. 546

25 Using Netscape Navigator’s Canvas Mode 547
Why Use Canvas Mode? .. 548
How to Invoke Canvas Mode ... 549

The window.open() Method ... 549
Bypassing the Script Signing Requirement 552
Your First Canvas Mode Window ... 553

Signing Your Scripts ... 556
Buying a Certificate ... 557
What Can Be Signed ... 557
Using Zigbert .. 558

Contents

Dynamic HTML

UNLEASHED
xvi

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

A Portable Canvas Mode Image Zoomer 559
Catch That Mouse! .. 560
The clicker function .. 561
Find That Click! .. 562
Open Sesame ... 563

Build Your Own Navigator .. 566
The Launchpad ... 566
MyScape Navigator ... 567

Summary.. 570

Part VII Managing Dynamic HTML

26 Creating a Site for the 4.0 Browsers 573
Staging ... 575

Creating a Canvas Window ... 575
Managing Resolution-Specific Images...................................... 578
Layering HTML Style Sheets ... 579
Switching the Document Object Model 581
Managing Image Loading .. 581
Positioning Style Sheet Layers .. 583

Choreography .. 585
Layer Animation .. 585
Imagemap Resurrection ... 586
Sprite Animation ... 589
Changing Dynamic HTML Content 590
Scrolling Layers ... 592

Summary.. 592

27 Degrading DHTML Gracefully 593
Grouping Browsers .. 594
Development Flow .. 597

The Control Page (index.html) ... 598
Document Object Switch .. 598
Dynamic Frame Setting ... 600
Preload Manager .. 601
Dynamic Image Replacement .. 602
Info Box Widget .. 604
Page Scroller Widget .. 606

Main Content Page .. 607
JavaScript Header .. 607
Main Content Page Layer .. 608
JavaScript Table Header .. 609

xvii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

<NOSCRIPT> Navigation Menus .. 609
Standard Table Body ... 610
Page Scroller Widget Layer .. 611
Info Box Layer ... 612

Summary .. 612

28 Netcasting Your DHTML Site 613
What Is a Channel? ... 615
What Is a Webtop? .. 615

Channel Components .. 616
Add Channel Button ... 617
Channel Definition Function .. 617
Channel Code Optimization ... 620

Full Media Immersion.. 621
Obligatory Animations .. 622
Audiophile Pages ... 623

Security Considerations .. 624
To Bot or Not to Bot ... 624
Push? Pull? Oh, Please! ... 625
Summary .. 625

29 Debugging Your Dynamic HTML 627
What Is Debugging? ... 628
Why Is Debugging Important? ... 628

Standard HTML Enforces No Special Limitations 628
DHTML and Scripting Languages Require Clean Code 629
How Error Messages Can Help You .. 632

Methods of Debugging Your DHTML .. 633
Debugging by Hand .. 633

Debugging Using Special Tools .. 636
Microsoft Script Debugger .. 636
Netscape JavaScript Debugger ... 638
Summary of These Tools ... 639

A Staff Directory Example .. 639
Building and Debugging the Staff Directory Visual

Interface .. 639
Finding the Error ... 642
Writing and Debugging the Data Manipulation Routine 644
Summary of the Staff Directory Example 648

Types of Errors You Will Encounter .. 649
Advanced Techniques and Special Circumstances 650

Incorporating DHTML Techniques with CGI 650
Summary .. 653

Contents

Dynamic HTML

UNLEASHED
xviii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

30 Publishing and Managing Your Content 655
Publishing Concepts .. 656

DHTML Publishing Is Unique ... 656
Traditional Web Publishing: The Olden Days 656
Modern HTML Publishing Methods 657

Techniques of Publishing Your DHTML..................................... 661
Integrated Publishing Tools ... 661
Nonintegrated Publishing Tools .. 662
The Power of Visualization .. 663
What If the Site Already Exists? ... 665
Visualizing Site Structure ... 667
Adding Reusable Code .. 670
Checking for Errors ... 671
Syntax and Link Validators .. 672
Publishing Your Material ... 675
Cupertino .. 676

Management Concepts ... 678
Automating URL and Script Updates 679
Updating Time-Based Information .. 680
Collecting and Analyzing Site Statistics 682

Summary.. 684

Index 687

xix

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Acknowledgments
Brian Gallagher: I would like to recognize my family for the time and sacrifices they endured
to allow me to participate in this project; Jen, Troy, and Sarge—thanks. Also, I would like to
thank Jeff Rouyer, for his enthusiasm, creativity, and friendship.

Trevor Lohrbeer: I would like to thank Bob Ainsbury for giving me a chance in the computer
industry and Glenn Anderson for showing me good programming and debugging practices.

Jeff Rouyer: All my Web-related projects start out as gray lumps of clay. I would like to thank
my friends, Christina Baldi, Brian Gallagher, and Alice Rouyer for helping me form the lumps
of clay into beautiful cobalt blue ashtrays.

William Royere: Thanks to the Sams.net editorial staff.

David Wiley: My thanks go to my wife, Elaine, for her support in terms of her encourage-
ment, love, and extra time taking care of David Enoch. Ai shiteru!

Matthew Zandstra: I would like to thank Michael Morrison for his generous permission to
use approaches and structures developed in his Java Sprite and SpriteVector classes. Thanks
also to the Corrosive team for putting up with moments of madness and panic.

Dynamic HTML

UNLEASHED
xx

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

About the Authors
Peter Belesis resides in Greece with the sun, the sea, and his slow Internet connection. A pio-
neer in PC training, and old enough to know that “Moz” rhymes with “Woz,” Peter presently
maintains two popular online columns—CompuServe’s Dynamic HTML 101 (www.iehelp.com)
and WebReference’s Dynamic HTML Lab (www.webreference.com/dhtml/). When not writ-
ing, Peter spends his time wondering what he would be doing had the Web not been invented.

Arman Danesh (armand@landegg.com) is the Director of Communications and Information
Systems at Landegg Academy (http://www.landegg.edu/), an international university in Swit-
zerland. He is also a consultant for “The Bahaí World” Web site (http://www.bahai.org/) and
a technology journalist, contributing regularly to the South China Morning Post in Hong Kong
and other publications throughout Asia. He received his master’s of science degree in mass
communication from Boston University in 1990. Arman lives with his wife, Tahirih, in Swit-
zerland.

Rick Darnell (darnell@montana.com) hails from the flatlands of Kansas, although he currently
finds his view blocked by a bunch of mountains while living with his wife and two daughters in
western Montana. He graduated from Kansas State University with a degree in broadcasting, after
which he became confused, and started writing for two small energy industry magazines and a
local weekly newspaper. While spending time as a freelance journalist and writer, Rick saw the
full gamut of personal computers since starting out with a Radio Shack Model I in the late 1970s.
When not in front of his computer, he serves as a volunteer firefighter/EMT and member of a
regional hazardous materials response team. Rick has authored several books for Sams.net Pub-
lishing and Que Corporation, including HTML Unleashed and Teach Yourself Dynamic HTML
in a Week. His Web page is located at http://people.montana.com/darnell/.

Craig Eddy (craig.eddy@cyberdude.com) resides in Richmond, Virginia with his wife and two
children. Craig holds a bachelor of science degree in electrical engineering from Virginia Tech.
He is currently employed as Senior Developer for Pipesteam Technologies, Inc., a leading
developer of sales force automation and customer information management software. Craig
specializes in Visual Basic, SQL Server, Access, and Active Server development. He contrib-
uted to Access 97 Unleashed, VBScript Unleashed, Visual InterDev Unleashed, Teach Yourself Access
97 in 24 Hours, and Web Programming with Visual Basic. Craig’s outside interests include pri-
vate business development and relaxing on the outer banks of North Carolina.

Brian Gallagher (briang@spintheweb.com or briang@winntmag.com) is a product reviewer in
the Windows NT Magazine lab. He has been a writer/editor for numerous technology-focused
publications.

xxi

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

John J. Kottler (jkottler@aol.com) has been programming for 14 years and has spent the past
6 years developing applications for the Windows platform. In addition to Windows develop-
ment, John has been programming multimedia and Internet applications for more than three
years. His knowledge includes C/C++, Visual Basic, multimedia and digital video production,
and Internet application development. He has published numerous magazine articles on soft-
ware development and programming techniques. John has been recently published in Sams.net’s
Netscape Unleashed, Web Publishing Unleashed, Presenting ActiveX, Web Page Wizardry, Java
Unleashed, Visual InterDev Unleashed, and in Sams Publishing’s Programming Windows 95
Unleashed. He was also a codeveloper of the shareware application Virtual Monitors. A gradu-
ate of Rutgers University with a degree in computer science, he enjoys in-line skating, cycling,
and playing digital music in his spare time.

Trevor Lohrbeer began developing Web sites as a hobby in 1993. He joined Maximum Infor-
mation two years later to develop database-driven interactive Web sites using WebC. After the
company was sold to NetManage, he managed their Web team for five months before leaving
the company to pursue work as a consultant. He now develops interactive Web sites using both
database-driven dynamically generated Web pages and Dynamic HTML. In his spare time, he
writes fiction, performs with fire and drums, and maintains several personal Web sites.

Ryan Peters (ryan@b29.com) lives in Rehoboth Beach, Delaware, with two cats, a dog, two
computers, and a purple car. An accomplished Web developer specializing in Windows NT
Web-based applications, he devotes an incredible amount of time to staying ahead of the curve
in Internet development. One of the owners of B29 Development Corp. (http://www.b29.com),
Ryan was awarded Best Overall Use of Dynamic HTML in the 1997 Netscape/Webmonkey
Dynamic HTML Skill Contest for an interactive Dynamic HTML real estate kiosk. When
not developing or experimenting with new ways to bring the Web to life, he enjoys personal
watercraft, live music, and his ongoing quest for a 36-hour day.

Stephanos Piperoglou is currently a first-year undergraduate studying computer science at
St. John’s College, Cambridge University, in England. His professional experience includes
work as a network administrator for Hellas On Line, one of Greece’s largest Internet service
providers, and recently as a Web developer for the Demokritos National Scientific Research
Center, the largest scientific research institution in his home country.

Jeff Rouyer holds a degree in zoology from Oregon State University. He worked as a biologist
for the National Marine Fisheries Service and Forest Service for several years. A blip in time
finds Jeff currently residing with his wife in Lafayette, Colorado, where he builds Web pages
for an Internet service provider. Jeff’s Web projects and computer animations have bagged him
several awards and Scooby snacks from publishers and the Internet community. While dream-
ing up his next Web project, he often reflects back to a time when he was counting whales off
the coast of Alaska.

Dynamic HTML

UNLEASHED
xxii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

William Randolph Royere III is a southern California-based programmer in Internet secu-
rity and secure Web development. He is a former systems administrator with programming
expertise in the following platforms: Novell, SunOS, Solaris, LINUX, AIX, MS Windows 95
and NT. His preferred language (other than JavaScript) is Perl, but he also codes in C/C++,
VB, BASIC, and various shells. He now heads an Internet security consulting firm. He has
written for Sams.net in the past.

David Wiley is a graduate of Marshall University, where he received a bachelor of fine arts
degree, with honors, in vocal performance. In addition to working as Marshall University’s
Web developer, teaching in the university’s Computer Science department, and providing
consulting support for a number of extra university projects such as Bell Atlantic’s World School
program, David tries to stay involved in his local fine arts community and church. He has served
as music director for summer theater performances in addition to appearing in their leading
roles, and served a two-year full-time mission for his church in Kyushu, Japan. Beyond DHTML,
David’s current projects include investigations of higher education policy governing online
course delivery, Web publishing in Japanese, transmission of music via the Internet and creat-
ing free time for his family. David is married to Robina Elaine Wiley, and they have a one-
year-old boy named David Enoch.

Matthew Zandstra is the creative director of Corrosive Web Design Ltd (http://
www.corrosive.co.uk/), which he cofounded in 1996 after some years as a freelance designer
and teacher. He codes in Perl, Java, Lingo, and JavaScript. In addition to teaching Web pro-
gramming, creating Web environments, and acquiring Web skills, he masterminds occasional
forays into the real world to read, write, and drink Guinness.

xxiii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Tell Us What You Think!
As a reader, you are the most important critic and commentator of our books. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way. You
can help us make strong books that meet your needs and give you the computer guidance you
require.

Do you have access to the World Wide Web? Then check out our site at http://www.mcp.com.

NOTE

If you have a technical question about this book, call the technical support line at 317-581-
3833, or send e-mail to support@mcp.com.

As the team leader of the group that created this book, I welcome your comments. You can fax,
e-mail, or write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger. Here’s the information:

Fax: 317-581-4669

E-mail: newtech_mgr@.mcp.com

Mail: Mark Taber
Comments Department
Sams.net Publishing
201 W. 103rd Street
Indianapolis, IN 46290

Dynamic HTML

UNLEASHED
xxiv

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Introduction
Welcome to the world of Dynamic HTML, where the speed of the user’s modem and the load
on the host’s server begin to become irrelevant. So what is Dynamic HTML (DHTML)? It’s
the world of point-and-click, drag-and-drop, instant gratification Web pages. It’s about Web
pages that can change themselves, and page elements with direct database connections. It’s about
the evolution from static page to interactive mini-applications. To be more specific, DHTML
is an emerging Web standard that adds interactive features to Web pages while lightening the
load on Web servers.

To accomplish all these feats of wonder, DHTML doesn’t mandate your use of new tags, lan-
guages, or platforms. DHTML can be accomplished using existing technologies and features
on the Web, including HTML, scripting, and object-oriented programming. You can go be-
yond this, of course, and experiment with the proprietary tags Microsoft and Netscape have
developed for their latest generation of Web browsers. At its root, however, DHTML isn’t a
new version of HTML; it’s a new way of tying the elements of a Web page together to create
a page that crosses traditional static boundaries.

The combination of features and capabilities that become Dynamic HTML are working their
way into the HTML standard through the primary standards-making body for the Web—the
World Wide Web Consortium. At the same time, Microsoft and Netscape are both introduc-
ing browsers and add-ons to make DHTML possible for the user, while other developers are
creating tools to author Web pages that include Dynamic HTML features. But, even with new
browsers and tools in the offing, a strong understanding of the technical details will go a long
way in helping you understand what’s happening to your pages when the finished product hits
the Web.

So, what are you required to know to enter this new arena in Web authoring and develop-
ment? First, a solid knowledge of HTML. DHTML doesn’t work without clean HTML, and
we won’t spend much time in this book reviewing how to assemble basic HTML pages. For
that, you can check out HTML 4 Unleashed or Teach Yourself HTML 4 in 24 Hours. We will
cover the rest of the details, including all the building blocks—style sheets, scripting, object
models, events, and database handling.

When you’re finished, you’ll have all the information you need to build Web pages that change
themselves without the help of the Web server receiving data from databases without CGI scripts.
And, you’ll have the information and resources that you need to stay on top of this evolving
capability and standard.

xxv

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Who Should Read This Book
Our primary audience is the readers who depend on the Unleashed series as both a learning
tool and an indispensable reference. We’re striving for this book to be the definitive work on
the universe of Dynamic HTML. If you need information about philosophy, standards, and
practical implementation, it’s all under one roof in this book.

We wrote this book for the vast numbers of people who understand HTML and need an in-
depth look at the new capabilities offered by Dynamic HTML. With the code listings and
examples, you could probably get through this book without a working knowledge of HTML,
but it’s certainly going to make your life easier. If you have not read a technical book on HTML
(standards 1.0, 2.0, 3.2, or 4.0), you might want to read one first.

What This Book Is
This book is a complete reference on fitting various technologies together to create Dynamic
HTML. The caveat is that DHTML means different things to different companies: Netscape,
Microsoft, and the W3C all have slightly different views and implementations, and they’re not
entirely compatible with each other. For that reason, we’ve tried to cover the nuances in imple-
mentation between browsers, and the work of W3C to bring everyone to a common ground.
Where both browsers accomplish the same task with different means, we’ll show you both ways
of implementing the task.

This book covers every major feature of Dynamic HTML we have found. By following the
sections of the book, you’ll see where each feature of DHTML depends on the other features
for the final result. By working with each feature separately and in concert with its compan-
ions, you’ll add dynamically changing text, styles, and graphics; provide interactive access to a
data source; and add animations to your Web pages—all of which readers can access through
mouse- and keyboard-based events. You’ll learn how to place text and graphics more precisely
on a Web page as well as define a region on a Web page where your readers can drag and drop
graphics themselves.

What You Need Before You Start
Because Dynamic HTML is a way of integrating existing HTML technologies, all you need to
create Dynamic HTML files is a simple text editor (such as the Notepad application accessory
provided with either the Windows or NT operating systems). You can use a word processor as
well or a more sophisticated Integrated Development Environment (IDE) that comes with many
of today’s visual programming applications.

To see the Web pages you create in an interactive mode, you need either the Netscape Naviga-
tor 4.02 or Microsoft Internet Explorer 4.0 Web browser. To see all the examples in this book
perform their dynamic features, you need both Navigator 4.02 and Internet Explorer 4.0. Both
are available on the Web for download. Because Dynamic HTML is not implemented as a

Dynamic HTML

UNLEASHED
xxvi

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

standard, Netscape and Microsoft present different implementations. We provide examples of
each implementation.

A live Internet connection is not necessary for creating DHTML pages, although access to the
Web will let you look up the many Web-based resources referenced throughout the text in this
book.

Dynamic HTML Unleashed at a Glance
Part I is an introduction to Dynamic HTML concepts, including a more complete definition
of DHTML and an overview of where it lies within the standards process with the World Wide
Web Consortium and competitive implementation with Netscape and Microsoft.

Part II covers cascading style sheets, which comprise the first building block of DHTML. As
HTML continues to move away from tag-based control over document appearance, knowl-
edge and use of style sheets are necessary to implement visual changes in Web pages.

Part III gives a quick introduction and tutorial on scripting within Web pages. Scripting is
required by DHTML to give “intelligence” to your Web pages by allowing decision making
and processing to occur in reaction to user events. Although most of this book will utilize
JavaScript for its examples, DHTML is not tied to a specific language.

Part IV is where DHTML-specific technologies really become apparent. This section includes
evaluation and exploration of the different Document Object Models (DOM) available for
DHTML. The DOM is what the scripting language uses to identify and manipulate virtually
any element on the Web page.

Events are a cousin to scripting and the DOM, and are also covered in Part IV. Events are used
by DHTML to “see” and “feel” its environment, including what the user is doing on the page—
moving a mouse, clicking, typing, or moving on to a new page.

Part V explores a fledgling capability of DHTML which is currently limited to Internet Ex-
plorer. Data awareness allows a Web page to create a direct connection to a database, without
the automatic dependence on CGI scripts. Once the connection is made, the page can display
and manipulate data in a variety of ways, including inserting, deleting, and updating records.
The result is a major breakthrough in creating Web pages that can interact with data by plac-
ing all the data functions within familiar HTML tags.

Part VI includes other options for Dynamic HTML, including animated transitions, layers,
and Netscape Navigator’s canvas mode. This section is primarily a collection of proprietary
technologies that are only compatible with one browser or another, but they serve to give an
indication of the different ways DHTML is evolving.

xxvii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

Part VII brings all the pieces of the first six sections together by looking at the practical appli-
cation of DHTML on a Web page. This includes making a site for the 4.0 browsers, creating
a site that will degrade gracefully, creating a Netcaster site, debugging strategies for DHTML
pages, and publishing your content.

By the time you’re done reading this book, we hope you’ll have all the tools and information
you need to use DHTML techniques in a responsible manner. The result should be pages that
increase the effectiveness of your pages for your users, not drive them to distraction.

Because this is a reference book, we know you’ll have additional questions about syntax and
standards that aren’t directly treated in the text of a chapter. Instead of keeping three or four
books open at your side to look up information on HTML, style sheets, and scripting, we’ve
provided a Companion Web site (http://www.mcp.com/info) and our Sams.net Dynamic HTML
Guru site (http://www.htmlguru.com) that include a set of quick reference chapters that cover
all the technologies we’ve implemented, plus a side-by-side reference of the different Docu-
ment Object Models.

We’re sure you’ll be as excited as we are about Dynamic HTML by the time you’ve had a taste
of the capabilities it offers for your Web pages. It opens a new way to communicate with your
readers on the Web which provides practical tools and entertaining effects, so both you and
your readers can have fun. And, isn’t that what you’re looking for? As we said earlier, welcome
to Dynamic HTML. We think you’ll like it here.

Introduction

Dynamic HTML

UNLEASHED
xxviii

Stone1 Dynamic HTML Unleashed #353-2 polly 11.15.97 FM LP#1

■

■

■

Introducing Dynamic HTML

1

by Rick Darnell

■

■

■

■

Getting Started with Dynamic HTML

Dynamic HTML (DHTML) is the latest big news on the World Wide Web since Java was
introduced. It seems that with the advent of HTML 4, the new Document Object Model
(DOM), ECMAScript, and a host of other new announcements from the gods who create stan-
dards for the World Wide Web, people can’t get enough of DHTML.

So what’s DHTML all about? Sometimes it’s hard to tell, with all the drum beating from soft-
ware developers and miscues from industry pundits. And that probably has something to do
with why you bought this book. In a nutshell, DHTML is the interaction of existing Web
technologies—primarily HTML, style sheets, and scripting—to create Web pages that can
interact with the reader without depending on the Web server. In essence, DHTML is about
creating mini-applications that run on the user’s computer instead of a traditional static Web
page that depends on a Web server for its updates.

The hard part of DHTML is sorting through all the options currently available to you. We’ll
sift through the hype in this book to let you know what can and can’t be done with DHTML
as it is currently implemented in Netscape Communicator and Microsoft Internet Explorer 4,
and we’ll tell you what’s on the horizon from the World Wide Web Consortium (W3C). In
short, we’ll give you what you need to know to use DHTML now.

As you get started with DHTML, it helps to have a common terminology and frame of refer-
ence. That’s what this chapter is for. DHTML is a moving target; everybody says DHTML is
exciting, but not everyone is talking about the same technologies or capabilities. So take some
time here to get a handle on the various terms so that you can get an idea of what you’re in for.

This chapter introduces the concepts and possibilities that DHTML brings to the World Wide
Web. I’ve included some examples to illustrate the basics of some important ideas. Don’t worry
too much about understanding how the examples work; those details are handled in other parts
of the book. We’re just giving you a “sneak peak” at what a DHTML page looks like.

Before the new developments with HTML 4 and the DOM, there were still a lot of ways to
add dynamic features to a Web page. Here’s an overview of some ways to add dynamic capa-
bility to a Web page using other technologies. Although these technologies are still viable solu-
tions, we think you’ll want to use DHTML as a quicker and easier way to implement dynamic
Web pages.

Common gateway interface (CGI) scripts are still a favorite method for many Web developers,
because this type of server-side script offers a lot of power and flexibility. After all, CGI is the
standard that describes how Web servers connect to external programs, which in turn generate
new Web pages. To change a page using CGI scripts, the user clicks a hyperlink or submits
a form to connect the browser with the server, which contains a script that evaluates what

Introducing Dynamic HTML

1happened and generates a new page in response. The new page might be a revised version of
the current one or a completely new creation.

You can do a lot of interesting things with a CGI script, such as interact with databases or cre-
ate Web pages with user-specific content. Other possibilities include creating sites that depend
on various forms of information management, such as order processing or access to archives.

Although CGI scripts are powerful tools, they’re still slow. In addition to the client/server trans-
actions required for the original page, the script requires an additional interchange for the sub-
sequent page, plus the additional processing time required to run the script. This probably is
the biggest drawback to CGI scripts. The browser must send the input for the script—which
is received by the Web server, evaluated, and processed—and then a new page is sent back to
the browser. It’s like browsing to a whole new page, except there’s some additional processing
time thrown in.

If only one user is connected to the server, server processing time probably isn’t an issue. How-
ever, if the server is dealing with a lot of requests for other pages and script processing, the
server’s host computer can start to bog down with all the demands. This slows the process even
more.

Another problem with CGI scripts is the time it takes to put one together. It involves writing
a small program in one of the common scripting languages such as Perl, testing it with a variety
of input, and then posting it to the Web site. The development process is long when compared
with the time required to put together a Web page.

CGI scripts are neat, but using them requires some knowledge of client/server relations. There-
fore, some bright people at Sun Microsystems developed a way to embed Web pages with pro-
grams that could run on any computer. This was accomplished with applets written in Java.
Java applets have the capability to interact with the user and, in some cases, look at or modify
various elements of the Web page.

The beauty of Sun’s Java as a programming language is its “write once, run anywhere” capabil-
ity. The same piece of Java code can run on any computer equipped with the Java Virtual
Machine. Using Java, developers can write applets—applications such as spreadsheets or data
processing that need a host program (like a browser) to run. For example, the little Microsoft
Graph program packaged with Word or Excel works only within those programs. In turn, its
output is displayed only within documents created by the parent program.

Applets offer a way to build applications customized to a Web page or site (see Figure 1.1). An
applet can also be extended to recognize various elements on the Web page, such as the con-
tents of form elements.

Getting Started with Dynamic HTML

The c|net applet in Figure 1.1 is designed to gather information from the user, which is then
passed along to a CGI script that generates the final results. This is typical of some of the more
advanced Java applets. At some level, most require another connection with the server to gen-
erate a new page with updated information. The shopping list applet shows some of the power
of Java to interact with the user and create a custom page in response. After all, Java is a full-
featured programming language capable of great things. HotJava, for example, is a fully func-
tional Web browser written entirely in Java.

Because applets behave just like programs, they’re capable of a great deal. However, they still
have some critical drawbacks. First, you must know how to program in Java. Java isn’t the hardest
language in the world to learn, but you still need to know about Web-based programming,
and that’s a level beyond most HTML authors. Then, like a CGI script, Java applets aren’t
able to update a Web page without reloading the entire page or referring back to a CGI script
on the server.

Although designing the applet itself to interact with the user is a fairly simple and straightfor-
ward task, actually doing anything with the Web page in which the applet is located is more
complicated. You can use scripting languages to help control the applet’s behavior, and Netscape
has provided an additional set of tools to help the applet look at the Web page. If the applet is
going to start working with the contents of a form or other page elements, it is typically written
for that specific page. You can probably start to see rather quickly the implications of custom-
izing a program to fit every page where you want interaction with the Web page.

One other drawback to applets is the same as for other external content to a Web page: The
download time for the page is increased because one more element on the page has to be loaded,
initialized, and started. By the same token, the applet chews up some additional resources when

This Java applet from
c|net develops a
shopping list for
building a home
computer network.

Introducing Dynamic HTML

1you leave the host page. While you’re waiting for a page to load, the Java Virtual Machine in
the browser stops the applet’s execution and releases all the resources it sucked up.

If the applet uses any images or other support files, the download times are extended that much
more. Although Java transports well across computer platforms, it still has the big drawback of
requiring additional bandwidth to copy a Java-powered page.

There are some very important differences between plug-ins and ActiveX controls, but their
purpose on the page is basically the same. Like an applet, they add features and functionality to
a Web page without directly affecting the host page. And, again like applets, creating interac-
tion between the user and the plug-in is easier.

Plug-ins were initially developed by Netscape, and ActiveX controls are a Microsoft invention.
The basic principle of both is that the controlling software is loaded onto the user’s computer,
and then the Web page contains another file that has the specific instructions or content. This
type of interactive software can do all sorts of things, such as provide an interface to look at
different types of graphic files (including movies and animations), listen to special sound files,
view and edit spreadsheet and word processing files, or even play games.

However, like the applets, plug-ins and ActiveX controls also add to the download burden of
a page. In addition to the time it takes to download and install the actual plug-in or control,
there’s the extra time to download the content files. Some ActiveX controls are used to provide
features such as tool tips or pop-up menus, but, like plug-ins, these items are operated directly
by the control, and their reach doesn’t extend beyond the features.

Client-pull is how the vast majority of users get their content on the Web. They type a URL or
click a hyperlink, which sends a request (the pull) for a page. There are other methods to imple-
ment this as dynamic behavior. One is to use a special tag called <META> in the header. Used
with the HTTP-EQUIV=REFRESH attribute, the <META> tag causes the browser to reload the page
from the server after a predetermined number of seconds, specified with CONTENT=seconds. If
you wanted the browser to reload the current page in four seconds, you would add this tag to
your HTML page:

<META HTTP-EQUIV=”Refresh” CONTENT=4>

This starts the client-pull process, the mechanism for pages to automatically reload after a cer-
tain amount of time has passed or for a series of pages to automatically load themselves with a
pause between them.

If the value of CONTENT is 0, the page is refreshed as fast as the browser can retrieve it, which can
be rather slow if the user has a slow or poor-quality connection. It’s definitely not fast enough
for any sort of high-quality animation. When you add the REFRESH attribute to a page, the browser

Getting Started with Dynamic HTML

will reload it ad infinitum. To stop the process, you must provide a hyperlink to another page
without a client-pull tag.

To be a dynamic process, client-pull needs something to change the page on the server be-
tween downloads. There are special programs designed to do this, usually from a database that
is updated. This type of strategy is used by sites providing “live” updates of sports scores, stock
quotes, and other information that changes on a steady basis.

However, client-pull is also used to load a different page. Continuing the process of loading a
new page enables you to automatically lead a user through a series of slides or instructions,
similar to a PowerPoint presentation. Modify the CONTENT attribute to provide this capability,
like this:

<META HTTP-EQUIV=”Refresh”
CONTENT=”8;URL=http://www.mrfd.com/safety/tip2.html”>

Inside another <META> tag on the target page, you can include a pointer to the next page, and so
on. This technique allows any number of pages to load in sequence.

The server-push technology, as you might have guessed from the name, is the opposite of
client-pull. With push technology, the server doesn’t wait for the request. When the content is
ready, the server shoves it down the line to the user’s browser so he or she can read it at his or
her leisure.

The most common analogy of server-push is television. Broadcasters send out their signals to
the viewers, who turn on their television sets to receive the signals. The television set doesn’t
request a program from the broadcaster; it only receives what’s already out there.

Actually, push technology bears a closer resemblance to customized cable channels. The users
are allowed to select the channels or specific programs that really interest them instead of surf-
ing through the entire gamut of information. The other part of the analogy is the storage as-
pect. Your television can’t store the broadcast signal as it passes through the air—that’s the job
of a VCR.

With server-push technology, you and your computer become the center of the process. You
decide which portions of which channels you want to subscribe to, and the computer stands
ready to receive the content and store it for future viewing when the material is broadcast.

Dynamic HTML is a term that encompasses a lot of ground or very little, depending on whom
you’re talking to. Dynamic as it’s used in Dynamic HTML doesn’t follow the traditional dictio-
nary definition of the word. In the real world, dynamic means “continual change.” In the con-
text of HTML, it means “subject to change at any time.”

Introducing Dynamic HTML

1

Traditional HTML is static. After it’s loaded on a browser, it just sits there like a good dog.
You can look at it all you want, but it’s not going to change. You can click a hyperlink and
then return to the starting page, but the page isn’t going to change. You can stand on your
head in a corner while moving the computer mouse, but the page still isn’t going to change.
You can pick up your monitor and shake it until the diodes fall out, and the page still isn’t
going to change.

Here’s why. The HTML tags in a Web page are interpreted by the browser as the page loads.
The tags tell the browser what kind of headings to use, where to place new paragraphs, which
addresses to associate with hyperlinks, where to put images, and so on. When the browser is
finished, the page is displayed and all processing stops until the browser sends a new request to
the Web server. The only action allowed the user is to click a hyperlink, which tells the browser
to load a new Web page, interpret it, and display it. This static behavior isn’t much different
from turning pages in book.

There have been advancements to the capabilities of HTML since its early days. One of the
latest and most useful developments is the style sheet, an extension of HTML that allows greater
control over how the browser interprets elements, resulting in more control over the appear-
ance and placement of text and other objects on a Web page. However, even style sheets are
static. After the style rules are defined and interpreted, the browser displays the page and there
it sits, just like a good dog.

To be fair, there have been some advancements in trying to make HTML more interactive.
Scripting languages, applets, plug-ins, and objects have all served a purpose in making HTML
pages more dynamic for the user. The one thing these other technologies haven’t been able to
do is to change the page itself.

HTML has done everything expected of it. That’s all well and good, but a discerning public
demands more from their good dogs and from the pages on the World Wide Web. After all,
they’ve paid a lot of money to buy a computer and hook up to the Internet, and they expect to
see a little more than an electronic rendition of a book page. This type of demand leads us to
DHTML—a page that can change after the server is finished delivering the page to the browser.

This is the concept we’re tackling in this book. DHTML lets a Web page react to the user
without relying on the server or depending on an embedded program. This is very important:
DHTML can change itself. This is a big leap for the static Web page I mention at the beginning
of this section.

Getting Started with Dynamic HTML

Does this mean radically changing the old HTML we all know and love—the <H1>, the ,
and the <A HREF>? No, it means adding a way to control whether an element is displayed. This
also includes how and where the element is displayed. To accomplish these tasks requires a few
things: a way to get a handle on any element on the page and a way to control those elements
with scripts.

First, DHTML needs a way to look at the document. When you work with static HTML, the
browser looks at the entire document, interprets it, displays it, and is finished with it. It begins
and ends life as a text file filled with display instructions. With DHTML, the document takes
on a structure of its own, which is called the DOM.

The DOM works something like this: Although the page still exists as a text file, the browser
now handles it differently. As the browser encounters each element on the page, it notes what
the element is and where it is and places it in a stack with similar elements. In this way, it can
keep track of everything on the page, from the smallest <H6> heading and <HR> horizontal rule
to all the elements on a form. In essence, the browser creates a database each time a page is
loaded, and each tag becomes a record in the database.

It’s kind of like looking at a chessboard. Think of the board as the page and each of the pieces
as elements on the page. There is a variety of pieces, and some duplication among all of them.
However, each is handled and moved individually.

Next, DHTML needs a way to control how the different elements of the document are con-
trolled. This is accomplished through scripting languages, such as JavaScript or Visual Basic
Scripting Edition (VBScript).

Scripting languages are specialized programming languages that are inserted on a Web page to
control different elements of the page, including elements, frames, and the browser interface.
They have fairly limited power because they can run only within a Web page on a browser
compatible with a scripting language, such as Internet Explorer or Navigator.

In short, DHTML is not about server-side scripts, Java applets, or animated GIF images. All
of these can accomplish nifty things on their own—except for changing the content of the Web
page without a return trip to the server.

DHTML is about getting a handle on any element within the page at any time after the page
has downloaded and changing its appearance, content, or location on the page. This includes
a lot of neat things, such as dragging images from one place to another or expanding and col-
lapsing documents that provide instant results to a user.

Although DHTML is just one more step in the natural evolution of the World Wide Web, it’s
an important one. It enables Web pages to act much more like computer programs and inter-
active CDs than the static book pages they’ve been limited to for so long.

Introducing Dynamic HTML

1
The W3C has received several submissions from member companies on the ways in which an
HTML document can attain dynamic behavior. The submissions to the W3C include offer-
ings from both Netscape and Microsoft, which increases the importance and difficulty of the
role of W3C as arbiter to make sure interoperable and scripting language–neutral solutions are
the best for everyone, and not just one of the software developers’ products.

With all of that preamble out of the way, it’s time to take a closer look at some of the basic
features of DHTML that have been identified by one or more of the players developing the
standards.

This is the bit I was harping on just a few minutes ago. The capability to change tags and their
content involves the DOM, which uncovers everything for change, including all tags and style
sheet attributes. Figure 1.2 is a shot from Microsoft’s overview of its version of DHTML. Note
that it’s just a bunch of headings.

Each of the headings in Figure 1.2 is a special hyperlink that launches a script instead of load-
ing another page. When you click a heading, the page changes. Figure 1.3 shows the same page,
which now displays a paragraph of text under the heading. This is all accomplished with a little
bit of JavaScript and an extra style tag or two.

A Dynamic HTML
Web page by Microsoft
initially displays as a set
of headings without
much text.

Getting Started with Dynamic HTML

The headings are hyperlinks with the names of JavaScript functions as their URLs. The para-
graph under each heading is marked with an inline style indicating that its contents should not
be displayed. When the user clicks the heading, the JavaScript routine changes the no-show to
show, and the browser updates the page to reflect the new status. It’s that simple.

Live element positioning can turn Web pages into an interactive playground. The term inter-
active once meant that the user was interacting with some embedded program or plug-in or he
or she was filling out a form and clicking a submit button.

Both Microsoft and Netscape include this capability with their implementations of DHTML,
although they accomplish it in different ways. Microsoft uses the style sheet <DIV> tag, whereas
Netscape can use <DIV> or its own <LAYER> invention (layers are covered in Chapter 22, “Using
Layers”).

Between the two companies, there are several ways to move things around on the page after the
page is loaded into the browser. First, the movement can happen automatically. Examples of
this are illustrated with Netscape’s layers, which make it possible to incorporate slides, fades,
and other animated effects (see Figures 1.4 and 1.5). This is accomplished by hiding or mov-
ing each layer independently of the others to any position on the screen. They can overlap, let
other layers show through, or hide everything underneath.

The process of layering, also referred to as z-ordering, makes it possible to download an entire
site or section of a site at one time. The term z-ordering comes from the old x and y coordinate
system you learned in high school geometry. Where x and y describe two dimensions (height
and width), the z element describes the third dimension (depth). Each layer represents one

Clicking a heading
reveals the text hidden
underneath without
any additional server
interaction.

Introducing Dynamic HTML

1

The main content of
this page (below the
selection box) is actually
a layer.

Using the form element
and a script, the first
layer is hidden and a
new layer is displayed
without Web server
processing.

page, and because all the layers are loaded into the user’s browser to begin with, no additional
requests to the server are needed. As the user requests additional pages, the browser simply passes
the requested pages to the top of the stack for viewing. It’s a lot like dealing from the bottom
of the deck, except the recipient is on the winning side instead of the losing side.

The Microsoft approach is capable of the same types of effects, plus the movement of specific
elements on the screen. Instead of moving a section of the Web page, the user can click a single

Getting Started with Dynamic HTML

element, such as a graphic or plug-in, and drag it to a new location on the page (see Figures 1.6
and 1.7).

Watch what happens to
the position of the
HTML text selected
with the mouse pointer.

The text is now
relocated to the bottom
of the screen after it was
moved manually by the
user.

Each element remains part of the HTML page; they aren’t part of a plug-in or applet. The
animation and movement are provided within the Web page itself and without additional
communication with the server.

Introducing Dynamic HTML

1
Netscape developed the idea of dynamic fonts, and it is hoped that it will catch on with other
browsers. If you’ve worked with style sheets or the command, you’ve probably become
aware of a severe limitation: Just because you specify a font doesn’t mean that the user has it on
his or her machine. The end result is that the page developer just doesn’t know how the page
is going to appear.

You can try to work around the problem with style sheets or the tag by providing a list
of fonts in order of preference, followed by a general type such as sans serif. This works, but
not very elegantly. Netscape’s way around this uses TrueDoc technology from BitStream. The
result is font information in a highly compressed format that is downloaded with the page.
The details of the font are stored in vector format, which is assembled on-the-fly using com-
mon information from a library on the user’s machine. This means the developer doesn’t have
to know what fonts are on the user’s machine, and doesn’t even have to guess. By using dy-
namic fonts, the necessary information is passed to the browser when the page is loaded, and
all the user does is sit back and watch.

A vector format describes a picture—which includes individual letters—as a series of shapes.
This comprises all the curves, lines, and other attributes of the shape, which is stored in a much
smaller space than a similar image in a bitmapped format.

Data binding is one of the features Microsoft has worked hard to develop. Data binding en-
ables page elements such as table cells to “attach” themselves to database records. This feature
holds a great deal of promise for page authors and developers.

Displaying database records currently requires advanced programming in a language such as
C++ or Perl to access the database across a network connection and retrieve the desired infor-
mation, which is virtually identical to using a CGI script for dynamic content. Other programs,
such as Macromedia Backstage, have made this connection easier to create and manipulate.
However, even using special authoring software requires the use of a special server and compli-
cated instructions embedded on the page. In short, you can’t just slap a database connection
on a page and expect it to work.

Getting Started with Dynamic HTML

With direct data binding, you can pass over this middle ground of database processing. Changes
to a record are updated onscreen, while user modification of information is passed back to the
database for updating. This is accomplished with a new attribute for the <TABLE> tag, which
names the database to use for the contents of the table. By using the functions supported by
Microsoft, authors now can connect to virtually any database, including comma-delimited, SQL,
ODBC, and JDBC.

By allowing users to channel input directly back and forth between the browser and a data-
base, the amount of time it takes to complete the interaction is shortened dramatically, be-
cause only the data or its display is changing, not the entire page.

The changeover from static HTML to DHTML will probably create more headaches than it
should for many developers. This will be due in great part to the one overriding rule of the
DOM: It must have correct HTML to work with from the beginning.

If you’re creating a new site from scratch, you’re more likely to work harder at creating techni-
cally accurate Web pages according to the HTML 4 Document Type Definition. With clean
and solid HTML behind your page, the DHTML features will be a natural and easy extension.

www.w3.org

Why is good HTML so important? There are a few good reasons. At the lowest level, there’s
the user. If your pages follow all the rules in the DTD, the browser never has to guess what you

Introducing Dynamic HTML

1intended, and all users have a predictable experience with your pages. If you include inconsis-
tent HTML, different browsers may try to interpret it in different ways so they can still present
the page to the user.

Second, the DOM is not going to cut you any slack. One of the big points of discussion is how
the DOM should handle incorrect or sloppy HTML, such as the following:

<DIV>Hello there <I>Bob</DIV>, how are you?</I>

When you attempt to use the DOM to access either element in this code, confusion reigns. Is
the <I> tag a child of the <DIV> tag or not? When dynamically changing the content of either
tag, which element should get priority over the overlapping material? The overriding opinion
among the W3C DOM committee members is that the bad HTML will do one of two things,
depending on the whims of the browser:

1. Disable the DOM for the affected elements, resulting in portions of the Web page
that don’t behave as expected.

2. Generate an error message for the user, letting him or her know the page contains
invalid HTML and can’t be displayed.

If you’re working with older pages, the chances for invalid HTML increase. After all, most of
us weren’t real purists when we started building Web pages. This is especially true of many of
the more creative designers who exploited quirks in the way browsers interpreted some of the
invalid HTML to achieve new design effects. Any Web page that is going to be converted to a
DHTML page should at least be passed through an HTML 4 validator to ensure compliance.

As far as browsers go, the main two options for Dynamic HTML are Internet Explorer 4 and
Navigator 4.02. As you read earlier in this chapter and will read about more in the next chap-
ter, their approaches to DHTML are not all that compatible. You might want to pick one of
the browsers to design for and leave the other one alone for a while, or you can work toward
effects that are functional on both. Either way, you’ll need to test your pages on both the
Microsoft and Netscape products, in addition to a non-DHTML browser such as Mosaic, to
make sure the page is still functional on a plain-HTML basis and doesn’t exclude other readers.

Getting Started with Dynamic HTML

This might sound like a bit more work than you had planned, but as a wise man once said, it’s
a lot easier to do a job right the first time.

Dynamic HTML is a new way of accomplishing an old task: making a Web page more inter-
active for the user. DHTML enables Web pages to change in reaction to user events without
the need for additional support from the Web server, plug-ins, applets, or other programs and
helpers embedded within the page.

The features enabled by DHTML include the capability to change the content and appear-
ance of any item on the Web page, plus a mechanism for adding live data content directly to
the page without using CGI scripts.

Rather than a new set of tags or a new programming language, DHTML is a new way of com-
bining existing technologies—HTML and scripting languages—with a new way of looking at
Web pages—the DOM. Using this set of features, Web authors and developers can extend
their pages to look and act more like miniature computer programs than static book pages. It’s
an exciting new way to build Web pages and sites that promise to expand the way people use
the World Wide Web.

Choosing a Standard

2

by Rick Darnell

■

■

■

Getting Started with Dynamic HTML

Now that you’re committed to learning about Dynamic HTML (DHTML) and how to use it,
I must share a bit of bad news: The standards have not yet evolved to a mature level at which
all the players can agree. This means you’ll need to make some choices as to how you imple-
ment DHTML for your pages.

The problem is that Microsoft and Netscape both have their ideas about what DHTML should
look like, even beginning with the name. Microsoft calls its implementation Dynamic HTML
(with a capital “D”), and Netscape refers to its implementation as dynamic HTML (lowercase
“d”). And it just gets worse from there.

Both Microsoft and Netscape are using a lot of the same terminology and are referring to the
same set of published or proposed standards in their work toward interactive and dynamic Web
pages. Both companies talk about the capability for pages to change without extra trips to the
server and more extensive control of styles. However, the actual implementations aren’t very
compatible.

Netscape has added a new tag, and Microsoft has added new attributes for existing tags. Netscape
added load-on-the-fly typefaces, and Microsoft added ActiveX controls for database access.
Between the two, the water continues to get murkier.

Speaking of standards, now is a good time to mention the World Wide Web Consortium
(W3C). The W3C is developing its own recommendation for DHTML. However, true to the
spirit of working by committee, the W3C standard currently exists only as a list of capabilities
that a DHTML document should have. The actual appearance and prescribed behavior are
still under discussion.

www.w3.org

Choosing a Standard

2

So, between W3C, Microsoft, and Netscape, where do you stand? In the same place you’ve
probably been in before: trying to develop pages that are accessible to as many people as pos-
sible while working with implementations that, while not mutually exclusive, tend to be in-
compatible at the most inopportune times.

To help you understand where this whole technology is headed and how we got here in the
first place, here’s a description of the players and the rules we’ll look at in this chapter:

■ W3C has developed a wish list of some capabilities for DHTML, which they refer to
as the Document Object Model (DOM). The DOM is a way for the browser to identify
every markup tag and page element and make it accessible for inspection or change.

■ Netscape created its own document object model a few years ago with Navigator 2.0.
More recently, Netscape has tried other methods of creating dynamic behavior,
primarily through the use of a nonstandard <LAYER> tag. In all fairness, Netscape is
playing down the new tag and is working toward an implementation that expands on
its original DOM. This approach brings Netscape closer in this aspect of DHTML
with W3C and Microsoft.

■ As part of the Internet Explorer 4.0 release, Microsoft has released its version of what
its developers think the W3C DOM will look like. Microsoft’s version appears to
follow the wish list provided by W3C, but it’s still only their best guess, because a
standard doesn’t exist yet.

In a word, there is no DHTML standard. But it appears that the W3C is leaning toward a
DOM specification in which all elements on an HTML page would be accessible to the page
developer through the scripting language of his or her choice. However, before we start getting
into the nuts and bolts of DHTML in Chapter 3, “Dynamic HTML Fundamentals,” we’ll
take some time in this chapter to explore the different visions of DHTML as it moves toward
its first official standard.

Even though it’s not in anything resembling a final or usable form, the final word on the func-
tionality of DHTML rests with the W3C and its DOM Working Group. There is a bit of
irony in this situation because one of the first acts of the group’s chair was to issue a statement
that labeled the term Dynamic HTML as “just marketing.”

Getting Started with Dynamic HTML

The DOM Working Group issued a statement of purpose saying that its goal is not to extend
HTML or develop a standard specific to any scripting language. The group is working on a
“platform- and language-neutral interface which allows programs and scripts to dynamically
access and update the content, structure and style of documents,” according to a statement
posted on its Web site.

META

<META HTTP-EQUIV=”Content-Script-Type” CONTENT=”text/javascript”>

META

TITLE TABINDEX TITLE

Choosing a Standard

2

TABINDEX

1 2

W3C has received several submissions from member companies, primarily Microsoft and
Netscape, on how the various elements of HTML documents should be exposed to scripts. As
mentioned at the beginning of this chapter, the W3C standard revolves around the DOM,
which is discussed in greater detail in Part IV, “The Document Object Model.” In a nutshell,
the W3C model has two basic requirements:

■ The document model can be used to take apart and build the document, even after it’s
loaded by the browser. Individual elements and their attributes can be added, re-
moved, or changed within the document. This also includes a way to determine and
change the content of a page, whether it’s text, images, applets, or plug-ins. This is the
dynamic part everyone is talking about.

■ The DOM won’t require a graphical user interface for implementation. This is part of
the W3C’s goal of establishing standards that provide access to Web content for all
types of browsers, including those based on Braille and audio technologies. Remem-
ber, DOM is a way of opening the structure and contents of a Web page to the page
developer so the page can interact with the user; it is not a standard for graphics or
animation, although it can be utilized that way.

Getting Started with Dynamic HTML

All other requirements of DOM follow from these two, including each of the major areas re-
quired by the DOM Working Group:

■ Structure Navigation—This is the capability to locate elements in a document, such as
the parents or children of an object. This is how Netscape started its document model
in Navigator 2.0. It begins with window, then down to document, followed by the
various children of document, including form, link, applet, and other page elements.
Using the DOM model, all tags are exposed for the browser, including unknown tags
and elements.

■ Document Manipulation—The standard will provide a way to add, remove, or
change elements and tags within the document. This also includes attributes of tags.

■ Content Manipulation—This is the capability to add, change, or delete the content
within a document or an individual tag. It also includes a requirement for determining
which tag affects text from any part of the document.

■ Event Model—The event model is comprehensive enough to generate completely
interactive documents. It includes the capability to respond to any user action within
the document, including moving in and out of form fields, detecting mouse move-
ments and clicks, and determining individual keystrokes. Although W3C is commit-
ted to accessibility for disabled persons, some of the events will apply only to a
graphical interface (such as Windows), which is designed for the average user.

■ Style Sheet Object Model—This is similar to Document Manipulation, mentioned
previously. Under DOM, cascading style sheet attributes are also exposed for modifi-
cation. With an eye toward the future, W3C includes a provision to extend the style
sheet model to other formats. This might be the loophole Netscape needs to include
JavaScript Assisted Style Sheets while maintaining compliance with W3C standards.

■ General Document and Browser Information—The W3C has left no stone unturned.
Part of the DOM includes the capability to examine embedded objects such as cookies
and the date a document was created. Other information available includes the user
agent (browser) brand and version and the MIME types it supports.

The complete set of requirements for DOM runs about three pages and includes all the pre-
ceding items, plus document type definitions and error reporting. Essentially, all the require-
ments boil down to this: Everything within a document should be accessible for manipulation.

Choosing a Standard

2

The first step toward creating the standard was determining the current object model utilizing
the models implemented by Internet Explorer 3.0 and Navigator 3.0. This process resulted in
the Level 0 standard. Then, the working group started toward its long-term goal of building a
consensus of what should and shouldn’t be part of the DOM standard, which will become
version 1.0. Working Group Chair, Lauren Wood, says that a final version of DOM 1.0 could
be released by early 1998.

Level 1 will cover the basics of the DOM, including document and content navigation and
manipulation. Additional items, such as the event model and style sheet object model, will be
the topic of the Level 2 implementation.

This leads us back to the original question: What’s a developer to do? Our advice is to keep an
eye on Microsoft and Netscape, as the developments within their browser products will be a
pretty good indication of what’s coming down the pike from W3C. Then, write your DHTML
pages to the lowest common denominator of compatibility until the consensus begins to form.
This is hard for developers to swallow, especially when they want to write with the “latest and
greatest” tools on the Web.

If you’re writing to a general audience, be wary of anything proprietary. This includes tags or
attributes that are the sole domain of one browser or another. What you should probably start
with is some combination of style sheets and JavaScript. To make sure your implementation is
solid, test it with a wide variety of browsers—new and old versions of Navigator and Internet
Explorer, no-frills versions such as Mosaic, and text-only applications such as Lynx. This is a
reasonable precaution to take to ensure that your dynamic pages won’t crater someone else’s
non-dynamic browser.

If you want to write to the evolving standard using the most advanced tools available, put it
someplace separate on your Web site and mark it as “for demonstration only,” along with a
notation of which browser it was written for.

In short, it’s still a long road to an implementation that is going to work well across all brows-
ers, especially the major offerings from Netscape and Microsoft. If you write to the capabilities
of a majority of your users and include safety nets for the rest, you won’t go wrong.

Netscape got the whole DHTML DOM rolling about 16 Internet years ago (that’s 2 years on
the Gregorian calendar) with its Navigator 2.0 release, which included a feature called JavaScript.
JavaScript included a basic DOM that included access to elements such as forms, hyperlinks,
colors, and various browser attributes.

That first object model was created with an instance hierarchy, which reflected the construc-
tion of the HTML page. At the top of the hierarchy was window—the parent of all other objects.

The window object included four children: location, history, frames, and document.

Getting Started with Dynamic HTML

The document object included children representing selected information about the document:
alinkColor, bgColor, fgColor, linkColor, vlinkColor, cookie, lastModified, location, anchors,
referrer, forms, links, and title.

An instance hierarchy is built from actual instances of objects rather than general classes of ob-
jects. For example, suppose the only elements allowed on a page were headings, and a particu-
lar page included three H1s and an H4. A class hierarchy would include an object for each
possible header—H1 through H6, including the unused H2, H3, H5, and H6. In an instance
hierarchy, the same page would only include objects for the headings that actually appeared on
the document—H1 and H4.

The first JavaScript DOM included a mishmash of page attributes (color settings), META infor-
mation (last modified date and referring page), and physical elements on the page (anchors,
forms, and links). In the next version of Navigator (3.0), the object model was extended to
include applets and other embedded objects.

Netscape had the right idea, but it was still pretty limited in scope and usage. Only a few of the
items, such as form elements and some of the colors, could be changed without reloading the
document. It was also possible to modify the rest of a page’s contents, but only by reloading it
using the javascript protocol.

javascript http

ftp

Of course, in addition to the DOM that JavaScript enabled, there is also the JavaScript lan-
guage. JavaScript enables developers to write small applications that run on the user’s browser,
instead of processing through the server. The syntax was related to Java, and with Netscape
3.0, the two languages could talk back and forth across the Web page. This was also a big break-
through, because it gave Java direct access to data on a Web page and provided a way to con-
trol Java from outside an applet.

In the early days of JavaScript, developers primarily used it and the Netscape DOM to verify
form contents or make fun little 1040EZ calculators. A few hardy folks used it to create some
neat effects, such as expanding and contracting outlines and Web sites with custom controls,
but most of the uses were limited in scope and utility.

Netscape’s Communicator release doesn’t extend the DOM in any new and dramatic direc-
tions like its ancestors, but that doesn’t mean Netscape doesn’t have its eye on the DHTML
bandwagon. Here are the three components of Netscape’s vision of DHTML:

Choosing a Standard

2

■ The use of layers to move, hide, and show blocks of HTML on the Web page—A
Netscape layer is a set of HTML that is displayed, hidden, moved, and altered in
various ways. Essentially, it converts your HTML document into a set of slides that
you can shuffle and display in any order, singly or in combination. The layers can be
manipulated in reaction to user events, making it the only portion of Netscape’s
solution that meets the definition of dynamic explained in Chapter 1, “Introducing
Dynamic HTML.”

■ Precise control over formatting, fonts, layout, and other aspects of page behavior
through style sheets—Netscape includes support for the W3C CSS1 specification,
which Microsoft uses, and JavaScript Style Sheets (JSSS). JSSS doesn’t allow changes
to the document after it’s loaded, but it does allow the style sheet to ask the browser
about its environment. The style sheet can then make changes to its implementation
to match its specific situation.

■ Dynamic fonts, which are attached to a Web page rather than being dependent on the
options available on a user’s computer—In the past, developers have had to guess
what typefaces are available on a user’s machine and then provide a list of the pre-
ferred choices for a page in the style sheet font attribute or use the tag. Dy-
namic fonts use a new method to check for the existence of the desired typeface and, if
it’s not found, download it from the server. This would eliminate some of the prob-
lems with font availability that have become more noticeable with style sheets.

A little more must be said about layers. With the initial betas of Navigator 4.0, Netscape de-
cided to use a new tag to implement precise positioning of elements: <LAYER>. This caused a bit
of a problem, because Microsoft wasn’t going to include this tag on its browser, and the W3C
decided not to develop the <LAYER> tag to work on other approaches to DHTML. Given a less-
than-warm reception, Netscape is including more emphasis on layers implemented through
the DOM with the <DIV> tag. Netscape is also downplaying the <LAYER> tag, although it is still
part of the Netscape Communicator release.

The ultimate fate of Netscape’s <LAYER> tag is unclear at this point. It doesn’t appear as though
W3C is including any support for it in its HTML 4.0 specification, although the tag seems to
fulfill many of the features of the W3C draft on positioning HTML elements by using style
sheets (www.w3.org/pub/WWW/TR/WD-positioning), which Netscape helped to develop in

Getting Started with Dynamic HTML

conjunction with Microsoft. You’ll see a lot of neat examples of dynamic behavior in this book
using the <LAYER> tag, so it’s also safe to say that the jury has still not reached a final verdict on
this one.

In DHTML, Netscape appears to be moving closer to working with the W3C rather than try-
ing to set its own standards and have W3C follow its lead. Netscape Communicator is fully
compatible with existing W3C recommendations or standards for HTML 3.2, plus some from
HTML 4.0, Cascading Style Sheets 1, and JavaScript. It is also trying to maintain compatibil-
ity with working drafts on positioning, object models, and dynamic fonts.

Other than the implementation of the <LAYER> tag and JavaScript Accessible Style Sheets, cov-
ered on the Companion Web Site at http://www.mcp.com/info, Netscape seems to be working
on a version of DHTML that doesn’t depend exclusively on proprietary or platform-specific
controls.

Does this mean that a DHTML page that works on Netscape will also work with Microsoft if
both browsers are claiming to meet the upcoming standards? Not necessarily. There are several
issues at work here. First, W3C is not tying DHTML to any specific scripting language. For
example, suppose Microsoft makes VBScript and Netscape makes JavaScript completely com-
patible with the DHTML standard. If a Netscape browser loads a page made dynamic with
VBScript, it’s not going to work because Navigator still doesn’t support that specific language.

Second, both companies view the standard in different ways and are claiming the exclusive
privilege of being the only “real solution.” This is why there’s an expanded DOM on one side
and layers on the other. These solutions are not compatible across the browsers, even if they
both meet the letter or intent of the W3C’s work. At this point, there is no official standard for
the DOM or HTML 4, so claims that either browser is compatible with the W3C Dynamic
HTML standard are inherently wrong.

As has become the standard operating practice in the ongoing browser battles, Microsoft is boldly
going where no standard has gone before with its definition and implementation of DHTML
in Internet Explorer 4.0. You can read all about Microsoft’s vision of DHTML at
www.microsoft.com/workshop/author/dhtml/.

Internet Explorer 4.0 (IE4) isn’t just a collection of support for a few new tags and a new user
interface. Microsoft has completely overhauled the HTML parsing engine.

The extended IE4 takes the individual tags and document elements and integrates them with
a Scripting Object Model, which is supported by any scripting language available. As a matter
of practicality, the two choices are JavaScript and VBScript, which are provided as components
of IE4. The examples in this book are implemented in a variety of ways to show the variations
that DHTML can support.

Choosing a Standard

2

Microsoft’s vision of DHTML includes four components, which are similar to Netscape’s:

■ A DOM that enables any element on a page to be shown, hidden, changed, or
rearranged without reloading the page from a server—One of the surprises in
Microsoft’s implementation of the DOM is that it isn’t specific to Windows or
ActiveX. The Microsoft model was completely built into the HTML parser as part of
the browser. By implementing the DOM with JScript (Microsoft’s version of
JavaScript) and VBScript, developers can use the scripting languages to control page
elements.

■ A way to control elements on a page through scripts, including JavaScript and
VBScript—The scripting languages include objects that relate to the various elements
on the page as defined by the DOM. Using the comparison and assignment features
of the language, page developers can examine and change the attribute or content of
any element on the page referenced by the DOM, including headings, links, text, and
other items. This also includes control and manipulation of embedded Java applets,
ActiveX controls, and plug-ins.

■ Multimedia controls for animation and other effects, such as filters and transitions,
without relying on downloading large files or pages—These have been implemented
through cascading style sheets with the use of filters for fade-in, fade-out, and other
types of effects.

■ A way to bind data to an HTML page, including automatic generation of tables,
sorting tabular data, and querying local tables—This uses a special set of HTML
attributes to display “live” database records in the same way you would display an
applet or plug-in. In the old HTML school, displaying database records required
working with CGI scripts and advanced Perl, C, or Java programming. Because
DHTML supports immediate changes to page content, the database can update
automatically in reaction to user typing, or the table can display live updates from
third-party changes to the database.

Like Netscape, Microsoft is working with W3C standards and proposals, trying to anticipate
the future of DHTML through the work of the Consortium.

Getting Started with Dynamic HTML

The Microsoft DOM is very similar to the Netscape Navigator 2.0 model. It begins with the
core objects representing the page and browser (such as window and document) and then branches
into more detail (such as form, applet, and link). Microsoft has further expanded the model to
include every element on the page. From headings to paragraphs to images to tables to hori-
zontal rules—it’s no-holds-barred access to everything on the page.

One of the big strengths touted by Microsoft is compatibility with other browsers that don’t
support the Internet Explorer 4.0 DHTML implementation. Microsoft calls its compatibility
with other browsers “graceful degradation.” Developers and authors writing specifically to the
Microsoft version of DHTML won’t need to produce alternative versions for Netscape or any-
one else, according to Microsoft (see the sidebar “The Reality of Graceful Degradation”). The
scripting and tags used by Microsoft are accepted technologies in use by other browsers and are
blessed by the W3C.

display:none

Choosing a Standard

2

Click a heading in the
Microsoft DHTML
page, and the contents
below it are displayed.

Graceful degradation as
Microsoft advertises—
this non-style sheet
browser displays the
page according to the
tags only.

Getting Started with Dynamic HTML

A DHTML standard implementation looks like it will remain a moving target for at least an-
other year. There are three slightly different schools of thought on what it is, but the three
main players—W3C, Netscape, and Microsoft—all seem to agree that an expanded DOM is
at the center of the solution. The expanded document model will allow access to every ele-
ment, its attributes, and content through a scripting language. With unbridled access and con-
trol over the contents, HTML pages will bear a closer semblance to Silly Putty than to tablets
of stone.

Divergence begins with views about the DOM. W3C doesn’t use DHTML as part of its vo-
cabulary at all, except to acknowledge software vendors’ use of the term. W3C’s work is almost
exclusively centered on developing the DOM and its relation to style sheets, scripting languages,
and other existing technologies.

Netscape includes JavaScript Assisted Style Sheets and layers in its bundle of DHTML capa-
bilities. Layers are the result of an implementation of the W3C working draft on positioning
HTML elements, although the <LAYER> tag is not included as part of the proposed HTML 4.0
specification.

In addition to the DOM, Microsoft is also stressing multimedia effects and data awareness with
its vision of DHTML while also relying on the object model and style sheet base similar to
Netscape. However, the Microsoft solution also depends on proprietary items such as ActiveX
controls to implement access to the DOM.

Because Netscape is
compatible with CSS1
but not with JavaScript
modification of CSS1,
it doesn’t degrade
gracefully.

Choosing a Standard

2

Unlike a year or two ago, when the two companies sought to build Web standards around their
respective visions, both Netscape and Microsoft seem more eager to work with the W3C in the
development of standards for their browsers. The days are gone, we hope, when each company
created its own tags and technologies in an attempt to force standards to conform to its respec-
tive software. Although competition between the two remains fierce, the user is no longer sub-
jected to getting caught between incompatibilities.

For the time being, I’d say W3C’s final recommendation will be closer to Microsoft than
Netscape, and the common areas between the two won’t be completely compatible. At that
point, each company will need to make sure its implementation of DHTML is in full compli-
ance with the standard. However, W3C seldom moves quickly in comparison to the rest of the
World Wide Web, so subsequent browser releases from Microsoft and Netscape should allow
enough time for these companies to adjust to the W3C standard—whatever it looks like.

As you develop your DHTML pages, you’ll probably need to write your pages specific to each
browser. It’s a pain, but remember, the standard is still evolving and is bound to change as the
two competitors slug it out. It’s still too early in the game to depend on anything that seems to
be too proprietary.

Getting Started with Dynamic HTML

Dynamic HTML Fundamentals

3

by Rick Darnell

■

■

■

Getting Started with Dynamic HTML

In Chapters 1, “Introducing Dynamic HTML,” and 2, “Choosing a Standard,” you received
a glimpse of the DHTML capabilities that are the current excitement on the World Wide Web.
According to its promoters and supporters, DHTML will do just about everything except walk
your dog and do your laundry. Obviously, something that’s this powerful is going to be hard
to create, right? Wrong. The fundamentals are really quite basic.

In this chapter, we’re going to get a little closer look at how the pieces of DHTML fit together
to create a Web page. We’ll work through an example in this chapter to see how the compo-
nents of DHTML fit together. We’ll begin by building a page for Microsoft’s version of
DHTML, and then we’ll expand the page to support Netscape’s DHTML functionality as well.
This should give you some idea of how the two compare.

Creating a new Web page with DHTML is a four-step process:

1. Planning your page. This step shouldn’t be any different whether you’re working with
static HTML or dynamic content. If you don’t know what you want to say or why
you’re saying it, you’ll end up creating one of those “all-flash-and-no-substance” sites.

2. Creating the base HTML page. In essence, you begin with the lowest common
denominator so that your page is accessible to the most browsers possible. Build the
page as if the user didn’t have DHTML capability. Remember, not everyone uses a
Netscape or Microsoft product to browse the Web. There are still a great many people
using Mosaic, Lynx, and other “bare-bones” browsers.

3. Adding a style sheet. This includes special color and font information, layers and
divisions, and any other visual effects you’re using to attract and help the reader
through your page. If you’re using a linked style sheet, most of this step is already
completed. However, you might still need to embed styles necessary for the dynamic
part of your page, such as attributes for visibility.

4. Making the page dynamic. This is when you add the scripts and attributes to make the
content react to the user. Remember that your dynamic elements should have a

Dynamic HTML Fundamentals

3

purpose in your plan at step 1. Adding a lot of special effects is fun, but if their only
purpose is to show off your talent and the user’s browser, there’s not much point.

Except for all the details covered in the rest of the book, that’s about all there is to it. For our
first example, we’ll begin with a page that uses both cascading style sheets and DHTML to
offer an outline of things to remember when you’re hiking in the woods.

We’re planning this page to be a “quick reference” for hikers, hunters, and other folks who are
headed to remote or wilderness areas. It’s not a comprehensive course in wilderness survival;
rather, it’s intended to provide enough hints and clues to at least get people thinking in the
right direction before they take the first step onto a trail.

Now that we’ve planned what we want to say and whom we’re saying it to, it’s time to put the
page together. We could make life a lot easier and use a Web page editor, but that would take
all the fun out of it.

Our base page results in a basic outline (see Listing 3.1 and Figure 3.1), which begins with an
H1 for the main heading, and then descends into a series of H2 and H3 headings below. It in-
cludes paragraphs, block quotes and citations, and links for more information.

<!doctype HTML PUBLIC “-//IETF//DTD HTML 4.0//EN”>
<html>

<head>
<title>Traveling in the Backcountry</title>
</head>

<body>

<h1>Traveling in the Backcountry</h1>

<p>Walking in the woods, whether as a hiker, camper, backpacker or hunter,
 provides plenty of opportunities to practice the skills of a backcountry
 traveler. With the proper preparation, you’ll have the knowledge and
 confidence to meet the challenges of a variety of outdoor adventures. This
 page is intended to provide you with some hints and tips to help you create
 a successful experience.</p>

<p>Before you read on, we’d like for you to hear a brief message from our
 lawyers....</p>

<blockquote>
 <p>This is in no way intended to be a course in backcountry safety or
 survival. Information provided is from a variety of sources, and is to be
 accepted at the user’s risk. The authors of this page assume no
 liability whatsoever as to the suitability of this information to any
 specific situation or person. It’s you against the world, and
 we’re not taking any responsibility for the outcome.</p>

continues

Getting Started with Dynamic HTML

</blockquote>

<h2>Before you travel</h2>

<h3>How far can you go? </h3>

<p>When choosing a location and route, take into account your physical
 condition, the reason for hiking, and the terrain and weather you could
 possibly encounter. As a general rule, an average hiker can walk about 1 1/2
 to 2 miles an hour on level trails. Steep ascents require considerably
 greater time allowances. One hour for every 1,000 feet of elevation gain
 is a good rule of thumb.</p>

<h3>What should you wear?</h3>

<p>Proper foot gear is one of the most important parts of your journey.
 Sturdy running shoes are good for hiking on relatively smooth surfaces,
 such as maintained trails. You’ll want something with a little more tread
 for rugged trails or cross-country travel. A ten mile hike in the woods is
 not the best place to break in new shoes.</p>

<p>You should also consider what clothes to wear. Your location and the time
 of year will be key factors, but a general rule of thumb is to have at least
 one layer available for each surface of your body -- a sweater if you’re in
 a T-shirt, pants if you’re in shorts, and gloves and a hat. The more
 versatile your clothing can be, the more comfortable you’ll be. It should
 also fit your style. If you don’t like a bunch of stuff banging around in
 your pockets, then consider wearing a fanny pack for essentials such as a
 compass, pocket knife, lighter or matches, and adhesive bandages.</p>

<h3>What should you carry?</h3>

<p>For short trips, a fanny pack or day pack should include at least one
 quart of water per person, map, flashlight, first aid kit, rain gear,
 high-energy snack, and toilet paper, in addition to any optional items
 such as sunglasses, camera, binoculars, and nature books.</p>

<h3>What else should you do?</h3>

<p>Make an itinerary and stick with it. Make sure someone knows when and where
you’re expected back, and how long they can allow. </p>

<h2>When things go wrong</h2>

<blockquote>
 <p>The worst thing you can do is to get frightened. The truly dangerous
 enemy is not the cold or the hunger, so much as the fear. It robs the
 wanderer of his judgement and of his limb power; it is fear that turns the
 passing experience into a final tragedy ... Keep cool and all will be well
 ... Use what you have, where you are, right now.</p>
 <p>Ernest Thompson Seton, 1906</p>
</blockquote>

<p>So you’ve planned, you’ve prepared, and now you’re on the trail. And the
 worst part is, you don’t know where you are. There’s a four-step process to
 follow, and all you have to do is STOP -- Stay-
 Think-Observe-Plan.</p>

Dynamic HTML Fundamentals

3

<h3>STAY!</h3>

<p>At the first sign of trouble, STAY WHERE YOU ARE! The urge to walk faster
 or run blindly to escape the situation is difficult to resist, but rushing
 about only leads to more confusion. Stopping helps you fight panic and
 increases your chances of survival. If you’re on foot, sit down. If you’re
 in a boat, get to shore. If anyone is injured, apply first aid and rest. It
 may take a little bit for the panic to go away, but be patient. You probably
 got yourself into this mess, you can certainly get yourself out of it.</p>

<h3>THINK!</h3>

<p>As you relax, think. If you’re lost, study a map and look for landmarks.
 How long ago did you know where you were? Are there footprints to show where
 someone has gone before? Can you hear traffic from a highway? Do you see or
 hear a river heading down stream? If you give all the clues time to sink in,
 chances are you’ll get yourself back on course. If you have any doubts, sit
 still and observe.</p>

<p>...Yadda, yadda, yadda...More useful information here...</p>

</body>
</html>

The base page for our
DHTML page can
stand alone without
any other work. It’s
created according to
HTML 4.0 standards.

Getting Started with Dynamic HTML

As you can see in Figure 3.1, this page begins with basic HTML. It will display just as well on
Internet Explorer as it will on Lynx or Mosaic. This type of approach is preferred at the outset
for your DHTML pages—with a solid backbone that will translate well across as many brows-
ers and platforms as possible.

 <U> <STRIKE>

A few other things become apparent on this page. First, as the information progresses, we can
see that the page starts to get pretty long. The reader on a text-based browser could end up
with a lot of scrolling to read the page.

Second, we can see that as it stands now, the page breaks into two parts. The first part is about
preparing for a hike, and the second part is what to do if you get lost. We’ll find some ways to
address these two things in the section “Making the Page Dynamic.”

So far, our page is pure structural HTML. There are no formatting tags to control how the text
is displayed, other than the tags that imply purpose (<H2>) rather than visual appearance ().

We’ll address the vanilla state of the page now with a style sheet, which you can learn more
about in Part II, “Cascading Style Sheets.” There are a few things we want to accomplish with
the style sheet. First, we want to give the document its basic appearance defaults: black text on
a white background and a larger and more readable font. After inserting the <style> tags, the
BODY element is added for overall page defaults, like this:

BODY { background-color: rgb(255,255,255); color: rgb(0,0,0);
➥font-family: Bookman Old Style, serif }

Next, let’s work on the headings. To provide some contrast with the rest of the text, we’ll set
those in a sans serif face and provide some narrower margins for the H2 and H3 levels, like this:

H1, H2, H3 { font-family: Tahoma, sans-serif; font-weight: bold;
➥font-variant: small-caps }
H2 { margin-left: 20px }
H3 { margin-left: 60px }

We can start getting to work on the various text elements now. First is the text under the
respective H2 and H3 elements. These elements should have narrower margins to reflect their
parent headings. We’ll accomplish this with two classes, which are named after their respective
headings:

Dynamic HTML Fundamentals

3

.h2 { margin-left: 20px }

.h3 { margin-left: 60px }

There’s only one other item to address: the block quotes. We want these to stand out a little bit
more, so we’re going to apply them in italics. However, our chosen typeface (Bookman Old
Style) doesn’t look very good in italics, so we’ll use a Times typeface instead. Also, if a citation
is used within a block quote, we’ll want it justified to the right margin. The code looks like
this:

BLOCKQUOTE { font-family: Times New Roman, serif; font-style: italic }
.cite { text-align: right }

The last part is to integrate all our styles and classes with the rest of the text. This involves
adding the class attribute to the appropriate tags. We’re also going to separate our page into
two broad divisions at this point using the <DIV> tag and add a unique id attribute to each
division. To make the document easier to navigate, we’ve also added a table of contents with
hyperlinks to anchors in the document. The result is Listing 3.2, and the results are displayed
in Figure 3.2.

<!doctype HTML PUBLIC “-//IETF//DTD HTML 4.0//EN”>
<html>

<head>
<title>Traveling in the Backcountry</title>
<style type=”text/css”>
<!--
BODY { background-color: rgb(255,255,255); color: rgb(0,0,0);
➥font-family: Bookman Old Style, serif }
H1, H2, H3 { font-family: Tahoma, sans-serif; font-weight: bold;
➥font-variant: small-caps }
H2 { margin-left: 20px }
H3 { margin-left: 60px }
.h2 { margin-left: 20px }
.h3 { margin-left: 60px }
BLOCKQUOTE { font-family: Times New Roman, serif; font-style: italic }
.cite { text-align: right }
-->
</style>
</head>

<body>

<h1>Traveling in the Backcountry</h1>

Introduction
Before You Travel
When Things Go Wrong

continues

Getting Started with Dynamic HTML

<p>Walking in the woods, whether as a hiker, camper, backpacker
or hunter, provides plenty of opportunities to practice the skills of a backcountry
traveler. With the proper preparation, you’ll have the knowledge and confidence to
meet the challenges of a variety of outdoor adventures. This page is intended to
provide you with some hints and tips to help you create a successful experience.
</p>

<p>Before you read on, we’d like for you to hear a brief message from our
lawyers....</p>

<blockquote>
 <p>This is in no way intended to be a course in backcountry safety or survival.
 Information provided is from a variety of sources, and is to be accepted at the
user’s risk. The authors of this page assume no liability whatsoever as to
the suitability of this information to any specific situation or person.
It’s you against the world, and we’re not taking any responsibility for the
outcome. </p>
</blockquote>

<div id=”div_0" title=”Preparing”>
<h2>Before you travel</h2>

<h3>How far can you go? </h3>

<p class=”h3">When choosing a location and route, take into account your physical
condition, the reason for hiking, and the terrain and weather you could possibly
encounter. As a general rule, an average hiker can walk about 1 1/2 to 2 miles an
hour on level trails. Steep ascents require considerably greater time allowances.
One hour for every 1,000 feet of elevation gain is a good rule of thumb.</p>

<h3>What should you wear?</h3>

<p class=”h3">Proper foot gear is one of the most important parts of your journey.
Sturdy running shoes are good for hiking on relatively smooth surfaces, such as
maintained trails. You’ll want something with a little more tread for rugged trails
or cross-country travel. A ten mile hike in the woods is not the best place to
break in new shoes.</p>

<p class=”h3">You should also consider what clothes to wear. Your location and the
time of year will be key factors, but a general rule of thumb is to have at least
one layer available for each surface of your body -- a sweater if you’re in a T-
shirt, pants if you’re in shorts, and gloves and a hat. The more versatile your
clothing can be, the more comfortable you’ll be. It should also fit your style. If
you don’t like a bunch of stuff banging around in your pockets, then consider
wearing a fanny pack for essentials such as a compass, pocket knife, lighter or
matches, and adhesive bandages.</p>

<h3>What should you carry?</h3>

<p class=”h3">For short trips, a fanny pack or day pack should include at least one
quart of water per person, map, flashlight, first aid kit, rain gear, high-energy
snack, and toilet paper, in addition to any optional items such as sunglasses,
camera, binoculars, and nature books.</p>

<h3>What else should you do?</h3>

Dynamic HTML Fundamentals

3

<p class=”h3">Make an itinerary and stick with it. Make sure someone knows when and
where you’re expected back, and how long they can allow. </p>
</div>

<div id=”div_1" title=”Getting Lost”>
<h2>When things go wrong</h2>

<blockquote>
 <p>The worst thing you can do is to get frightened. The truly dangerous enemy is
not the cold or the hunger, so much as the fear. It robs the wanderer of his
judgement and of his limb power; it is fear that turns the passing experience into
a final tragedy ... Keep cool and all will be well ... Use what you have, where you
are, right now. </p>
 <p class=”cite”>Ernest Thompson Seton, 1906</p>
</blockquote>

<p class=”h2">So you’ve planned, you’ve prepared, and now you’re on the trail. And
the worst part is, you don’t know where you are. There’s a four-step process to
follow, and all you have to do is STOP -- StayT</
strong>hink-Observe-Plan.</p>

<h3>STAY!</h3>

<p class=”h3">At the first sign of trouble, STAY WHERE YOU ARE! The urge to walk
faster or run blindly to escape the situation is difficult to resist, but rushing
about only leads to more confusion. Stopping helps you fight panic and increases
your chances of survival. If you’re on foot, sit down. If you’re in a boat, get to
shore. If anyone is injured, apply first aid and rest. It may take a little bit for
the panic to go away, but be patient. You probably got yourself into this mess, you
can certainly get yourself out of it.</p>

<h3>THINK!</h3>

<p class=”h3">As you relax, think. If you’re lost, study a map and look for
landmarks. How long ago did you know where you were? Are there footprints to show
where someone has gone before? Can you hear traffic from a highway? Do you see or
hear a river heading down stream? If you give all the clues time to sink in,
chances are you’ll get yourself back on course. If you have any doubts, sit still
and observe.</p>

<p>...Yadda, yadda, yadda...More useful information here...</p>

</div>
</body>
</html>

As we make the page dynamic, we’ll return to the style sheet to include some additional fea-
tures to help us. But for the time being, we have a page that has accurate HTML, whose
appearance is further improved on compatible browsers with a style sheet. Step 3 of imple-
menting DHTML is complete.

Getting Started with Dynamic HTML

To complete the loop for the creation of our page, we’ll need to add two more elements. First
are event handlers. These handy little items detect activity on the part of the user, such as mouse
clicks and mouse movements.

Remember back in step 2 (creating the basic HTML page) when we said we’d address the fact
the page was a little long and seemed to divide into two parts? We’re going to take care of that
now by displaying only one of the divisions at a time.

To do this, we need a way to control the display attribute to show or hide each division, de-
pending on which hyperlink the user clicks. The none value for the display attribute causes the
page to display as if the affected class didn’t exist at all. (You’ll learn more about style values
and attributes in Part II.) The following code demonstrates the use of the none value:

<script language=”JavaScript”>
<!--
currentDiv = 0;

function showDiv (aNum) {
 setDisplay(nameDiv(currentDiv), “none”);
 setDisplay(nameDiv(aNum), “”);
 currentDiv = aNum;
}

function nameDiv(aNum) {
 name = “div_” + aNum;
 return name;
}

The page is now a bit
more interesting with a
style sheet added on
Internet Explorer.

Dynamic HTML Fundamentals

3

function setDisplay(anId, aValue) { //Line 49
 document.all(anId).style.display = aValue;
}
//-->
</script>

There’s a lot going on in this script, so let’s take it apart piece by piece to see what’s happening.
Right now it includes three different functions to make it more modular and reusable on this
and other pages. Here’s what each function does:

■ First, a global variable, currentDiv, is set, which identifies that the current section of
the page is shown. We represent this only with a number, so we can change the
naming scheme on the page without significantly changing the scripts. The default
section to display is div_0, represented simply as 0.

■ Second, a function named showDiv accepts a parameter that is the number of the
division to show. It calls the function setDisplay to set the display attribute of the
current visible division to none; then it calls setDisplay again to set the new division’s
display to an empty string, which forces it to display. As its last step, it sets the
currentDiv to the selected division now shown.

■ The nameDiv function is a utility function that builds the name of the division to pass
to the showDiv function.

■ The last function is setDisplay, a generic piece of code that assigns a new value to the
display attribute.

The script and new styles are all well and good, but we need a way to invoke the script when
the user clicks the table of contents list. We’ll do this by adding event handlers to the hyperlinks,
like this:

Before You Travel

When Things Go Wrong

Here’s what happens when this page is loaded by a DHTML-enabled browser. The text in the
hyperlink is still displayed as a hyperlink (typically blue underlined text). When the user clicks
the link, the browser detects the mouse click and passes control to the showDiv function, which
displays the appropriate part of the page. After the function is complete, page control passes
back to the hyperlink, which moves the user down to the bookmark at the beginning of the
selected area.

If this page were loaded on a noncompatible browser, the onClick event handler would be ig-
nored, as would the styles, and the focus of the page would shift down to the appropriate sec-
tion. This maintains downward compatibility, so this particular DHTML page should work
equally well on Mosaic 2.0 and Internet Explorer 4.0.

Getting Started with Dynamic HTML

We’ll use one other event handler to hide all but one of the divisions when the page is first
loaded. This utilizes the onLoad event in the <BODY> tag, which is triggered when the browser
has received all the HTML for the page but has not yet begun to display it.

<body onLoad=”initDisplay()”>

The initDisplay function is a special one-use utility that uses a property of document.all to
access each division in turn and set its display attribute to none. Then it calls the showDiv func-
tion to display the initial division. If you wanted to display the second division first, you would
only need to change the value of currentDiv on the first line of the script to 1. The following
code shows the display attribute set to none:

function initDisplay() {
 divColl = document.all.tags(“DIV”);
 if (divColl!=null) {
 for (i=0; i<divColl.length; i++) {
 divColl[i].style.display=”none”;
 }
 }
 showDiv(currentDiv);
}

The completed HTML for this page is shown in Listing 3.3. When it’s initially displayed by
Internet Explorer 4.0, it looks like Figure 3.3. Note the heading toward the bottom of the page
that says, “Before You Travel.”

<!doctype HTML PUBLIC “-//IETF//DTD HTML 4.0//EN”>
<html>

<head>
<title>Traveling in the Backcountry</title>
<style type=”text/css”>
<!--
BODY { background-color: rgb(255,255,255); color: rgb(0,0,0);
font-family: Bookman Old Style, serif }
H1, H2, H3 { font-family: Tahoma, sans-serif; font-weight: bold;
font-variant: small-caps }
H2 { margin-left: 20px }
H3 { margin-left: 60px }
.h2 { margin-left: 20px }
.h3 { margin-left: 60px }
BLOCKQUOTE { font-family: Times New Roman, serif; font-style: italic }
.cite { text-align: right }
-->
</style>
</head>

<script language=”JavaScript”>
<!--
currentDiv = 0;

Dynamic HTML Fundamentals

3

function initDisplay() {
 divColl = document.all.tags(“DIV”);
 if (divColl!=null) {
 for (i=0; i<divColl.length; i++) {
 divColl[i].style.display=”none”;
 }
 }
 showDiv(currentDiv);
}

function showDiv (aNum) {
 setDisplay(nameDiv(currentDiv), “none”);
 setDisplay(nameDiv(aNum), “”);
 currentDiv = aNum;
}

function nameDiv(aNum) {
 name = “div_” + aNum;
 return name;
}

function setDisplay(anId, aValue) { //Line 49
 document.all(anId).style.display = aValue;
}
//-->
</script>

<body onLoad=”initDisplay()”>

<h1>Traveling in the Backcountry</h1>

 Introduction
 Before You Travel</
a>
 When Things Go
Wrong

<p>Walking in the woods, whether as a hiker, camper, backpacker
or hunter, provides plenty of opportunities to practice the skills of a backcountry
traveler. With the proper preparation, you’ll have the knowledge and confidence to
meet the challenges of a variety of outdoor adventures. This page is intended to
provide you with some hints and tips to help you create a successful experience.
</p>

<p>Before you read on, we’d like for you to hear a brief message from our
lawyers....</p>

<blockquote>
 <p>This is in no way intended to be a course in backcountry safety or
 survival. Information provided is from a variety of sources and is to be
 accepted at the user’s risk. The authors of this page assume no
 liability whatsoever as to the suitability of this information to any
 specific situation or person. It’s you against the world, and
 we’re not taking any responsibility for the outcome.</p>
</blockquote>

continues

Getting Started with Dynamic HTML

<div id=”div_0" title=”Preparing”>
<h2>Before you travel</h2>

<h3>How far can you go? </h3>

<p class=”h3">When choosing a location and route, take into account your
 physical condition, the reason for hiking, and the terrain and weather you
 could possibly encounter. As a general rule, an average hiker can walk about
 1 1/2 to 2 miles an hour on level trails. Steep ascents require considerably
 greater time allowances. One hour for every 1,000 feet of elevation gain
 is a good rule of thumb.</p>

<h3>What should you wear?</h3>

<p class=”h3">Proper foot gear is one of the most important parts of your
 journey. Sturdy running shoes are good for hiking on relatively smooth
 surfaces, such as maintained trails. You’ll want something with a little
 more tread for rugged trails or cross-country travel. A ten mile hike in the
 woods is not the best place to break in new shoes.</p>

<p class=”h3">You should also consider what clothes to wear. Your location
 and the time of year will be key factors, but a general rule of thumb is to
 have at least one layer available for each surface of your body -- a sweater
 if you’re in a T-shirt, pants if you’re in shorts, and gloves and a hat. The
 more versatile your clothing can be, the more comfortable you’ll be. It
 should also fit your style. If you don’t like a bunch of stuff banging
 around in your pockets, then consider wearing a fanny pack for essentials
 such as a compass, pocket knife, lighter or matches, and adhesive bandages.</p>

<h3>What should you carry?</h3>

<p class=”h3">For short trips, a fanny pack or day pack should include at
 least one quart of water per person, map, flashlight, first aid kit, rain
 gear, high-energy snack, and toilet paper, in addition to any optional items
 such as sunglasses, camera, binoculars, and nature books.</p>

<h3>What else should you do?</h3>

<p class=”h3">Make an itinerary and stick with it. Make sure someone knows when and
where you’re expected back, and how long they can allow. </p>

<div id=”div_1" title=”Getting Lost”>
<h2>When things go wrong</h2>

<blockquote>
 <p>The worst thing you can do is to get frightened. The truly dangerous enemy is
not the cold or the hunger, so much as the fear. It robs the wanderer of his
judgement and of his limb power; it is fear that turns the passing experience into
a final tragedy ... Keep cool and all will be well ... Use what you have, where you
are, right now. </p>

 <p class=”cite”>Ernest Thompson Seton, 1906</p>
</blockquote>

Dynamic HTML Fundamentals

3

<p class=”h2">So you’ve planned, you’ve prepared, and now you’re on the trail. And
the worst part is, you don’t know where you are. There’s a four-step process to
follow, and all you have to do is STOP -- Stay-
Think-Observe-Plan.</p>

<h3>STAY!</h3>

<p class=”h3">At the first sign of trouble, STAY WHERE YOU ARE! The urge to walk
faster or run blindly to escape the situation is difficult to resist, but rushing
about only leads to more confusion. Stopping helps you fight panic and increases
your chances of survival. If you’re on foot, sit down. If you’re in a boat, get to
shore. If anyone is injured, apply first aid and rest. It may take a little bit for
the panic to go away, but be patient. You probably got yourself into this mess, you
can certainly get yourself out of it.</p>

<h3>THINK!</h3>

<p class=”h3">As you relax, think. If you’re lost, study a map and look for
landmarks. How long ago did you know where you were? Are there footprints to show
where someone has gone before? Can you hear traffic from a highway? Do you see or
hear a river heading down stream? If you give all the clues time to sink in,
chances are you’ll get yourself back on course. If you have any doubts, sit still
and observe.</p>

<p>...Yadda, yadda, yadda...More useful information here... </p>
</div>

</body>
</html>

This is our page as it
displays initially on
Internet Explorer 4.0.

Getting Started with Dynamic HTML

Clicking the third hyperlink (Getting Lost) at the top of the page hides the first division and
displays the second division about “When Things Go Wrong,” which is visible in Figure 3.4
in the place immediately after the introduction.

Clicking the last
hyperlink hides the first
section about
preparation and
displays the second
about getting lost.

We could add more features to this page, such as making the legal disclaimer a pop-up message
instead of part of the regular page, but we’ll save those lessons for later, after you’ve had a chance
to work back through some of the fundamentals. In the meantime, we’ll take a look at this
page and Navigator 4.02.

Take a look at Figure 3.5. This is our DHTML page on Navigator 4.02.

Welcome to the first DHTML incompatibility between Netscape and Microsoft. Microsoft
uses the all object to reference the various page elements, whether they be paragraphs, head-
ings, or forms. Because both Netscape and Microsoft support JavaScript, Netscape doesn’t know
that the all object is intended only for the Microsoft browser.

We need to create a new script that is specific to Navigator 4.02. This will utilize two features
of HTML: More than one set of script tags can be placed on a page, and browsers will ignore
script tags for languages they don’t understand. We’ll also need to add a new set of tags to the
page to implement Netscape’s layers for hiding and displaying the divisions.

Dynamic HTML Fundamentals

3There are a few things that must happen with the new script. It must maintain the initDisplay
and showDiv function names to retain compatibility with the rest of the page. The additional
script for the page looks like this:

<script language=”JavaScript1.2">
<!--
function initDisplay () {
 for (i=0; i<document.layers.length; i++) {
 setVisibility(nameLayer(i), “hide”);
 }
 showDiv(currentDiv);
}

function showDiv (aNum) {
 setVisibility(nameLayer(currentDiv), “hide”);
 setVisibility(nameLayer(aNum), “show”);
 currentDiv = aNum;
}

function nameLayer(aNum) {
 name = “layer_” + aNum;
 return name;
}

function setVisibility(anId, aValue) {
 document.layers[anId].visibility = aValue;
}
//-->
</script>

Our DHTML page on
Navigator generates an
error in the script.

Getting Started with Dynamic HTML

Notice the opening <SCRIPT> tag. This uses a language value of JavaScript1.2, which is the
latest version of JavaScript supported by Netscape. This version is not recognized by Microsoft,
so Internet Explorer will completely ignore this section.

Next, according to the hierarchy of scripts, the browser will use only the latest version of a
function within a script. We now have two versions of initDisplay and showDiv appearing after
the initial script, so the Netscape browser will use the new versions and ignore the prior two.

The actual work is accomplished by using the Netscape layers object to hide and display the
sections by making use of the visibility attribute. Other than that, the scripts are essentially
the same.

The only other matter left is to add the <layer> tags within the <div> tags with a background
color attribute to make sure they remain opaque. The first layer tag looks like this:

<layer id=”layer_0" bgcolor=”white”>

The second layer tag is identical except for the name. Listing 3.4 is the complete dual-DHTML-
compatible page, which is shown on Navigator 4.02 in Figure 3.6.

<!doctype HTML PUBLIC “-//IETF//DTD HTML 4.0//EN”>
<html>

<head>
<title>Traveling in the Backcountry</title>
<style type=”text/css”>
<!--
BODY { background-color: rgb(255,255,255); color: rgb(0,0,0);
➥font-family: Bookman Old Style, serif }
H1, H2, H3 { font-family: Tahoma, sans-serif; font-weight: bold;
➥font-variant: small-caps }
H2 { margin-left: 20px }
H3 { margin-left: 60px }
.h2 { margin-left: 20px }
.h3 { margin-left: 60px }
BLOCKQUOTE { font-family: Times New Roman, serif; font-style: italic }
.cite { text-align: right }

-->
</style>

</head>

<script language=”JavaScript”>
<!--
currentDiv = 0;

Dynamic HTML Fundamentals

3

function initDisplay() {
 divColl = document.all.tags(“DIV”);
 if (divColl!=null) {
 for (i=0; i<divColl.length; i++) {
 divColl[i].style.display=”none”;
 }
 }
 showDiv(currentDiv);
}

function showDiv (aNum) {
 setDisplay(nameDiv(currentDiv), “none”);
 setDisplay(nameDiv(aNum), “”);
 currentDiv = aNum;
}

function nameDiv(aNum) {
 name = “div_” + aNum;
 return name;
}

function setDisplay(anId, aValue) { //Line 49
 document.all(anId).style.display = aValue;
}
//-->
</script>

<script language=”JavaScript1.2">
<!--
function initDisplay () {
 for (i=0; i<document.layers.length; i++) {
 setVisibility(nameLayer(i), “hide”);
 }
 showDiv(currentDiv);
}

function showDiv (aNum) {
 setVisibility(nameLayer(currentDiv), “hide”);
 setVisibility(nameLayer(aNum), “show”);
 currentDiv = aNum;
}

function nameLayer(aNum) {
 name = “layer_” + aNum;
 return name;
}

function setVisibility(anId, aValue) {
 document.layers[anId].visibility = aValue;
}
//-->
</script>

<body onLoad=”initDisplay()”>

<h1>Traveling in the Backcountry</h1>

continues

Getting Started with Dynamic HTML

 Introduction
 Before You Travel</
a>
 When Things Go
Wrong

<p>Walking in the woods, whether as a hiker, camper,
backpacker, or hunter, provides plenty of opportunities to practice the skills of a
backcountry traveler. With the proper preparation, you’ll have the knowledge and
confidence to meet the challenges of a variety of outdoor adventures. This page is
intended to provide you with some hints and tips to help you create a successful
experience.</p>

<p>Before you read on, we’d like for you to hear a brief message from our
lawyers....</p>

<blockquote>
 <p>This is in no way intended to be a course in backcountry safety or survival.
 Information provided is from a variety of sources and is to be accepted at the
user’s risk. The authors of this page assume no liability whatsoever as to
the suitability of this information to any specific situation or person.
It’s you against the world, and we’re not taking any responsibility for the
outcome. </p>
</blockquote>

<div id=”div_0" title=”Preparing”>
<layer id=”layer_0" bgcolor=”white”>

<h2>Before you travel</h2>

<h3>How far can you go? </h3>

<p class=”h3">When choosing a location and route, take into account your physical
condition, the reason for hiking, and the terrain and weather you could possibly
encounter. As a general rule, an average hiker can walk about 1 1/2 to 2 miles an
hour on level trails. Steep ascents require considerably greater time allowances.
One hour for every 1,000 feet of elevation gain is a good rule of thumb.</p>

<h3>What should you wear?</h3>

<p class=”h3">Proper foot gear is one of the most important parts of your journey.
Sturdy running shoes are good for hiking on relatively smooth surfaces, such as
maintained trails. You’ll want something with a little more tread for rugged trails
or cross-country travel. A ten mile hike in the woods is not the best place to
break in new shoes.</p>

<p class=”h3">You should also consider what clothes to wear. Your location and the
time of year will be key factors, but a general rule of thumb is to have at least
one layer available for each surface of your body -- a sweater if you’re in a T-
shirt, pants if you’re in shorts, and gloves and a hat. The more versatile your
clothing can be, the more comfortable you’ll be. It should also fit your style. If
you don’t like a bunch of stuff banging around in your pockets, then consider
wearing a fanny pack for essentials such as a compass, pocket knife, lighter or
matches, and adhesive bandages.</p>

<h3>What should you carry?</h3>

Dynamic HTML Fundamentals

3

<p class=”h3">For short trips, a fanny pack or day pack should include at least one
quart of water per person, map, flashlight, first aid kit, rain gear, high-energy
snack, and toilet paper, in addition to any optional items such as sunglasses,
camera, binoculars, and nature books.</p>

<h3>What else should you do?</h3>

<p class=”h3">Make an itinerary and stick with it. Make sure someone knows when and
where you’re expected back, and how long they can allow. </p>
</layer>
</div>

<div id=”div_1" title=”Getting Lost”>
<layer id=”layer_1" bgcolor=”white”>

<h2>When things go wrong</h2>

<blockquote>
 <p>The worst thing you can do is to get frightened. The truly dangerous enemy is
not the cold or the hunger, so much as the fear. It robs the wanderer of his
judgement and of his limb power; it is fear that turns the passing experience into
a final tragedy ... Keep cool and all will be well ... Use what you have, where you
are, right now. </p>

 <p class=”cite”>Ernest Thompson Seton, 1906</p>
</blockquote>

<p class=”h2">So you’ve planned, you’ve prepared, and now you’re on the trail. And
the worst part is, you don’t know where you are. There’s a four-step process to
follow, and all you have to do is STOP -- Stay-
Think-Observe-Plan.</p>

<h3>STAY!</h3>

<p class=”h3">At the first sign of trouble, STAY WHERE YOU ARE! The urge to walk
faster or run blindly to escape the situation is difficult to resist, but rushing
about only leads to more confusion. Stopping helps you fight panic and increases
your chances of survival. If you’re on foot, sit down. If you’re in a boat, get to
shore. If anyone is injured, apply first aid and rest. It may take a little bit for
the panic to go away, but be patient. You probably got yourself into this mess, you
can certainly get yourself out of it.</p>

<h3>THINK!</h3>

<p class=”h3">As you relax, think. If you’re lost, study a map and look for
landmarks. How long ago did you know where you were? Are there footprints to show
where someone has gone before? Can you hear traffic from a highway? Do you see or
hear a river heading down stream? If you give all the clues time to sink in,
chances are you’ll get yourself back on course. If you have any doubts, sit still
and observe.</p>

<p>...Yadda, yadda, yadda...More useful information here... </p>

</layer>

</body>
</html>

Getting Started with Dynamic HTML

After working through both examples, we’re sure you’re left with the original question we started
with at the beginning of this book: What’s a developer to do? The answer from the World
Wide Web Consortium is to write your DHTML pages to the lowest common denominator
of compatibility until the consensus begins to form. This is hard for developers to swallow,
especially when you want to write with the “latest and greatest” tools on the Web. If you need
more help on working through the maze of standards and implementations, see the preceding
chapter, “Choosing a Standard.”

The Backcountry
Travel page now
appears correctly on
Navigator without any
scripting errors.

In short, it’s still a long road to an implementation that is going to work well across all brows-
ers, especially the major offerings from Netscape and Microsoft. If you write to the capabilities
of a majority of your users and include safety nets for the rest, you won’t go wrong.

Dynamic HTML is one of the best things to happen to HTML since HTML was blessed by
the W3C. With DHTML, Web designers and authors can make their pages do the “song and
dance” without relying on “click and sit.” DHTML enables a page to change itself after it is
loaded on the browser without any further input or guidance from the Web server.

Remember, HTML has never been interactive. It has hosted a great number of things that have
been interactive, including plug-ins, applets, VRML, and other assorted adornments. DHTML
makes the page itself interactive—a lot like some of those cool CD-ROMs you can buy that
show you the cost of tea on Uranus or how to sweat a pipe while crammed under a crawl space.

Dynamic HTML Fundamentals

3

DHTML might seem like smoke and mirrors, but it’s really like old friends—the interaction
of two features (documents and scripting) already available in rudimentary forms. By making
every tag of a page identifiable (by using a DOM), the page developer can access and change
virtually everything in reaction to the user’s behavior (scripting).

You looked at a simple example in this chapter. Next, you’ll take a step back and work your
way into more complicated examples by beginning with style sheets and JavaScript.

Getting Started with Dynamic HTML

■

■

■

■

Cascading Style Sheets Basics

4

by David Wiley

■

■

Cascading Style Sheets

Every few years, something truly revolutionary happens to the Internet. As recently as 1993
the World Wide Web came into existence. A major leap forward came with the introduction
of GUI browsers, which allow for the use of pictures and other types of media on Web pages.
Another revolution is about to occur with Dynamic HTML, and cascading style sheets will be
one of the technologies leading the way.

Cascading style sheets (CSS) is the term used to describe a mechanism that applies a style across
one or more Web pages. The so-called sheets are files or portions of files that reside on the Internet
and are accessible by the World Wide Web. The style of cascading style sheets refers to a color
scheme, layout, or other strategy for organizing the visual components of a document—in this
case, a Web page. Work on CSS began at CERN (the European Laboratory for Particle Phys-
ics) in 1994. With the release of browsers from Microsoft (Internet Explorer 3 and higher) and
Netscape (Navigator 4 and higher) that include support for CSS, cascading style sheets are fi-
nally here.

You can use CSS to control every aspect of the graphic presentation of a Web page, including,
but certainly not limited to, fonts (face, size, and color), background color and background
image information for Web pages and any tables within them, the positioning of elements within
the page, page margins, and text decoration such as italicizing and underlining. All these de-
sign elements are exposed to scripting as well (JavaScripting, for example) so that they can be
modified after the document has been initially loaded. This scripting accessibility is what makes
CSS an integral part of DHTML.

The power of CSS comes with the explanation of the term cascade as used in the phrase “cas-
cading style sheets.” A potentially infinite number of style sheets can affect the appearance of a
single Web page, giving Web page authors great flexibility in defining styles specific to certain
parts of the presentation. Conversely, one cascading style sheet can be applied to a potentially
infinite number of Web pages, giving Web page authors heretofore unknown ease of applica-
tion of style across that potentially infinite number of pages. Perhaps more important, CSS
allow a designer to update the style of all those pages by editing only one file: the style sheet. In
this manner, maintainers of huge corporate or university Web sites, for example, could change
the style of their entire site for Christmas, a black Monday, or any other occasion by simply
modifying one file.

Getting started with style sheets is simple. Anyone who knows enough HTML to create a Web
page can quickly master the basics of creating style sheets. The syntax of style sheet rules is as
follows:

Cascading Style Sheets Basics

4

selector {declaration}

And each declaration follows the syntax, like this:

property: value

So, for example, to set the color of all second-level headings in a document to red, the follow-
ing line would be included in a style sheet:

H2 { color: red }

To give you an idea of the amount of control designers now have over their Web sites, every
HTML element is a potential CSS selector, and there are approximately 50 valid properties
available for use with CSS. Many of these are explained in the other three chapters of Part II,
“Cascading Style Sheets,” and the comprehensive list can be found at the World Wide Web
Consortium’s official CSS Web site:

http://www.w3.org/pub/WWW/TR/REC-CSS1

Four ways to include style information within an HTML document are

■ linking to an external style sheet

■ importing a style sheet

■ embedding a style sheet

■ including style information inline

External style sheets and style sheets that will be imported should be plain text (ASCII) files
including only the style rules (selector {declaration}). For example, HTML or other markup
tags should not be within these external style sheets.

Linking to an external style sheet is one of two methods for including style information that
allows the cascade to occur. You reference an external style sheet in HTML as follows:

<HTML>
<HEAD>
<LINK REL=STYLESHEET TYPE=”text/css” HREF=Ahttp://www.davidwiley.com/style1">
</HEAD>

REL=STYLESHEET tells the browser requesting this page that the relation of the information being
linked to is STYLESHEET. TYPE discloses information about the MIME type of the information
being passed, in this case a cascading style sheet. HREF contains the address of the link target
just as if it had been used with the anchor tag. Information presented in externally linked style
sheets will be used only if other style information is unavailable.

Cascading Style Sheets

Similarly, a style sheet can be imported for use in a Web page using the following syntax:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
@import url(http://www.davidwiley.com/style2);
</STYLE>
</HEAD>

Style information imported in this way is automatically pulled into the document for use and
can be overridden only by explicit style rules named within the document itself.

Style information can be embedded directly within the document by using the <STYLE> tag.
The <STYLE> tag should always include the TYPE= declaration (in this case, text/css), and it
should occur within the <HEAD> of the document. Most Web browsers will ignore tags that they
do not know how to render, so the <STYLE> … </STYLE> tags themselves will not be improperly
displayed by older Web clients. However, it is good practice to comment out the style infor-
mation designated between the tags. Often, <SCRIPT> information is treated the same way. Here
is an example of an embedded style sheet:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!-- // hide style information from older browsers

H1 {color: red};
H2 {color: blue};

// -->
<STYLE>
</HEAD>

Finally, style information can be included inline, or within the tag of the HTML element it-
self. When style information is included within an HTML element’s tag, the TYPE= declaration
is omitted, and the {} (curly brackets) are replaced by quotes, as shown in the following
example:

Cascading Style Sheets Basics

4

<BODY>
This text appears in the default font face.
<P STYLE=”font-family: helvetica”>This text appears in the Helvetica font face.</P>
</BODY>

Obviously, the power of the cascade is absent from this instance of the specific declaration of
style.

To avoid redundancy in code, and because Web page designers are generally a lazy bunch, both
selectors and declarations can be grouped together within style sheets. For example, say that
Blue University wants all its headings to appear in blue. Developers could create a separate rule
for each heading as follows:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

H1 {color: blue};
H2 {color: blue};
H3 {color: blue};
H4 {color: blue};
H5 {color: blue};
H6 {color: blue};

/*stop hiding */ -->
</STYLE>

Or they could group the selectors into one larger rule, like this:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

H1, H2, H3, H4, H5, H6 {color: blue}

/*stop hiding */ -->
</STYLE>

Likewise, declarations can be grouped. Say that Blue University wanted its first level headings
always to display on a green background, in italics, and in an Arial font face.

Again, the developers could state each rule separately, like this:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

H1 {background-color: green};
H1 {font-style: italic};
H1 {font-family: arial};

/*stop hiding */ -->
</STYLE>

Or they could lump them all into one larger rule:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

Cascading Style Sheets

H1 {
background-color: green;
font-style: italic;
font-family: arial;
}

/*stop hiding */ -->
</STYLE>

Style properties are inherited by HTML elements that have no style rules that apply specifi-
cally to them. In the Blue University example, first level headings are set to be displayed in
blue. Now, suppose that one of those headings contained text that is bold, like this:

<H1> Hi there. What a statement I’m making.</H1>

If no rule were declared regarding the color of text that displays in bold, the word statement in
this example would be rendered blue. Default values for various selectors can be set document-
wide by using the BODY element as a selector:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

BODY {color: green};
/*stop hiding */ -->
</STYLE>

This sets the default text color for the document to green, just as if the declaration had been
made within the <BODY> tag of the document using the TEXT= property, as can be done in stan-
dard HTML.

There are several ways in which designers can take advantage of the power of style sheets, and
new selectors have been added to HTML to increase that number. These include CLASS and ID,
as well as the capability to determine the context in which selectors occur.

Any element that occurs inside the <BODY> of an HTML document may have a class associated
with it. Classes give authors the ability to apply styles to specific parts of a document while not
applying them to others. Figure 4.1 demonstrates this ability.

<HTML>
<STYLE type= “text/css”>
P.makemered { color: red }
SPAN.highlighted {color: yellow }
</STYLE>
<BODY bgcolor=”#000000" text=”#FFFFFF”>
<P class=”makemered”>
I must be brave, since I’m red. I’m scared
of CSS.
It’s so complicated! That must be why I’m yellow.</P>
</BODY>
</HTML>

Cascading Style Sheets Basics

4

Rules for classes can also be declared that apply to all selectors:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

.forge {color: green}

/*stop hiding */ -->
</STYLE>

Now, when a second level heading or paragraph, or any other selector that has color as a prop-
erty, is declared to belong to the class froggy, it will be displayed in green.

<H1 CLASS=”froggy”>Green Heading</H1>
<H2>Normal Subheading</H2>
<P CLASS=”froggy”>All the text in this paragraph is green</P>

ID
The new ID selector can be used in a way similar to the class element, except that the ID at-
tribute has a unique value over the document. In the <STYLE> declaration, the ID name should
be preceded by a #, like this:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

#1mei028 {text-transform: uppercase}

Classes give authors the
ability to apply styles to
specific parts of a
document while not
applying them to others.

Cascading Style Sheets

/*stop hiding */ -->
</STYLE>
</HEAD>
<BODY BGCOLOR=”white”>

<P ID=1mei028>This case will be displayed in all caps.</P>

</BODY>
</HTML>

Like CLASS, ID can be set to apply to all selectors, as in the previous example, or they can be
bound to a specific one, like this:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */
A#0mei301 {background-color: orange}

/*stop hiding */ -->
</STYLE>

This link has an orange background.

Style can also be determined by context. If Crimson, Inc. decides to set the text color within
certain paragraphs to red for emphasis and to render all text in italics throughout the Web page
to red, then italic words within the red paragraphs will be less emphasized.

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

P.red {color: red};
I {color: red};

/*stop hiding */ -->
</STYLE>

However, using context as a selector, a style sheet author could create a rule stating that all
italicized text that appears within red paragraphs be rendered yellow, as in Figure 4.2.

<HTML>
<STYLE type= “text/css”>
B { color: red }
I {color: yellow }
</STYLE>
<BODY bgcolor=”#000000" text=”#FFFFFF”>

I feeling bold today,which explains why I’m red.

<I>Suddenly I’m feeling yellow -- oh no!</I>

Whew! That’s better!
</BODY>
</HTML>

Cascading Style Sheets Basics

4

In the statement of context rules, the outer selector is named first, and the inner selector is
named second. So the preceding example would display as yellow all italicized text appearing
in paragraphs of class red. Contextual selectors can use standard HTML elements, class selec-
tors, and ID selectors in any combination. Here are some examples:

DIV H1 {font-family: arial};
.butter P {color: yellow};
#megu00 B {text-align: center}

Contextual selectors can be grouped together in any way that stand-alone selectors can. This
means that you could write code this way:

H1 B {color: purple};
H2 B {color: black};
H1 I {color: purple};
H2 I {color: black};

Or you could write the code this way:

H1 B, H1 I {color: purple};
H2 B, H2 I {color: black};

Pseudo-classes allow style sheets to recognize different selector types. For example, the HTML
element <A> has three associated pseudo-classes whose property values can be accessed and set
in the following manner:

A:link {font-size: 12pt};
A:visited {font-size: 10pt};
A:active {font-size: 14pt};

Property information
can be determined by
context or relationship
to other elements.

Cascading Style Sheets

The anchor pseudo-classes are valid only for anchor tags that also include the HREF element. In
other words, the following line would be unaffected by the three rules shown here:

Jump to here.

As with normal selectors, pseudo-classes can be used as parts of contextual selectors.

A:link IMG {border: solid yellow};

This rule will cause all images that serve as links to unvisited locations to have a solid yellow
border. Pseudo-classes can also be combined with other classes, like this:

A.menu1:link {color: green}

P.menu1.Friday

Pseudo-elements allow style sheets to access different subparts of elements. There are no HTML
tags that represent these element subparts, but there are only two pseudo-elements currently
supported by style sheets, so they shouldn’t be too hard to remember: first-line and first-
letter.

The first-line pseudo-element applies whatever styles you specify to text on the first line as
displayed by the browser, as in the following example:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

P:first-line {font-style: italic};

/*stop hiding */ -->
</STYLE>

</HEAD>
<BODY BGCOLOR=”white”>
<P>This text will be rendered in italics until it line-wraps in the browser.
</BODY>
</HTML>

There are some restrictions on the use of the first-line pseudo-element. It can be used only
with block-level elements and can access only the following properties: font properties, color
and background properties, word-spacing, letter-spacing, text-decoration, vertical-align,
text-transform, line-height, and clear.

Cascading Style Sheets Basics

4

As you’ve probably guessed, the first-letter pseudo-element is used to create drop caps in a
document. The first-letter pseudo-element is a lot like the first-line pseudo-element in
that it can be applied only to block level elements and has restrictions on the properties it can
access. They are font properties, color and background properties, text-decoration, vertical-
align (only if >float= is none), text-transform, line-height, margin properties, padding prop-
erties, border properties, float, and clear.

Creating a drop cap that works properly is slightly more involved than using the first-line
pseudo-element. Here’s an example:

<STYLE TYPE=”text/css”>
<!-- /* hide from old browsers */

P {font-size: 12pt; line-height: 12pt};
P:first-letter {font-style: italic};
SPAN {text-transform: uppercase};

/*stop hiding */ -->
</STYLE>

</HEAD>
<BODY>
<P>This text will have a drop cap which will float left, allowing the rest
➥of the text to snuggle right up against it.

When used in contextual selectors, pseudo-elements are only allowed as the final selector. For
example:

SPAN BR:first-letter {color: blue}

As in the example with the first-line pseudo-element, first-letter can be combined with a
class:

P.standout:first-letter {color: purple}

The pseudo-elements can be used together, even though they overlap each other:

P {color:black; font-size: 10pt};
P:first-letter {color: red; font-size: 20pt};
P:first-line {color: yellow; text-transform: uppercase}

If you want to include text comments in your style sheets, follow the conventions for using
comments in the C programming language. Comments cannot be nested within comments;
note what happens in the following code:

IMG.hidari {float: left} /* this image will align to the left */

Using CSS, multiple style sheets can be used to affect the presentation of a single document.
This is true for several reasons, probably the most important being that it reduces replication

Cascading Style Sheets

of style information across style sheets. Instead of having several large sheets with only slightly
different information (in one sheet H1s are red and in the other they are blue, in a third they
are yellow, and so on), an author can create one CSS with all the unchanging information, and
other shorter CSS with the different values for H1.

The person reading the document can also set up style sheets that affect the way they see docu-
ments displayed. Although these are handled in different ways in different browsers, most brows-
ers allow the user to set the defaults for font face and size, background and text colors, and so
on. The document’s style rules override those which the reader has set up as defaults, and style
rules named explicitly in the document (embedded style sheets) override those imported or
linked to externally.

import

CSS authors can increase the weight of style rules by using the ! important flag, like this:

IMG {border-top: solid green ! important}

This flag gives the style rule more weight in cases in which the browser might encounter a
conflicting style rule. The algorithm used to determine precedence among rules is rather com-
plex. Here is the explanation given in the Official W3C Recommendation:

1. Find all declarations that apply to the element or property in question: Declarations
apply if the selector matches the element in question. If no declarations apply, the
inherited value is used. If there is no inherited value (this is the case for the HTML
element and for properties that do not inherit), the initial value is used.

2. Sort the declarations by explicit weight: Declarations marked !important carry more
weight than unmarked (normal) declarations.

3. Sort by origin: The author’s style sheets override the reader’s style sheets which
override the UA’s default values. An imported style sheet has the same origin as the
style sheet from which it is imported.

4. Sort by specificity of selector: More specific selectors will override more general ones.
To find the specificity, count the number of ID attributes in the selector (a), the
number of CLASS attributes in the selector (b), and the number of tag names in the
selector (c). Concatenating the three numbers (in a number system with a large base)
gives the specificity. Some examples:
LI {...} /* a=0 b=0 c=1 -> specificity = 1 */
UL LI {...} /* a=0 b=0 c=2 -> specificity = 2 */
UL OL LI {...} /* a=0 b=0 c=3 -> specificity = 3 */

Cascading Style Sheets Basics

4

LI.red {...} /* a=0 b=1 c=1 -> specificity = 11 */
UL OL LI.red {...} /* a=0 b=1 c=3 -> specificity = 13 */
#x34y {...} /* a=1 b=0 c=0 -> specificity = 100 */

Pseudo-elements and pseudo-classes are counted as normal elements and classes,
respectively.

5. Sort by order specified: If two rules have the same weight, the latter specified wins.
Rules in imported style sheets are considered to be before any rules in the style sheet
itself.

CSS not only gives authors the power to control myriad design elements that they have never
before been able to control (like the ability to absolutely position elements on the page), they
also give authors the ability to manage those design elements for an entire Web site from a few
small files, maybe even a single file. Details and the good stuff, like watermark backgrounds
and sample JavaScript code to make your Web pages dynamic, are covered in the remaining
chapters in this section.

Cascading Style Sheets

Working with Color

5

by David Wiley

■

■

■

Cascading Style Sheets

Perhaps the most easily noticed effects that can be rendered with style sheets are those dealing
with color and background images. Their eye-catching nature also makes them some of the
most hazardous elements with which a Web designer is forced to grapple. Persons with strictly
technical background experience will do themselves (and the rest of us) a favor by gaining a
rudimentary understanding of graphic design principles before unleashing a disaster of color
on the unwary Web surfer. Of course, things like basic concepts of good taste are beyond the
scope of this book.

Before moving on to the more intricate “background image,” Web authors should first under-
stand the basics of handling plain-old solid colors, such as those that can be applied to both
background and foreground.

Because text of all heading levels defaults to black, and backgrounds of pages and tables default
to gray (or transparency), the appropriate use of color in these arenas is largely overlooked. With
the advent of background images for Web pages with Netscape 2.0, an infinite number of psy-
chedelically backgrounded pages sprang into existence, making Web pages harder to look at
and all but impossible to read. Although cascading style sheets do not solve the problems of
dark brown text on a camouflage background, they do make colors and background images
easier to apply and manage. The color property applies to all HTML elements, including text,
body backgrounds, and table backgrounds. The syntax follows:

selector {color: value}

The value can be one of many color words that the browser understands (for example, red,
blue, green, orange) or a hexadecimal value. For example:

H1 { color: blue }
I {color: #FF0000 }

Text coloration is handled in a slightly different way in CSS from how it is in HTML. Instead
of using a tag to create arbitrary blocks of text with individual colors, CSS uses the parent
element of the text. For example, if all the text in a document is to be rendered purple, one way
to achieve the effect would be to set the color property for the paragraph element, as follows:

P { color: purple }

Doing so will cause all the text appearing between the <P> and the </P> to be rendered purple.
Of course, when all else fails and you can find no parent element whose parent property of
color can be set, the ubiquitous <DIV> or tags can be used. This is one way to highlight
a single word in a paragraph. For example, say you want the text color for paragraphs of class
makemered to be red but highlighted words to be yellow. The code would look like this:

<HTML>
<STYLE type= “text/css”>

Working with Color

5

P.makemered { color: red }
SPAN.highlighted {color: yellow }
</STYLE>

<BODY bgcolor=”#000000">
<P class=”makemered”>
I must be brave, since I’m red.
I’m scared of CSS.
It’s so complicated! That must be why I’m yellow.
.
</P>
</BODY>
</HTML>

This would be rendered on the page in a way similar to Figure 5.1.

You can use the SPAN
tag to change the color
of words.

The color of any element without inherent color values (like an image, which contains its own
color information) can be set by CSS. In other words, all HTML elements are potential selec-
tors for the color property.

The promulgation of CSS will have a major effect on the Web similar in significance to the
effect Netscape 2.0’s background image capability had. Using CSS, background colors can be
set for every HTML element—headings, paragraphs, links, even tables. One example might
include inverting the background and foreground colors for links in order to make them stand
out more. Highlighting this way could also replace the underlining that calls attention to link
text. For example, the following code would be rendered as shown in Figure 5.2:

Cascading Style Sheets

<HTML>
<STYLE TYPE=”text/css”>
A {
background-color: white;
color: black;
text-decoration: none;
}
</STYLE>

<BODY BGCOLOR= “black” TEXT= “white”>
CSS can create all kinds of effects including inverted
background links
</BODY>
</HTML>

With CSS, you can
invert the background
and foreground colors to
call attention to links.

But CSS’s decorative power doesn’t end there. It also extends to background images, giving
Web page authors extended capability they have always wanted.

Now that you have a basic understanding of what cascading style sheets’ color capabilities are,
you’re ready to dig in to the incredible things cascading style sheets can do with background
images.

background-image
Background images can be applied to any HTML element, similar to the background-color
property. The syntax is as follows:

Working with Color

5

selector { background-image: url(some_image.gif) }

or, optionally:

selector { background-image: none }

Until the advent of CSS, background images could only be applied to the <BODY> element of
the HTML document. CSS allows tables, paragraphs, headings, and spans to have their own
background images as well. As with background images applied to entire pages, Web page
authors need to exercise caution when applying background images to other elements. Some
examples of elements with background images assigned follow:

BODY { background-image: url(paper.gif) }
P { background-image: none }
TABLE { background-image: url(rock.gif) }
H2 { background-image: { url(dots.gif) }

The next few properties are the ones that really show some of the innovation of CSS’s treat-
ment of backgrounds. Consequently, they are the ones that designers seem to be getting the
most excited about.

background-repeat
Every Web surfer has seen a background image that wrapped on the right when it wasn’t sup-
posed to. This is particularly annoying when the image is a slender column of color on the left
(which may contain navigational aids or other information) and another, larger band of color
on the right for the body of the page. Too many times the slender column of color shows up
again on the right-hand side of the browser window, and in the most egregious cases, the color
of the wider band may be present again as well. Until now, Web page authors have had few
solutions to this problem, and all of them were workarounds: Create an image so long that,
regardless of screen resolution, it will not wrap horizontally; write fairly advanced JavaScripts
to detect the browser’s window size and dynamically load the appropriate, properly sized, back-
ground image; and so on. However, the CSS property background-repeat finally gives authors
a usable, sensible way to get around this problem. It gives Web authors the ability to control
how (and if) their background images tile, how they are aligned, and even whether they scroll
with the information on the page. Possible values for background-repeat are repeat (the de-
fault), repeat-x, repeat-y, and no-repeat. So, a Web page author can now use code similar to
the following to get around this problem:

<HTML>
<STYLE TYPE=”text/css”>
BODY {
background-image: url(bluebox.gif);
background-repeat: repeat-y;
background-color: white;
}
P { color: C0C0C0 }
</STYLE>

Cascading Style Sheets

This code will create, regardless of the resolution of the end user’s monitor or size of the browser
window, a blue column on the left (the square, blue image repeated vertically only) and the
remainder of the body white. The screen will look like Figure 5.3.

Using background-
repeat allows Web
page authors to adjust
to different monitor
sizes.

background-position
But wait—there’s more! Using the property background-position, authors can do a number of
other things they were never able to do before. This property actually gives authors control
over where their background image is rendered. Valid values for background-position are
percentages, length values, and the keywords top, middle, bottom, left, right, and center. Per-
centages are handled in the following ingenious manner: The height/width percentage posi-
tion of the image is placed in the height/width percentage position of the browser window. So,
for example, take 0% 0%. This would place the top left corner of the image (the 0% 0% po-
sition of the image) in the top left corner of the window (the 0% 0% position of the window).
Likewise, 50% 50% would place the dead center of the image (the 50% 50% position of the
image) in the dead center of the window (the 50% 50% position of the window). Length val-
ues such as cm, mm, em, ex, and others are valid (see the Companion Web site at http://
www.mcp.com/info for a listing of valid units). Percentage and length values can be combined in
declarations, such as 4em 25% (but cannot be combined with keywords) and should be listed
horizontal value first, vertical value second. Keyword declarations can be made in either order,
because three of the words are specific to vertical positions, and the other three are horizontal
positions. For example, a valid declaration would look like this:

BODY { background-position: top left}

Working with Color

5

This would be equivalent to the percentage values 0% 0%. An example of how this CSS prop-
erty could be used is a right-side navigation bar similar to the left-hand sidebar in the previous
example. Before CSS, this was logistically impossible. An author could attempt to determine
the window size and dynamically load a background, but he or she was then faced with the
daunting task of creating a different image for every possible window width. Using CSS, the
effect can be accomplished by adding one line of code to the previous example:

<HTML>
<STYLE TYPE=”text/css”>
BODY {
background-image: url(bluebox.gif);
background-position: top right;
background-repeat: repeat-y;
background-color: white;
}
P { color: C0C0C0 }
</STYLE>

This code creates a page that is white except for a column of blue flush up against the right side
of the browser window—regardless of monitor resolution or window size (or resizing). It looks
like Figure 5.4.

Using background-
position, you can
create a page that looks
similar on all monitors,
regardless of resolution
or window size.

background-attachment
And now, the moment you’ve all been waiting for: one method for creating watermarks that
will work across all CSS-compatible Web browsers. The background-attachment property tells
the browser whether to let the background scroll along with the page (which is the default) or

Cascading Style Sheets

to keep it fixed relative to the page’s contents. This is commonly known as a watermark. This
effect can be achieved with code like this:

<HTML>
<STYLE TYPE=”text/css”>
BODY {
background-image: url(bluebox.gif);
background-position: 50% 50%;
background-repeat: no-repeat;
background-attachment: fixed;
background-color: white;
}
P { color: C0C0C0 }
</STYLE>

<BODY>
<CENTER>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
<P>I’m really slick.</P>
<P>I can slide over this background!</P>
</BODY>
</HTML>

Figure 5.5 shows an example of how the page would initially load, and Figure 5.6 shows the
page scrolled down (with the background image staying in place).

background
And last of all, of course, comes the shortcut. All the various background properties are acces-
sible via the background property. Instead of listing each specific property separately, as in the
previous examples, a Web page author can dump them all into one large listing, as follows:

BODY { background: url(bluebox.gif) 50% 50% no-repeat fixed white }

Because the various properties each have different acceptable values, they can be listed in any
order. Properties that are omitted receive their default setting.

Working with Color

5

When you use
background-

attachment, the
background image
initially loads just like
any other.

As the page scrolls
down, the background
image stays in place.

Cascading Style Sheets

Here’s a sample of a flip-flopped Web site. The navigation bar is on the right, and the entire
page is flush right as well. Using the background position and repeat properties, the blue back-
ground follows the browser window, even when it is resized. By using a relative width for the
table in the HTML, the “body” of the page can dynamically change width when the browser
window changes size, but the absolute width of the second table cell keeps the white links in
the blue area. I’ll leave the table border on so that you can see the dynamic resizing; two differ-
ent sample window widths are shown in Figures 5.7 and 5.8.

Using the background
properties, you can
accommodate different
window widths.

<HTML>
<STYLE TYPE=”text/css”>
BODY {
background-image: url(bluebox.gif);
background-repeat: repeat-y;
background-position: top right;
background-color: white;
}

This declaration sets up the background as a blue box, which will tile vertically only from the
top right corner, on a white background. Because the position is top right, no matter how the
window is resized, the blue column will follow.

H1{
font-family: arial;
color: red;
}
A {
color: white;

Working with Color

5

font-family: arial;
font-weight: bold;
text-decoration: none;
}
P.regular{
font-family: arial;
}

These declarations determine in which font face and color various elements of the document
will be rendered.
</STYLE>
<BODY>
<table width=85% align=right border>
<tr><td colspan=2 align=center><h1>My Pet Halibut</h1></td></tr>
<tr><td valign=top>
<P class=”regular”>
The best pets are ones that won’t sink if you
accidentally drop them in the toilet. Also, I believe a good fish is like
an old soda pop. You figure it out!
</td><td width=130 align=left>
<P>
Halibut Harry

Dorsal Dave

Piranha Presley

Fish X

</P>
</td></tr>
</table>
</BODY>
</HTML>

Now see what happens when the browser window is resized and made more narrow. The po-
sitioning information is updated dynamically!

A narrow window
width is no obstacle
when you use the
background properties.

Cascading Style Sheets

This is part of the reason cascading style sheets is included in this book on DHTML. It allows
incredible flexibility for authors to make pages look the way they want them to look, and to
keep looking that way, even when something changes on the users’ end. Dynamic updating.
It’s about time.

This chapter demonstrated how to effectively use color to enhance your style sheets. Styling
backgrounds with CSS is as important as using color in headings, paragraphs, and links. The
next chapter focuses on the importance of using different fonts to design pages. Read on.

Text and Fonts with Style

6

by David Wiley

■

■

■

Cascading Style Sheets

As long as designers have been working on the Web, they have been clamoring for the ability
to control the fonts in which their designs are ultimately rendered by the end user’s client. At
first, they had no choice at all, because early Web browsers rendered text in whatever font the
telnet client or terminal emulator was set to use, and even this setting was unmodifiable by the
user for a long time.

Then came a new generation of Web browsers, which exposed all the fonts installed on the
user’s system and made them available for use. But they were still inaccessible to the designer;
the user chose which font to use for surfing the Web.

Finally, a new HTML tag, , was introduced, which was to solve all designers’ problems.
Unfortunately, it didn’t. Here are a few of the problems:

■ Even though Web designers can define which font face they want the user’s browser
to display, they cannot control which fonts are installed on the user’s system.

■ Even if a designer chooses a font generic enough to be installed on most systems, the
user can still set the browser to override the document’s background and text color
and/or font settings.

■ Because the user can override either fonts or background and text colors, the chance
exists that whichever element is overridden will have the same color value as that
which is not; for example, the user could override the background color, setting it to
white, only to find that the is set to white, causing text to be transparent
or invisible.

■ Although the user can override the background and text color and font settings, he or
she cannot override the tag itself. This can lead to situations
in which the user keeps his or her specified background color only to have the tag set to the text to the same color.

The most basic of these problems is the way in which Web page designers are forced to at-
tempt to “guess” which fonts end viewers will have installed on their systems. If a designer doesn’t
guess carefully, the text of the page he or she has designed will be rendered in Times New Ro-
man or whatever font the user has set his or her browser to default to. CSS attempts to take the
guesswork out of using fonts by doing the following:

■ Applying an algorithm that makes judgments based on font properties to use the
closest font possible when the requested font is not available.

■ Providing a way for designers to name not only specific fonts in their pages, but also
generic families of fonts (sans-serif, for example) from which the Web browser will
find the closest match on the user’s system.

Text and Fonts with Style

6The browser is able to make these judgments because CSS-compatible Web browsers keep a
database of known fonts and their properties which it checks against. CSS defines five font-
specific properties that can be set: font-family, font-style, font-variant, font-weight, and
font-size.

font-family
The font-family property allows the Web page designer to designate which font family will be
used. Specific font names can be designated (such as Arial) for display of text associated with
the given selector, like this:

P.plain { font-family: Arial }

Font names that include spaces are given in quotes, like this:

P.fancy { font-family: “Times New Roman” }

The value assigned the font-family property can, like the tag, be a list of possible font
faces, which the browser will attempt to locate and use in the order they are listed.

P.obscure { font-family: “Out There”, Techie, “Really Cool Font” }

Generic font family names can also be given as values for the font-family property. CSS de-
fines the following generic font families:

■ serif (for example, Times)

■ sans-serif (for example, Helvetica)

■ cursive (for example, Zapf-Chauncery)

■ fantasy (for example, Western)

■ monospace (for example, Courier)

Although declaring a generic font family does not give the Web page designer as much control
over the appearance of the page as the specific family name does, using a generic font family as
the final list entry can help make the best out of a bad situation in which the user has none of
the specific fonts you planned for.

P.lastditch { font-family: Arial, “Times New Roman”, serif }

Cascading Style Sheets

font-style
For you hard-core font fans out there, font-style differentiates between normal, italic, and
oblique font faces. CSS-compatible Web browsers check for the given value in their font data-
bases in order to decide which version of the font face to display. normal will only display the
normal version of the font, oblique will only display the oblique version of the font, and italic
will display the italic version or the oblique version when the italic one is unavailable. For ex-
ample, the following code would be rendered as shown in Figure 6.1:

<HTML>
<STYLE TYPE=”text/css”>
H1 { font-style: italic }
P { font-style: normal }
B { font-style: italic }
</STYLE>
<BODY>
<H1> Salon of Style</H1>
<P>
Some of the characters that hang out here have a pretty drab and awful outlook on
life. Others view it from a different slant.
</BODY>
</HTML>

Using font-style, you
can differentiate among
normal, italic, and
oblique font faces.

font-variant
The font-variant property refers to the small-caps variant of the font face. small-caps refers
to fonts that have lowercase letters replaced by uppercase ones. These letters occur in slightly
different proportions than the true uppercase letters in the small-caps variant. If no true small-
caps version of the font is available, CSS-compatible browsers can replace lowercase letters with

Text and Fonts with Style

6scaled-down versions of the uppercase letters. For example, the following code would look like
Figure 6.2:

<html>
<STYLE TYPE=”text/css”>
.boohiss { font-variant: small-caps }
</STYLE>
<BODY>
<H1> Caution: Do Not Read</H1>
Did you hear about the font-variant who sponsored a fund raising drive?
It had a successful Capital Campaign.
</BODY>
</HTML>

Using font-variant,
you can make small
caps.

font-weight
CSS defines a new, sensible way of approaching the weight of fonts using the font-weight prop-
erty. Because font names often include the words bold, dark, heavy, and so on, it is difficult to
use these words to objectively describe font weight. Therefore, CSS uses a numeric scale of
multiples of 100 ranging from 100 to 900. Within the scale, 400 is equivalent to “normal”
font weight, and 700 is equivalent to “bold.”

CSS defines a few keywords for use with the font-weight property: lighter, bolder, normal,
and bold. lighter and bolder will select the next closest version of the font available—that is,
if the font has only a normal and a bold version, the keyword bolder will display the bold ver-
sion of the font when in a normal font context. It will continue to display the bold version of

Cascading Style Sheets

the font when already in the bold font context, because there is no “bolder” version available,
as demonstrated in the following example and Figure 6.3:

<HTML>
<STYLE TYPE=”text/css”>
.dark {font-weight: bolder }
</STYLE>
<BODY>
<H1>Science</H1>
<P> Stars are large balls of glowing gass. You should avoid looking directly into
the sun because it is so bright. The sun isn’t completely lit up, however. It has
<DIV CLASS=”dark”>spots</DIV>
</P>.
</BODY>
</HTML>

Using font-weight,
you can make text look
bold.

font-size
If you haven’t guessed yet, the font-size property controls the size of the fonts displayed. Val-
ues are of four possible types: absolute size, relative size, percentage, and length.

CSS defines seven keywords as valid absolute size values: xx-small, x-small, small, medium, large,
x-large, and xx-large. Although they may be of different sizes in different browsers, the fol-
lowing relationship will always exist between the sizes:

xx-small <= x-small <= small <= medium <= large <= x-large <= xx-large

The following example demonstrates some of these sizes, and the final product is shown in
Figure 6.4:

Text and Fonts with Style

6<HTML>
<STYLE TYPE=”text/css”>
H1 { font-size: xx-large }
P { font-size: medium }
.legalstuff { font-size: xx-small }
</STYLE>
<BODY>
<H1>Eye Exam</H1>
<P>HTMLCSS1XML</P>
<P CLASS=”legalstuff”>insertotheracronymshere</P>
</BODY>
</HTML>

Using font-size, you
can change the relative
size of fonts, regardless
of browser size.

Relative size is also quite simple. There are only two valid values for relative size: larger and
smaller. Size is determined using a comparison of the parent element or current context. The
following example shows how this contextual usage works and is pictured in Figure 6.5:

<HTML>
<STYLE TYPE=”text/css”>
P { font-size: medium }
B { font-size: larger }
I { font-size: larger }
</STYLE>
<BODY>
<P> Once upon a time there were three font styles. A baby style,
<I>a mommy style, and
a daddy style</I>. Even though they felt outraged at the way their sizes had
been stereotyped, they managed to live happily ever after.</P>
</BODY>
</HTML>

Cascading Style Sheets

larger smaller

larger=150%. larger smaller

larger=135%.

Percentage values work in a very intuitive way: Values such as 50% and 210% are valid. Length
values (such as pt, px, em, and ex) are also valid methods for specifying font size.

em ex

font-size em ex

font
As with every other category of properties that has several subproperties, the various font prop-
erties can all be accessed using the font shortcut property. Because each of the valid values are
distinct, they can be included without explicit reference to whichever of the several font prop-
erties you are setting. For example:

You can also change the
size of the font relative
to the previous font
using the keywords
larger and smaller.

Text and Fonts with Style

6P { font: larger italic small-caps Arial }
B { font: bold 138% }
I { font: x-small italic lighter Curly }

Aside from the myriad wonderful things CSS can do with fonts, there is an entirely separate
group of properties that deal with text and are independent of the font involved. These include
issues of leading and spacing. Although CSS defines the properties that follow, it also allows a
browser to call itself CSS1 compliant while ignoring some of these properties. Often those that
can be ignored are, so some of this functionality is available in neither of the current versions
of Navigator or Internet Explorer.

word-spacing
The word-spacing property allows a Web page designer to control the amount of space be-
tween words on a page. Acceptable values for word-spacing are lengths given in pt, px, em, and
normal. If a length value is given, the browser will increase the current space between words by
the given amount (unless the value is negative, in which case it will decrease the space by the given
amount). The official CSS1 specification states that browsers can render any word-spacing value
as normal (that is, they can ignore the command).

H1 { word-spacing: 2em }

word-spacing

normal

letter-spacing
letter-spacing controls the amount of space that the browser inserts between letters as it ren-
ders them on the page. It works in a manner similar to word-spacing in that it accepts the three
length units and normal as values and adds (or subtracts, in the case of negative values) the given
length unit to the current spacing context. The CSS specification also allows browsers to ren-
der any letter-spacing value as normal. The following code and Figure 6.6 show how this is
rendered by Internet Explorer:

<HTML>
<STYLE TYPE=”text/css”>
P.loose { letter-spacing: 5pt}
</STYLE>
<BODY>
<P>Before exercising, it’s a good idea to </P>
warm up</P>
</BODY>
</HTML>

Cascading Style Sheets

letter-spacing normal

text-decoration
Have you guessed yet? The text-decoration property adds or removes decoration to the text
on a Web page. The decorations supported by CSS are underline, overline, line-through,
and (for some reason) blink. Obviously, when decoration is added, it must be rendered with a
color (or it will “appear invisible”), so the value of the color property is used as the text-deco-
ration color. By a stroke of genius, the authors of the CSS1 specification have determined that
browsers can “ignore” the blink decoration as well. The following code and Figure 6.7 dem-
onstrate this functionality:

<HTML>
<STYLE TYPE=”text/css”>
.inky { text-decoration: underline }
.blinky { text-decoration: blink }
.pinky { text-decoration: overline }
.clyde { text-decoration: line-through }
</STYLE>
<H1>Effects</H1>
<BODY>
<P CLASS =”inky”>Underlined Text </P>
<P CLASS =”blinky”>Blinking Text </P>
<P CLASS =”pinky”>Overlined Text </P>
<P CLASS =”clyde”>Line-through Text </P>
</BODY>
</HTML>

You can use letter-
spacing to control the
amount of space
between letters.

Text and Fonts with Style

6

overline

blink

vertical-align
The vertical-align property wins the award for the CSS property with the greatest number
of possible keyword values. vertical-align controls the way inline elements are placed in re-
lation to other elements.

The list of nine keywords can be split up into two lists: keywords that align relative to the par-
ent element, and keywords that align relative to the line which the inline element is in.

The following keywords align relative to the parent:

■ baseline—Aligns the baseline of the element with the baseline of the parent

■ middle—Aligns the vertical middle of the element with the vertical middle of the
parent

■ sub—Puts the element in subscript

■ super—Puts the element in superscript

■ text-top—Aligns the element’s top with the top of the parent

■ text-bottom—Aligns the element’s bottom with the bottom of the parent

You can use text-
decoration to create
different effects for your
text.

Cascading Style Sheets

The following keywords are relative to the line:

■ top—Aligns the top of the element with the top of the tallest element in the line

■ bottom—Aligns the bottom of the element with the top of the lowest element in
the line

vertical-align will also take a percentage value, either positive or negative. The percentage
listed moves the element’s baseline either that proportion above or, in the case of negative val-
ues, below the parent’s baseline. For example, a value of 100% will place the element on the
baseline of the previous line. The following code and Figure 6.8 show examples of some of
these properties:

<HTML>
<STYLE TYPE=”text/css”>
.kita { vertical-align: super }
.minami { vertical-align: sub }
.manaka { vertical-align: middle }
</STYLE>
<BODY>
<P>

I’m above petty things like surfing.
I’m surf on occasion.

I have sunk into a quagmire of internet addiction!

I’m the monkey in the middle.
</P>
</BODY>
</HTML>

vertical-align allows
you to change
alignment of text
relative to the parent
element or the line.

Text and Fonts with Style

6text-transform
The text-transform property allows Web page designers to transform the case of text on-the-
fly. In other words, it can be used to convert to and from all uppercase (not to be confused
with the font-variant value small-caps), all lowercase, or the capitalizing of the first letter
of each word in the element. Valid values for text-transform are capitalize, uppercase,
lowercase, and none. The following example and Figure 6.9 show some of these properties in
action:

<HTML>
<STYLE TYPE=”text/css”>
P.ue { text-transform: uppercase }
P.shita { text-transform: lowercase }
P.dake { text-transform: capitalize }
</STYLE>
<BODY>
<P CLASS=”ue”>Look at me, I’m tall!</P>
<P CLASS=”shita”>Look at me, I’m short!</P>
<P CLASS=”dake”>Look at me, I’m an up-front kind of sentence!</P>
</BODY>
</HTML>

You can use text-
transform to change
capitalization of text
on-the-fly.

text-align
text-align is another of the “extremely intuitive” properties. Using this property, text can be
aligned to the left, right, center, or even justified. Unfortunately, the CSS specification states
that browsers can treat the value justify as either left or right (depending on which way the
language runs by default), and both Navigator 4 and IE4 do treat it that way—that is, they
both ignore the justify value.

Cascading Style Sheets

text-indent
What can I say? The text-indent property controls the length of the indentation before the
first character of the first line. Acceptable values are lengths and percentages, as follows:

P { text-indent: 3em }
P.half {text-indent: 50% }

line-height
The line-height property controls the amount of space between the baselines of two adjacent
lines. Three different value types are accepted: numeric, length, and percentage values. Nu-
meric values are multiplied by the size of the current element’s font to produce the distance;
length values give the length between the lines explicitly; and percentage values are multiplied
by the parent element’s font size to determine the distance.

The following cumulative example combines some of the font and text techniques discussed in
this chapter. Figure 6.10 shows the finished product.

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>

H1 {
background-color: blue;
color: white;
font-size: 30pt;
font-family: arial;
text-transform: uppercase;
text-align: right;
}

Text and Fonts with Style

6I {
font-style: italic;
text-transform: capitalize;
}

P {
text-indent: 2.5em;
font-size: 12pt;
font-family: tahoma;
}

BLOCKQUOTE {
letter-spacing: 0.2em;
font-size: 10pt;
font-family: arial;
}

</STYLE>
</HEAD>
<BODY>

<H1>The Story</H1>

<P>
It was a dark and stormy night. Channel 28
was showing <I>bill’s gang</I> reruns again, channel
4 was <I>wide world of llamas</I>, and the
other channels had been unavailable since just
before 7:00. Tom brushed aside the torn paperback
copy of Edith Hamilton’s <I>mythology</I> and
found the remote control. As he turned up the volume, he
distinctly heard the announcer say,</P>
<BLOCKQUOTE>
Llamas have long necks, fins for swimming and a beak for eating honey.
If you see llamas where people are swimming, shout out “Look out,
there are llamas!”
</BLOCKQUOTE>
<P>
The announcer then rattled off something that sounded like Spanish,
which Tom figured must be a translation of whatever he said about llamas.
Tom confusedly put the remote down, and lankily
lumbered off in search of Ethel, thinking she should
have returned from her surveying trip over an hour
ago.
</P>

</BODY>
</HTML>

Cascading Style Sheets

You can use many
different text and font
properties to achieve the
effects you want.

As you can see, cascading style sheets give designers a previously unavailable amount of flex-
ibility and power to treat the text and fonts in their Web pages in almost any manner they
desire. This expanded ability to manipulate the “wordy” part of Web pages brings us that much
closer to being able to truly do whatever we want on our pages.

Formatting and Positioning

7
by David Wiley

■

■

■

Cascading Style Sheets

For years now, Web page designers have been clamoring for a universal method of controlling
exactly where the elements they place on the canvas are displayed. Of course, there have been
ways to assuage this desire for control: borderless tables tricks, the infamous single-pixel gif
trick, and creating large background images with precisely placed elements, just to name a few.
Now that support (in browsers as well as the HTML community at large) for CSS is becoming
widespread, Web developers can comfortably rely on CSS to solve their page-layout woes.

Part of the problem that has given Web designers such grief is the way different browsers handle
margins. For example, look at the screen captures of a square graphic in Netscape 4 (see Figure
7.1) and Internet Explorer 4 (see Figure 7.2) windows.

Notice the top and left
margins of a square
graphic in Netscape.

Netscape Communicator gives the document a default margin of 8 pixels on the top and the
left, and Internet Explorer defaults to a margin 10 pixels wide on the left and 15 pixels down
from the top. These may seem like minor details—what difference do a few pixels make? But
many designers have worked long and hard to get foreground and background images to work
together exactly as illustrated in Figure 7.3, only to find that the way the “finished product”
looked on another browser was similar to what is shown in Figure 7.4. The image is pushed
out of alignment by different margin defaults.

Formatting and Positioning

7

Again, notice the top
and left margins of a
square graphic in
Internet Explorer.

Designers work long
and hard to get
foreground and
background images such
as these to align.

Cascading Style Sheets

Another benefit of positioning elements absolutely on the canvas is that position information
is exposed to scripting. This means that elements originally rendered in a certain position on
the canvas can be moved dynamically through scripting.

An understanding of how HTML elements can be positioned using CSS begins with an un-
derstanding of the CSS formatting model: CSS renders each element within a rectangular box.
Each box is made up of the content region and (optionally) its padding, borders, and margins.
Of course, the size and other properties of the padding, borders, and margins can be set by
CSS properties that bear the same names. Figure 7.5 demonstrates the relationships among
them.

There are several types of elements to consider in this discussion of formatting, including block-
level elements, inline elements, and replaced elements. Block-level elements are those whose
display value is block or list item, such as <P>, , and . Inline elements are those that

On a different browser,
the image may be out of
alignment.

Formatting and Positioning

7

occur within the line of text, such as <BLINK> or . Finally, replaced elements are those tags
that are replaced by some other content, such as the tag, which is replaced with the im-
age indicated in the src= declaration.

The location of the
padding, borders, and
margins—and their
spatial relationships.

Block-level elements are formatted as if they were large blocks, hence the name. Here’s the nitty-
gritty on how to format them.

List-item
The way in which list items are displayed on the screen can be controlled to some degree with
the CSS property list-style. The two valid values for list-style are outside, which is the
default way in which list items are displayed, and inside. Here’s an example:

<html>
<head>
<style type=”text/css”>
UL.normal {list-style: outside};
UL.flush {list-style: inside};
</style>
</head>
<body>
<table width=150>
<tr><td>
Sometimes you want your text to appear next to the bullet
<UL class=”normal”>
with your bulleted text indenting as it wraps

Cascading Style Sheets

and other times,
<ul class=”flush”>
you may want the bulleted text to wrap as if it were normal text.

</td></tr>
</table>
</body>
</html>

This code would be rendered as shown in Figure 7.6.

Two different list styles.

As long as HTML has allowed the inclusion of images, Web page designers have been forced
to rely on the align property when attempting to include them in the body of Web pages that
also contain text. Even though it works well enough, align isn’t really the proper term, and the
functionality is rudimentary at best. The float property of CSS is a sensible, function-filled
answer to this dilemma.

Using float, designers can push HTML elements to one side or the other and be assured that
their padding, borders, and margins will stay intact. Unlike the padding, margins, and borders
of other block-level elements, the surrounding space of elements that are floating is not col-
lapsed. (See the note in the section “The CSS Formatting Model” on vertical formatting.) This
unlocks some very powerful tools for designers, such as being able to float images (or other
block-level elements) with negative margins. The following is an example of an image aligned
left, and another floated left, taking advantage of the negative margin. Figure 7.7 shows the
left-aligned image whereas Figure 7.8 shows a floating image.

Formatting and Positioning

7

<html>
<body>

s long as I can remember, web pages have stood on a very
controversial side of the educational fence when it came
to images. Web pages had an unbending policy of total inclusion.
If you wanted to include an image on a page, it was all or nothing.
I appreciate this new flexibilty afforded me by <code>CSS1</code> and the
<code>float</code> to keep images on the page part of the time,
and off the page part of the time, and to be able to
partially include images whenever I want.

</body>
</html>

An image placed using
the align property of
HTML.

<html>
<body>

s long as I can remember, web pages have stood on a very
controversial side of the educational fence when it came
to images. Web pages had an unbending policy of total inclusion.
If you wanted to include an image on a page, it was all or nothing.
I appreciate this new flexibilty afforded me by <code>CSS1</code> and the
<code>float</code> to keep images on the page part of the time,
and off the page part of the time, and to be able to
partially include images whenever I want.

</body>
</html>

Cascading Style Sheets

Replaced elements have a height inherent in the content replacing the HTML. If the width
and height properties are left to auto (the default), the element (image, for example) will be
rendered as is. If either a width or height is specified in the style information, the Web browser
will automatically resize the element to fill the space called for by the style sheet, with varying
degrees of success in terms of the quality of the result.

Because widths and heights are changeable for all HTML elements, it is possible to restrict the
dimensions of the BODY of a hypertext document using CSS. Because this is true, background
information that is declared for an entire document could show through if the BODY of the
document does not cover all the space rendered by the browser window. Using code like the
following would create the potential for visitors to see something very different from what they
are accustomed to—basically, two backgrounds:

<HTML STYLE=”background: url(http://www.davidwiley.com/style/multi.gif)”>
<BODY STYLE=”background: green”>

The boxes in which CSS renders all HTML elements have several properties that are mentioned
previously—namely margins, padding, and borders. Each of the elements is accessible on a per-
side basis (for example, margin-left, padding-bottom) so that the element’s surroundings can
be controlled exactly. Of course, all four sides can be manipulated at once, as well.

An image placed using
the float and margin
properties of CSS.

Formatting and Positioning

7

The individual margin properties are named margin-top, margin-right, margin-bottom, and
margin-left. These all default to a value of 0 and will accept either absolute or percentage val-
ues as arguments. Margin values can also be negative. The ability to set the margin for each of
the four sides of an object individually is extremely useful, but it should be remembered that
vertical margins will be collapsed as mentioned in the note in the section “The CSS Format-
ting Model.” All four margins can be accessed at once by using the “margin” property, like
this:

H1 {margin: 7%}

If you can remember that the naming begins at the top and continues clockwise (that is,
margin-top, margin-right, margin-bottom, margin-left), you can set individual margin sizes
using the margin property as follows:

IMG {margin: 5em 2em 7em 1em}

This is equivalent to the following:

IMG {
Margin-top: 5em;
Margin-right: 2em;
Margin-bottom: 7em;
Margin-left: 1em;
}

If you declare margin widths this way and include two or three values, the widths for the sides
that have been omitted will be obtained from the opposite side. For example, the following
code explicitly sets the margin size for the top and right sides, so the browser will assume the
bottom and left values based on the top and right ones:

IMG { margin: 5em 2em }

So, this declaration is equivalent to the following:

IMG {margin: 5em 2em 5em 2em }

or

IMG {
Margin-top: 5em;
Margin-right: 2em;
Margin-bottom: 5em;
Margin-left: 2em;
}

Padding and border share naming conventions in that the four sides are named beginning at
the top and moving clockwise around the box: padding-top, padding-right, padding-bottom,

Cascading Style Sheets

and padding-left. The properties can be set individually or in a group using the padding property
(the same way the margin property could be set), like this:

P { padding: 3px 4px 6px 2px }

This is equivalent to the following:

P {
padding-top: 3px;
padding-right: 4px;
padding-bottom: 6px;
padding-left: 2px;
}

Omitted padding size values are assumed in the same way that omitted border size values are.
The main difference between borders and padding is that padding values cannot be negative.

Because the border property has more values than just width, it differs slightly from margins
and padding. Borders have three values that can be set—width, color, and style—and there are
individual property names that correspond appropriately. Brief descriptions follow:

■ Border-width—Border width can be set for each side individually by a naming scheme
that should be familiar: border-top-width, border-right-width, border-bottom-width,
and border-left-width. The possible values for border width are thin, medium, thick,
and none. Although they could be rendered different widths by different browsers, it
will always be true that thin <= medium <= thick. All four border widths can be set
with the border-width property using this syntax:

UL {border-width: medium}

Values for individual sides can be assigned using the border-width property just as
they could for margin and padding, and omitted values are assumed based on opposite
side values in the same way they are assumed for margins and padding. So, the
following code:

UL {border-width: thick thin medium }

is equivalent to

UL {border-width: thick thin medium thin }

■ Border-color—Determines the color in which the border will be rendered. If no
specific color is declared for the border, it will assume the color of the element it
surrounds. For example, the following code will create a black border around the
paragraph:
P {
color: black;
background-color: red;
border-width: thin;
}

Formatting and Positioning

7

■ Border-style—Just as the name implies, border-style dictates the appearance of the
border. Valid values are none, dotted, dashed, solid, double, groove, ridge, inset, and
outset. The 3D effects used in groove, ridge, inset, and outset are based on the
color of the border. And although this multiplicity of border types is fun, browsers
could display all of the different types as simply solid and still meet CSS1 specifications.

■ Borders all at once—All three of a border side’s values (width, style, and color) can
be set at once using the following properties: border-top, border-right, border-
bottom, and border-left. The value information should be stated in the order width,
style, and color, like this:

P {border-top: medium solid purple}

By using the border property, all four border-top properties, for example, can be set in
one fell swoop. Note the following code:

P {border: thin dotted green}

is equivalent to
P {
border-top: thin dotted green
border-right: thin dotted green
border-bottom: thin dotted green
border-left: thin dotted green
}

Although the width and height properties can be set for text elements, they are more com-
monly used on replaced elements such as images. The properties default to values of auto but
will take absolute and percentage values as well. If only one value is set (and the other is left to
auto) and scaling occurs, the replaced element’s aspect ratio will be preserved. Negative values
are not valid for the width and height properties. The following code shows width and height
properties:

IMG {
width: 250px;
height: 200px;
}

As mentioned in the section “Floating Elements,” the float property provides functionality
similar to that of the align property in HTML. It can be applied to text elements but, like
width and height, is more often used with replaced elements. When an element is floated, it
moves to the left or right of its parent element until the outside edge of its box meets the inside
edge of its parent’s box. Valid values are left, right, and none.

IMG {
float: left;
margin: 0;

Cascading Style Sheets

padding: 0;
border: none;
}

This would float an image left until it met the inside edge of its parent element (a paragraph,
for example). When elements are floated, text and other elements wrap around them on the
page, as shown in the example in the “Floating Elements” section. This is similar to setting
align=left inside an HTML tag.

The clear property determines whether the element to which it applies allows other elements
to float beside it. By setting clear to left, the element will be pushed beneath any elements
floating on its left. Valid values are right, left, none, (floating objects are allowed on both
sides) and both (floating objects are not allowed on either side). The syntax looks like this:

P { clear: both }

Although the proposal to extend CSS to include the absolute positioning of HTML elements
using properties such as top and left is still in an intermediate draft state, positive and nega-
tive margin values can be used to create some of the same positioning effects. When attempt-
ing to achieve positioning in this way, you should remember that z-ordering is accomplished
based on a “last tag on top” principle. In other words, elements that appear later in the HTML
of a page will be rendered “above” those that appear earlier. For example, a simple drop shadow
effect could be achieved with code that looks like this:

<html>
<style type=”text/css”>

H1 {
font-size: 50pt;
font-family: arial;
}

.shadow {
color: black;
margin-top: 50;
margin-left: 50;
background-color: white;
}

.front {
color: red;
margin-top: -90;
margin-left: 52;
}
</style>

<body bgcolor=”#000000">

Formatting and Positioning

7

<h1 class=shadow> Drop Shadow</h1>
<h1 class=front> Drop Shadow</h1>

</body>
</html>

The final result looks like what is shown in Figure 7.9.

The drop shadow effect.

And, for a more complicated example, the following code and Figure 7.10 show a splash page
done entirely in CSS and HTML.

<html>
<style type=”text/css”>

P {
color: white;
font-size: 80pt;
font-family: tahoma;
}

P.first {
background-color: red;
margin-top: -50;
margin-left: 50;
width: 150px;
float: left;
}

.second {
background-color: green;
margin-top: 65;

Cascading Style Sheets

margin-left: 175;
width: 150px;
float: left;
}

.third {
background-color: blue;
margin-top: -50;
margin-left: 270;
width: 150px;
float: left;
}

.fourth {
background-color: orange;
margin-top: 100;
margin-left: 400;
width: 150px;
float: left;
}

.byline {
color: blue;
font-style: italic;
font-size: 14pt;
margin-top: 155;
margin-left: 83;
float: left;
}

</style>

<body bgcolor=”#FFFFFF”>

<P class=”fourth”> S </P>
<P class=”third”> W </P>
<P class=”second”> E </P>
<P class=”first”> N </P>
<P class=”byline”>A l l t h e
n e w s t h a t ‘ s
 f i t t o p r i n t</P>

</body>
</html>

Formatting and Positioning

7

A splash page done
entirely in CSS and
HTML.

Even though the CSS1 specification is still in a draft state, and support for CSS1 in various
browsers leaves a lot to be desired, it is one of the most exciting parts of the cascading style
sheets. It empowers Web page authors to make things move around on the page, without cre-
ating huge, bandwidth-hogging, animated gifs. Stay tuned to the W3 Web site at http://
www.w3.org/ for the official version of this document, and check the DHTML Web site at http:
//www.htmlguru.com for “breaking coverage.”

Cascading Style Sheets

■

■

■

■

■

■

Scripting Overview

8

by Ryan Peters

■

■

■

Scripting

This chapter is for those who haven’t followed each and every development in the world of
scripting and for those who want to make sure they have all the basics covered before advanc-
ing to the next round. You’ll be able to amaze friends and family after learning and under-
standing these tidbits of information. You’ll also be able to develop for more than one type of
client by taking advantage of multiple scripting languages within one page. Although the ex-
amples in this chapter are simple, they provide a fast and easy way to build that foundation for
the advanced topics and at the same time look at some simple ways to script your Web pages.
In this chapter, you’ll learn the following:

■ Scripting basics

■ Different scripting standards and the browsers they work with

■ Scripting different languages and browsers on the same page

Scripting is not a new technology. Various types of scripting have existed for years, in a wide
range of applications. One of the most important things to remember about scripting languages
versus more mainstream programming environments: Scripts function within applications. One
of the most popular tools on the Internet is the Web browser, an application that lets users
access information rich in multimedia content. Now that these browsers are script enabled,
scripts have come to play a pivotal role in the evolution of the Web.

Before the release of Netscape 2.0 in 1995, making the Internet interact with your average Web
users required complex CGI scripting, more power on your server, and a knack for offbeat
programming languages. Until Netscape 2.0, Web browsers did little more than show off static
HTML pages, handle form input, and leave the growing online community thirsting for more.
For the bulk of the content on the Web, the highest level of interaction was a graphical hit
counter and possibly a noise or two.

Around this same time in 1995, Sun Microsystems was preparing the public release of its Java
programming language, promising cross-platform network applications and a level of flexibil-
ity hitherto unheard of among the Web surfing minions. With little fanfare, a small startup
company in Palo Alto, California, Netscape Communications Corporation, began developing
Navigator 2.0. Buried within this release was the capability to include program scripts within
regular Web pages. You no longer needed to purchase special editors or high-dollar compilers;
the developer just included some extra text in the HTML source for a page, nested between
special tags (<script> and </script>) that told this new browser “execute this script when
loaded.”

Breaking the chains of the standard “Hello World” example, try putting the Alert Box script
shown in Listing 8.1 in one of your Web pages. It represents one of the most basic scripts avail-
able and serves as a doubly annoying reminder that before Dynamic HTML (DHMTL), some
scripts were pretty much unnecessary baggage.

Scripting Overview

8

<html>
<head>
<title>A Script!</title>
</head>
<script>
<!-- hide from old browsers --//

 //This line pops up a message box and
 //serves as a frightening reminder of
 //just how far we’ve come.
 alert(‘My First Script!’);

 //changes the status bar in your Web
 //browser from the old “document done.” To
 //a more personal note.
 window.status = (‘My First Page With a Script!’);

//-- end hiding -->
</script>
<body>
<h1>Got It?</h1>
</body>
</html>

LiveScript, as it was called back then, showed great promise. With it, developers could access,
question, and even control certain aspects of the client’s view of their creation. No more guess-
ing about whether a form had the right type of data filled in or wondering what type of browser
the user was running. From dynamic color changes to form validation, this new method of
enhancing Web pages made for some pretty cool pages. JavaScript rapidly gained mainstream
acceptance, partially because of the tremendous technological leaps made with Netscape Navi-
gator 2.0 and also because it gave the capability to create interaction with the user to everyday
people, not just system administrators. Simple applications like loan calculators no longer re-
quired executables stored on the server. What first started with often annoying scrolling mes-
sages and pop-up alerts (“Welcome to John’s Page!”) evolved into useful functionality. Forms
were checked before even touching the server, documents were adjusted based on the client,
and the Web became, well, simply cooler.

Advanced Web content, once a no-man’s land of professionals requiring knowledge of CGI
programming, was now open to everyone. These scripts required no formal training, were rela-
tively simple to implement, and were quite a bit more informal than traditional languages.
Novices found it simple to pick up the basics of the language and were quick to try the latest
and greatest in development.

The new Netscape browser made it easy to add interactive elements to a Web page. By enclos-
ing a script between the <script> and </script> tags, the developer’s creation is executed by
the client’s browser, not the server, which makes for a faster ride to the Web user, as certain
functionality was offloaded from the server to the client.

Scripting

Fast forward two years. Sure, there’s still the occasional tacky script hidden on an unknowing
user’s Web page, but things have moved forward at a tremendous pace. Scripting within Web
pages has moved from an experiment in creativity to an exercise in ingenuity. Fly-over help,
dynamic images, multimedia elements, and interactive pages have redefined the way we use
the Web. 1997 has seen the rise of JavaScript, VBScript, JScript, and even the move for a stan-
dard scripting language with ECMAScript. With the exception of VBScript, these scripting
languages roughly follow the same syntax, object, and event models, based loosely on an
object-oriented, C-like syntax.

At first glance, object-oriented programming (OOP) can be an absolute nightmare to those
more familiar with the straightforward syntax of common Internet languages like Perl. It helps
to follow an easy-to-understand analogy when getting started, so I’ll use this book.

This book is an object. If you were to program using that object, understand that the book
object has what you call properties, events, and methods. Properties are things that describe the
book, and methods are things you do to or with the book. In OOP you usually access an object’s
properties by using its name, a period, and then the property. So you might use something like
book.title to get this book’s title or book.reader to get your name. Certain properties, like the
book’s title, are marked as read-only, meaning that although you can access their values, you
can’t set them. For example, you really can’t change the book.title, even if you wanted to.
Read-only properties are a necessary evil, because certain things are just what they are. Imagine
if you could change the title for the book; your peers wouldn’t have any idea what you were
talking about when you mentioned it. However, book.reader can change, so not only can you
get a value from that property, you can also set it.

In JavaScript, objects have methods, or actions, that they perform. For example, book.read()
might tell the browser to start reading the book. Some methods accept arguments, or param-
eters that control the action they perform. The book.turnTo() method would accept an argu-
ment of a page number, so running book.turnTo(340) tells the book object to turn to page
number 340.

JavaScript is also an event-driven programming language, meaning that a program’s code is ex-
ecuted when something happens. For the good old book here, you could have the onFinish
event, which would contain program code that’s executed when you’ve finished reading the
book. Following the same rule of thumb, the book might have an onPageTurn event, as well as
an onPurchase event.

Still a bit confused? Take a look at a quick rundown of some hypothetical properties, methods,
and events of this book object in Tables 8.1, 8.2, and 8.3. You can see how each of these cor-
responds to something about this book. Scripting for Web pages acts the same way, with simi-
lar properties, methods, and events for the HTML document.

Scripting Overview

8

Property Value

book.currentpage 125

book.reader (your name here)

book.chapter 8

book.title Dynamic HTML Unleashed

Method Action

book.read() Starts reading the book

book.turnTo(334) Turns the book to page 334

book.dogEar() Folds the corner of the current page

book.highlight() Highlights a quote

Event When

book.onPurchase You buy this book

book.onFinish You finish reading the book

book.onPageTurn When a page is turned

Granted, the book object makes for a pretty simplified example of object-based programming,
but it should give you enough of a foundation to follow along with the scripting concepts used
to create high-impact Web documents with DHTML.

When we talk about being object based, it means looking at elements within an HTML page
as objects, with different properties and methods. Just like the book object had a title prop-
erty that reflects the title of the book, a Web document has a title, usually displayed at the top
of the browser window. This property (window.title) is read-only; you can’t change its value.
Within a Web browser, that window object also has a location property that reflects where the
current document is located, normally a URL. Because this property can be changed, you can
simply assign a new value to the window.location property and make the browser load another
page.

By accepting user input with a form and assigning data from that form to the window.location
property, you can create a very simple means for the user to open another page on the Web.

Scripting

Listing 8.2 shows a simple form that asks for a URL and then redirects based on what the user
entered in a form.

<html>
<head>
<title>Where Do You Wanna Go?</title>
</head>
<script language=”JavaScript”>
<!--// hide the script from older browsers

//this is the ‘jump’ function, that we’ll use to accept input from
//the form, and redirect the user to what the URL they entered
//this function is called with one argument (frm) which is a reference
//to the form that the user filled in.

function jump(frm){
 //the frm object has an element called URL, we’ll use that value
 //for the new location for this window.
 window.location = frm.URL.value;
 }
}

// end hiding -->
</script>
<body bgcolor=”#FFFFFF”>
<center>
<form>
<h2>Where To?</h2>

<input type=”text” name=”URL” value=”” size=35>

<input type=”button” onClick=”jump(this.form)” value=”Jump!”>
</form>
</center>
</body>
</html>

It all boils down to being able to visualize a Web page as an object. Just like any other program-
ming object, scripting enables you to manipulate the Web page. Whether you’re accessing a
document object, a window object, a frame object, an image object, or even the layer object, many
of them can be scripted, controlled, and manipulated to create interactive, dynamic Web pages.

Not all scripting languages are created equal. Although Netscape started the trend with
JavaScript, others soon followed suit and, in some cases, improved on Netscape’s original vi-
sion. Each of these scripting specifications works with a particular browser or set of browsers
and is often incompatible with others.

Scripting Overview

8

Although the browser wars have made for some intense market competition and brought us
some of our most valuable tools and technologies, they have also created confusion because of
the variety of scripting languages available. Understanding these languages and how to work
around different versions is pretty much a prerequisite for any developer looking to develop
some dynamic client-side content.

Netscape’s Communicator 4.0 introduced JavaScript 1.2, the third major revision of Netscape’s
popular client-side scripting language. With each successive release, JavaScript has become more
powerful and flexible. Each version of JavaScript builds on the previous one, extending its
feature set, object model, and extensibility. Navigator 2.0 brought forth JavaScript 1.0, and
Navigator 3.0 saw the rise of JavaScript 1.1. Table 8.4 lists the major changes from the initial
version to version 1.2.

Release Version Major Changes

JavaScript 1.0 Initial Release

JavaScript 1.1 Capability to dynamically change the images within a docu-
ment by accessing properties of that document’s images array

New, simplified array functions

LiveConnect technology, allowing JavaScript, Java, and Plug-
ins to interact

Capability to use external script files

New event handlers (onMouseOut, onAbort, onReset, onError)

JavaScript 1.2 Dynamic HTML functionality with the document.layers array

New events, properties, and methods

Signed scripts for greater security

Event Capturing

JScript is Microsoft’s implementation of JavaScript within its Internet Explorer browser. JScript
versions 1 and 2 are compatible with Netscape’s JavaScript 1.0 and therefore don’t take advan-
tage of the scripting capabilities incorporated into versions 2.0 and later of Netscape’s soft-
ware. The move in the release version of Internet Explorer 4.0 (IE4) is JScript 3.0, which fully
supports the ECMA specification, encompassing JavaScript 1.1. Though not available at this
date, there should be an update for Internet Explorer 3.x that enables support for JScript 3.0.

Scripting

The oddball language of the pack, VBScript is an Internet Explorer–only scripting platform.
Designed as a small subset of Microsoft’s Visual Basic programming language, the idea was to
allow the massive installed base of Visual Basic programmers to get up to speed on Web script-
ing with little or no effort. Where the other languages have quite a few similarities and are even
somewhat compatible with one another, VBScript extends the JavaScript object model and
incorporates some proprietary VB functions in the mix. For example, to display a dialog box to
the user, JavaScript-based languages would use a code similar to that shown in Listing 8.3.

<script language=”JavaScript”>
<!---// hide script

function someFun() {
 var myMsg = ‘Hello There!’;
 alert(myMsg);
}

//--->
</script>

To accomplish a similar box in VBScript, you’d use a code fragment much like that shown in
Listing 8.4. Those programmers familiar with Microsoft Visual Basic should be able to see VB
heritage easily.

<script language=”VBS”>
<!---//

Sub someFun()
 dim myMsg As String
 myMsg = ‘Hello There!’
 MsgBox(myMsg)
End Sub

//--->
</script>

When scripting exclusively for Internet Explorer, possibly on an intranet or a private Web site,
combining VBScript with the power of ActiveX can make for some fairly powerful Web-based
applications. The one downfall of scripting with VBScript is the lack of support for this tech-
nology outside Windows and Macintosh platforms. There is a plug-in available for Netscape
Navigator that allows VBScript and ActiveX technologies to be used within Netscape brows-
ers; but at this time it only works under Netscape 2.0 and 3.0 and requires modification to the
scripts to function correctly under these browsers. For those interested in experimenting with
this technology, the ScriptActive plug-in is available from NCompass Labs for download at
http://www.ncompasslabs.com.

Scripting Overview

8

It was bound to happen eventually. With as many different scripting platforms available to
today’s Web developer, a standard is under development. Based originally on Netscape’s
JavaScript, ECMAScript brings the promise of true cross-browser scripting to the ring. Begin-
ning with the release of IE4, Microsoft has announced support for this specification. Based on
JavaScript, Netscape support is somewhat obvious. It was submitted for adoption as a standard
sometime in the fall of 1996, and as of now, has still not made it to the land of formal specifi-
cations.

For the time being, I suppose it’s best to attack Web page development using whatever lan-
guage you feel most comfortable with. Keeping in mind which browser the bulk of your target
audience uses, you can make logical guesses as to where you should concentrate your efforts.
Some people regularly examine their Web server’s log files to get an idea of what this target
platform is. Things should eventually settle down, and a standard scripting language will arise.
Until then, we have to work around the differences in the various languages and optimize
wherever appropriate.

The wide variety of scripting technologies out there is enough to make even the most coura-
geous developer’s head spin. What if you want or need to include some ultra-cool JavaScript
image-swap routine, or a trick ActiveX control? Unlike HTML, scripting engines don’t skip
over a statement they don’t recognize; they present the user with one or more ugly error boxes.
Nothing deters traffic like errors.

There are ways around this incompatibility issue. As a content developer, you’re regularly faced
with deciding which browser to optimize your site for. In the first perfect model, incoming
users are surfing the Web in two flavors: IE4 and Netscape Navigator 4.0. Let’s say that you
want to link from one page to another but control what the target page is, based on whether
that client is IE4 or Netscape. Using the onClick event, which is accessible in either browser,
you can redirect the person to the appropriate page by explicitly specifying the scripting lan-
guage, as shown in Listing 8.5. This makes the other language pretty much invisible to the
other browser, ensuring that your users get the right page.

<html>
<head>
<title>Doorway</title>
</head>
<script language=”JavaScript1.2">
<!---//
//by specifying ‘JavaScript1.2’ as the scripting
//language, only NS 4.0 and higher “sees” this script.
//the routeMe() function simply changes the current

continues

Scripting

//window’s location to Netscape’s page.
function routeMe() {
 self.location=”http://www.netscape.com/”;
 return false;
 //some people have asked why I use “return false”
 //on this script. Simple... the onClick event is
 //setting netscape up to link to another page. By
 //returning “false”, you’re telling the browser not
 //to follow that link.
}
//--->
</script>
<script language=”VBScript”>
<!---//
//by specifying ‘VBScript’ as the scripting language for
//this block, only MSIE 3.0 and higher “sees” this script.
//again, the routeMe() sub changes the current
//window’s location to Microsoft’s page.
Sub routeMe()
 self.location=”http://www.microsoft.com/”
End Sub
//--->
</script>
<body bgcolor=”#ffffff”>
<center>
<form>
<input type=”button” onClick=”routeMe()” value=”Go Home!”>
</form>
</center>
</body>
</html>

The reason the example shown in Listing 8.5 works is that we specified two completely sepa-
rate scripting languages, designed to work exclusively with either Netscape 4.0 or IE 3.0+. Under
Netscape 3.0 or Netscape 2.0, you get a pretty nasty error, telling you that routeMe() is not
defined. Why? Because Netscape 2 and 3 don’t read the JavaScript 1.2 script language. They
simply bypass the <script> and </script> tags, ignoring everything in between. Specifying the
script’s language is a simple way to ensure that the correct browser interprets your scripts. Table
8.5 shows the current accepted languages and which browsers read them.

Language Supported Browsers

<script language=”JavaScript”> Netscape Navigator 2.0x.

Netscape Navigator 3.0x.

Netscape Navigator 4.0x.

Internet Explorer 3.0x.

AOL v3 for Windows 95.

Scripting Overview

8

<script> (no specified language) Any Netscape or Microsoft browser will
attempt to process a <script> tag with no
specified language.

AOL v3 for Windows 95.

<script language=”JavaScript1.1"> Netscape Navigator 3.0x.

Netscape Navigator 4.0x.

<script language=”JavaScript1.2"> Netscape Navigator 4.0x.

<script language=”VBScript”> Internet Explorer 3.0x.

Internet Explorer 4.0x.

AOL v3 for Windows 95.

<script language=”VBS”> Internet Explorer 3.0x.

Internet Explorer 4.0x.

AOL v3 for Windows 95.

<script language=”JScript”> Internet Explorer 3.0x.

Internet Explorer 4.0x.

AOL v3 for Windows 95.

My personal preference when it comes to scripting for several browsers involves reading the
navigator.userAgent property and doing some quick checks to determine which browser the
user has. To this end, I wrote a function called whichVersion() that returns a different string
value based on the user’s browser, shown in Listing 8.6.

whichVersion()

<script language=”JavaScript”>
<!---//
function whichVersion() {
 var myBrowser = navigator.userAgent;
 if((myBrowser.lastIndexOf(“MSIE”) != -1) &&
 (myBrowser.lastIndexOf(“4.0”) != -1)) return “IE4”
 if((myBrowser.lastIndexOf(“MSIE”) != -1) &&
 (myBrowser.lastIndexOf(“3.0”) != -1)) return “IE3”
 if((myBrowser.lastIndexOf(“2.0”) != -1) return “NS2”
 if((myBrowser.lastIndexOf(“3.0”) != -1) &&
 (myBrowser.lastIndexOf(“MSIE”) == -1)) return “NS3”
 if((myBrowser.lastIndexOf(“4.0”) != -1) &&
 (myBrowser.lastIndexOf(“MSIE”) == -1)) return “NS4”
}
//--->
</script>

Language Supported Browsers

Scripting

Using the whichVersion() function in your scripts is a breeze, provided you already have a handle
on setting up if…else statements. Let’s go back to the VBScript/JavaScript language scripts
from Listing 8.5. Originally, we were just sending the user to either Netscape’s or Microsoft’s
page. By incorporating the whichVersion() function, we can determine what version they’re
running, tell them to upgrade if necessary, and redirect them to the appropriate page, as shown
in Listing 8.7.

<html>
<head>
<title>Doorway</title>
</head>
<script language=”JavaScript”>
<!---//
//first set up a global variable to hold the result returned by
//the whichVersion() function
var b = whichVersion()
//the standard whichVersion function
function whichVersion() {
 var myBrowser = navigator.userAgent;
 if((myBrowser.lastIndexOf(“MSIE”) != -1) &&
 (myBrowser.lastIndexOf(“4.0”) != -1)) return “IE4”
 if((myBrowser.lastIndexOf(“MSIE”) != -1) &&
 (myBrowser.lastIndexOf(“3.0”) != -1)) return “IE3”
 if((myBrowser.lastIndexOf(“2.0”) != -1) return “NS2”
 if((myBrowser.lastIndexOf(“3.0”) != -1) &&
 (myBrowser.lastIndexOf(“MSIE”) == -1)) return “NS3”
 if((myBrowser.lastIndexOf(“4.0”) != -1) &&
 (myBrowser.lastIndexOf(“MSIE”) == -1)) return “NS4”
}
//this version of the routeMe() function changes the current
//window’s location to Netscape’s page.
function routeMe() {
 var exitMsg = ‘’; //a placeholder for the exit message
 var exitURL = ‘’; //a placeholder for the exit URL
 //first check to see if “NS”is in the string b
 //which we assigned the result of whichVersion to
 if (b.lastIndexOf(“NS” != -1)){
 exitURL = “http://www.netscape.com/”;
 } else {
 exitURL = “http://www.microsoft.com/”;
 }
 //now it’s just simple string matching to check the
 //version and assign an exit message to the user
 if (b == “NS3”) { exitMsg = ‘Netscape 3.0? Upgrade to 4.0!’; }
 if (b == “NS2”) { exitMsg = ‘Netscape 2.0? Upgrade to 4.0!’; }
 if (b == “IE3”) { exitMsg = ‘Internet Explorer 3? Try 4.0!’; }
 //one of my favorite tricks. If the exitMsg variable
 //is not blank, then perform some action. In this case
 //it’s to alert the user to a possible upgrade
 if (exitMsg != ‘’) {
 alert(‘An Upgrade Is Available!\n’ + exitMsg);
 }
 self.location = exitURL;
}
//--->

Scripting Overview

8

</script>
<body bgcolor=”#ffffff”>
<center>
<form>
<input type=”button” onClick=”routeMe()” value=”Go Home!”>
</form>
</center>
</body>
</html>

The new routeMe() uses the whichVersion() function in the simplest manner possible—to
perform pattern matching and do mild conditional redirection. There are almost an infinite
number of ways to handle different browsers, and whichVersion() covers most of the main-
stream browsers available today.

On many occasions, you’ll find yourself optimizing a script for a particular browser version.
Probably the most popular use of JavaScript is fly-over image rotation. It’s done using the
onMouseOut event and the document.images array, both of which premiered in Netscape Navi-
gator 3.0. So the question usually is, What’s the easiest way to make sure that other browsers
(Netscape 2.0, Internet Explorer 3.0) don’t blow up all over themselves when the script tries to
execute a function?

Tune down the whichVersion() function! All it does is check for an x.x number in the
navigator.userAgent string and reads into it a bit further to see whether there’s an MSIE hid-
den someplace in there. MSIE is a dead giveaway for a Microsoft Internet Explorer browser,
which will not handle image swapping. So let’s do a quick rewrite of the script and just have it
return 2 for a non-swappable browser and 3 for an image-changing one (see Listing 8.8).

whichVersion()

<script language=”JavaScript”>
<!---//
//returns “2” for a JavaScript 1.0 compliant browser
//or “3” for a JavaScript 1.1 or higher browser
function whichVersion() {
 var myBrowser = navigator.userAgent;
 if(myBrowser.lastIndexOf(“MSIE”) != -1) return “2”;
 if((myBrowser.lastIndexOf(“4.0”) != -1) ||
 (myBrowser.lastIndexOf(“3.0”) != -1)) {
 return “3”;
 } else {
 return “2”;
 }
}
//--->
</script>

That’s it—plain, clean, and simple. Now with any function that uses JavaScript 1.1 specific
language, simply check to see whether a quick call to the new whichVersion() function equals
3. By enclosing any of the potentially incompatible code within an if statement, you can cir-
cumvent code that could cause errors in older or noncapable browsers. This saves the trouble

Scripting

of writing double code or using more in-depth workarounds. Check out the example in List-
ing 8.9, which shows how you can hide this code within a conditional wrapper.

whichVersion()

<script language=”JavaScript”>
<!---//
//returns “2” for a JavaScript 1.0 compliant browser
//or “3” for a JavaScript 1.1 or higher browser
function whichVersion() {
 var myBrowser = navigator.userAgent;
 if(myBrowser.lastIndexOf(“MSIE”) != -1) return “2”;
 if((myBrowser.lastIndexOf(“4.0”) != -1) ||
 (myBrowser.lastIndexOf(“3.0”) != -1)) {
 return “3”;
 } else {
 return “2”;
 }
}

function someFunction() {
 //wrap this function in a conditional whichVersion()
 if (whichVersion() == “3”) {

 //JavaScript 1.1 specific code goes here....

 }

 //JavaScript 1.0 compatible code goes here....

}
//--->
</script>

By using functions that detect which browser the user is viewing your page with, you can en-
able or disable certain functions that could cause other browsers to generate a script error. Writing
“smart” scripts allows you to take advantage of certain capabilities while maintaining some
compatibility with older or incompatible browsers. In a perfect world or closed network, you
can mandate which technology to optimize your pages for, but the nature of the Internet lends
itself to diversity. Being prepared to write scripts that take advantage of that diversity sets the
novices apart from the serious players.

I’ve only scratched the surface of Web scripting. With so many choices and uses when it comes
to scripting Web pages, it’s no wonder there are entire volumes dedicated to each specification.
Whether your particular favorite flavor is VBScript, JavaScript, or ECMAScript, rest assured
that DHTML and scripting go hand-in-hand for some powerful results. Throughout the rest
of this book, you’ll see how adding scripts to DHTML-enhanced Web pages can produce
phenomenal results. So, buckle up and get ready for the ride…

Using JavaScript with Dynamic HTML

9

by Arman Danesh

■

■

■

■

Scripting

Dynamic HTML wouldn’t be all that dynamic if it simply provided ways to define styles, choose
fonts, and position page elements. What makes it dynamic is the ability—in both Netscape
Communicator and Microsoft Internet Explorer 4—to programmatically manipulate all these
fancy new features using scripts.

This is where you can move layers around, hide and display content, create drop-down menus,
and change the style of type based on any number of factors from date to geographic location
of the user.

To accomplish all this you need to understand exactly what can be manipulated, controlled,
and monitored using scripting and Dynamic HTML. You’ve already seen the role that
JavaScript, JScript, and VBScript have come to play in improving the interactive nature of Web
pages.

In this chapter, we are going to take a general look at what features of DHTML are accessible
to scripting in Netscape Communicator using JavaScript 1.2. In upcoming chapters, as you
learn about specific features of DHTML, such as layers and dynamic fonts, you will learn the
details of scripting these features. This chapter is not intended to teach JavaScript scripting
from point zero. If you want a comprehensive introduction to JavaScript, consider Teach Yourself
JavaScript 1.1 in a Week by Sams.net Publishing or visit Netscape’s JavaScript documentation
on the Web at http://developer.netscape.com/library/documentation/javascript.html.

In this chapter, we will cover

■ New objects, properties, and methods made available to Web page creators in
JavaScript 1.2 that can be used with DHTML

■ How events work in JavaScript 1.2 and how they can be applied to DHTML

■ How to use external scripts to create libraries of functions that can be reused in
multiple pages

■ What signed scripts are and what they can do to improve JavaScript security

With each release of Netscape Navigator since version 2.0, Netscape has included JavaScript
and each release has seen additions, changes, and improvements in this versatile tool for creat-
ing interactive Web pages.

The latest version of JavaScript, referred to as version 1.2, is found in the Navigator 4 compo-
nent of the Netscape Communicator Internet suite.

JavaScript 1.2 addresses several key issues:

■ Additional objects, properties, and methods for handling DHTML elements such as
layers and style sheets.

■ An improved event handling model that allows programmers to create scripts
that monitor and react to a wide range of actions including but not limited to,

Using JavaScript with Dynamic HTML

9

double-clicking on page elements, dragging objects to resize, and moving windows
and frames.

■ Regular expressions have been added to JavaScript in order to address its most serious
limitation: Using a CGI script created in a language such as Perl, it was possible to
perform sophisticated parsing of user input with little effort. With JavaScript this was
a tedious and daunting task for most page creators—now JavaScript 1.2 includes
regular expressions.

■ Security has been a problem with JavaScript—there have been cases of people’s name
and e-mail addresses being captured by JavaScript scripts in certain versions of
Navigator, for instance—and this has meant severe limiting of the script’s access to
local information on a user’s system. With signed scripts it becomes possible for a
script to request expanded privileges from the user while the user can be sure of the
origin and integrity of a script.

In addition, numerous new properties and methods of existing objects provide new function-
ality not directly related to DHTML:

■ Array—Methods are now available to combine two arrays into a single array, to
extract part of an array into a new array, and to sort arrays effectively on all platforms
where before sorting wasn’t a universal function.

■ documents—It is now possible to get the text currently highlighted by the user and
return it as a string.

■ navigator—It is now possible to check and set certain Navigator preferences includ-
ing enabling and disabling Java. It is also possible to determine which language version
of Navigator is being used and which platform it is running on without having to
parse the User Agent property for the information.

■ String—Many new methods and properties are available for strings which include the
ability to handle ISO-Latin-1 codeset values, concatenation, pattern matching using
regular expressions, searching and replacing using regular expressions, extracting
sections of a string as a new string, splitting a string at specified characters, and more.

■ window—With signed scripts, it is now possible, in a window with frames, to capture
events in another frame displaying a page from another site. In addition, it is possible
to find a text string displayed in the window, to move the window on the desktop to
absolute or relative positions, and resize and scroll windows. Properties exist to
determine and set the height and width of a window’s content area, the status of the
location, menu, personal, scroll, status, and toolbars, and the height and width of the
window’s outer boundary.

■ Shared methods—The most important shared method is the ability to print the
contents of a frame or window. In addition, several methods exist for event capturing.
Event capturing is discussed later in this chapter, in the section “Capturing Events.”

Scripting

http://developer.netscape.com/

library/documentation/communicator/jsguide/js1_2.htm.

JavaScript 1.2 introduces four new objects to its object model: layer, screen, RegExp, and event.

Of these, the layer object, the screen object, and the event object are directly pertinent to
DHTML. The layer object provides the methods and properties needed to manipulate layers.
It allows layers to be hidden, resized, moved, and changed to produce pages that include ani-
mated text, overlapping text and images, drop-down menus, and more.

The screen object provides information previously inaccessible to the JavaScript programmer
about the client’s screen resolution and color depth. This is useful in order to ensure that your
DHTML pages fit comfortably in a given user’s browser window and allows you to adjust the
size of type, the layout of pages, and the selection of images to match a user’s system.

The event object has broad impact beyond the new DHTML features in Netscape Communi-
cator. In combination with DHTML, though, it provides the means to take interactivity to a
whole new level.

layer
In order to understand the features provided by the layer object we need a basic understand-
ing of how layers work. Layers are covered in more detail in Chapter 12, “Dynamic Positioning.”

Let’s start by looking at the general concept behind layers. Layers exist in a parent/child
relationship. That is, one layer can act as a container for another layer. When you create a docu-
ment with the <BODY> tag, that creates a container in which layers can be placed and manipulated.

When layers are created, they can be positioned based on the parent layer containing them or
relative to the entire document window. When you create a layer that has no other layers, the
entire document is treated as the container layer.

By way of example, Figure 9.1 shows how layers can be placed within each other in this parent/
child relationship with the parent containing the child. In this case, Layer B is contained within
Layer A, which is contained within the document. Layer B’s positioning can be specified rela-
tive to Layer A or relative to the document window. Layer A can be positioned relative to the
document window.

Using JavaScript with Dynamic HTML

9

An example of layers
containing other layers.

When layers are created, you can set their position relative to the top-left corner of the con-
taining layer, their width and height, their background color or images, the presence or ab-
sence and style of borders, and their visibility (layers can initially be visible or hidden when
they are created).

Another important aspect of layers is known as Z-Order. Z-order refers to the order in which
layers are stacked. By default, new layers appear on top of all existing layers. However, this
behavior changes when Z-index, or the layer’s position in the existing Z-order, is explicitly as-
signed to a layer.

Netscape’s Web site at http://home.netscape.com/ provides an example of the effective use of
layers and, specifically, Z-Orders and visibility. In Figure 9.2 we see Netscape’s home page as
it is displayed in Netscape Communicator. Here, we see the use of layers to produce the main
menu in the top-left corner and the Netcenter panel in the bottom right, but underneath the
menu. Their Z-Indexes define their relative positions.

In Figure 9.3, you can see how layers that were visible can be hidden—here the Netcenter panel
has been hidden.

Scripting

Now that you understand the basic concept behind layers, let’s take a look at how the layer
object exposes layers to the programmer. The real power of using JavaScript with layers comes
with being able to manipulate the layers. Each layer in a document is reflected as an instance of
the layer object.

The layer object has several properties that reflect all the attributes of a layer. These are out-
lined in Table 9.1.

Netscape’s home page
uses Z-Order to control
the overlap of the menu
and Netcenter panel.

Netscape’s home page
with the Netcenter
panel hidden.

Using JavaScript with Dynamic HTML

9

Property Description

name The name of the layer. Reflects the NAME attribute.

left The horizontal position of the left edge relative to the container
layer. Reflects the LEFT attribute.

top The vertical position of the top edge relative to the container layer.
Reflects the TOP attribute.

pageX The horizontal position of the left edge relative to the document
window. Reflects the PAGEX attribute.

pageY The vertical position of the top edge relative to the document
window. Reflects the PAGEY attribute.

zIndex The position of the layer in the Z-order as an integer.

visibility Indicates if layer is visible. Reflects the VISIBILITY attribute and
takes three possible values: show, hide, or inherit.

clip.top The top of the layer’s clipping rectangle in pixels as offset from the
top of the layer.

clip.left The left of the layer’s clipping rectangle in pixels as offset from the
left side of the layer.

clip.right The right of the layer’s clipping rectangle in pixels as offset from the
left side of the layer.

clip.bottom The bottom of the layer’s clipping rectangle in pixels as offset from
the top of the layer.

clip.width The width of the layer’s clipping rectangle in pixels.

clip.height. The height of the layer’s clipping rectangle in pixels.

background The URL of the background image of a layer. Reflects the BACK-
GROUND attribute. Value is null if there is no background graphic.

bgColor The color of the background of a layer. Reflects the BGCOLOR at-
tribute. Value is null if the layer is transparent.

siblingAbove The layer object for the layer above the current one in the Z-order.
The value is null if there is no layer above the current one.

siblingBelow The layer object for the layer below the current one in the Z-order.
The value is null if there is no layer below the current one.

above The layer object for the layer above the current one in the Z-order.
The value is the window object if the layer is topmost.

below The layer object for the layer below the current one in the Z-order.
The value is null if there is no layer below the current one.

continues

Scripting

parentLayer The layer object that contains this layer or the window object if the
layer is not nested.

src The URL of the source file for a layer. Reflects the SRC attribute.

All these properties can be altered by a script with the exception of name, siblingAbove,
siblingBelow, above, and parentLayer.

Before going on to an example using a few of these properties, let’s consider how to work with
these properties. The document object in Communicator has a layers property that is an array
of layer objects for all layers contained in the document window. We can use layer names as
indexes to this array. So, to refer to a specific layer object, we refer to

document.layers[“layerName”]

This means to refer to a specific property of a given layer we could use

document.layers[“layerName”].propertyName

Now you are ready to do some work with these properties. Let’s create a simple page that dis-
plays four color squares—each created by using layers of fixed size with different background
colors. When the mouse is inside a given layer, you can make it display the color name in the
layer and when the mouse moves out of the layer, you can make it remove the color name but
leave the background color.

To start, create your layers document:

<HTML>
<HEAD>
<TITLE>Color name with Layers</TITLE>
</HEAD>
<BODY>
<LAYER NAME=”red” BGCOLOR=”red” TOP=10 LEFT=10 WIDTH=100 HEIGHT=100
onMouseOver=”this.document.layers[‘redname’].visibility=’show’;”
onMouseOut=”this.document.layers[‘redname’].visibility=’hide’;”>
 <LAYER NAME=”redname” TOP=10 LEFT=10 VISIBILITY=”hide”>
 Red
 </LAYER>
</LAYER>
<LAYER NAME=”blue” BGCOLOR=”blue” TOP=10 LEFT=120 WIDTH=100 HEIGHT=100
onMouseOver=”this.document.layers[‘bluename’].visibility=’show’;”
onMouseOut=”this.document.layers[‘bluename’].visibility=’hide’;”>
 <LAYER NAME=”bluename” TOP=10 LEFT=10 SRC=”blue.html” VISIBILITY=”hide”>
 Blue
 </LAYER>
</LAYER>
<LAYER NAME=”green” BGCOLOR=”green” TOP=10 LEFT=230 WIDTH=100 HEIGHT=100
onMouseOver=”this.document.layers[‘greenname’].visibility=’show’;”
onMouseOut=”this.document.layers[‘greenname’].visibility=’hide’;”>

Property Description

Using JavaScript with Dynamic HTML

9

 <LAYER NAME=”greenname” TOP=10 LEFT=10 SRC=”green.html” VISIBILITY=”hide”>
 Green
 </LAYER>
</LAYER>
<LAYER NAME=”maroon” BGCOLOR=”maroon” TOP=10 LEFT=340 WIDTH=100 HEIGHT=100
onMouseOver=”this.document.layers[‘maroonname’].visibility=’show’;”
onMouseOut=”this.document.layers[‘maroonname’].visibility=’hide’;”>
 <LAYER NAME=”maroonname” TOP=10 LEFT=10 SRC=”maroon.html” VISIBILITY=”hide”>
 Maroon
 </LAYER>
</LAYER>
</BODY>
</HTML>

What exactly is going on here? Well, if you look carefully at the positioning of each layer, we
have created one row of layers with each layer being a square 100 pixels by 100 pixels. The
layers are spaced 10 pixels apart on all sides.

Each layer has a different background color and an embedded layer. The embedded layer is
initially hidden and contains the name of the color to be displayed when the user points at the
square.

In addition, each layer has two event handlers. Event handlers are covered in detail later in this
chapter. For now, it’s enough to understand that an event handler is used to indicate what
JavaScript code to execute when an event occurs. For instance, onMouseOver is used to specify
what to do when the user moves the mouse over an object while onMouseOut specifies actions to
take when the mouse is moved off the object.

In this particular example, the onMouseOver event handler changes the visibility property for
the current layer object to make the layer visible.

Notice that we use the special keyword this in each event handler to refer to the object for the
current tag—in this case, the current layer object. This makes it easy to indicate the child layer
relative to the parent layer.

Similar to the onMouseOver event handler, the onMouseOut event handler sets the visibility
property to hide to hide the layer when the user removes the mouse from the layer.

When put all together, the results look like Figure 9.4.

In addition to all these properties, the layer object has several methods associated with it. These
are listed in Table 9.2.

Scripting

layer

Name Description

moveBy(x,y) Moves the layer by the number of pixels x and y. x and y
can be negative or positive integers.

moveTo(x,y) Moves the layer to the position indicated by x and y. This
position is relative to the containing layer or, in the case of
in-line layers, its natural position in the flow of the docu-
ment.

moveToAbsolute(x,y) Moves the layer to the position indicated by x and y relative
to the document window instead of the container layer.

resizeBy(width,height) Resizes the layer by the number of pixels provided as
arguments. The content of the layer will not be relayed out,
so this may clip some of the content if the size of a layer is
reduced.

moveAbove(layer) Moves the current layer above the layer provided as an
argument.

moveBelow(layer) Moves the current layer below the layer provided as an
argument.

load(filename,width) Loads filename in the layer and changes the width of the
layer to width.

With JavaScript we can
manipulate the
visibility of layers.

Using JavaScript with Dynamic HTML

9

After seeing this table, you are probably wondering what exactly you could do with these meth-
ods. Here are two possibilities:

■ Animate text—By moving a layer containing text across the page you can create the
impression of animated, moving text.

■ Transition effects—By moving non-transparent layers across lower layers you can
create wipes or curtain effects for transitions between documents.

By way of example, let’s create a page to display an in-line layer and then provide controls to
animate the content of that layer. Users should be able to do the following:

■ Determine the direction the layer should be moving

■ Start and stop the animation

The page’s source code would look like this:

<HTML>

 <HEAD>
 <TITLE>The Animated Word</TITLE>

 <SCRIPT LANGUAGE=”JavaScript1.2">
 <!--

 var animate=true;
 var x=1;
 var y=0;

 function doMove() {

 if (animate) {
 document.layers[“word”].moveBy(x,y);
 setTimeout(“doMove()”,300);
 }
 }

 //-->
 </SCRIPT>

 </HEAD>

 <BODY>

 <FORM>

 <TABLE WIDTH=100%><TR VALIGN=TOP>
 <TD WIDTH=25% ALIGN=LEFT>

 <INPUT TYPE=button VALUE=”START” onClick=”animate=true; doMove();”>

 <INPUT TYPE=button VALUE=”STOP” onClick=”animate=false”>

 </TD><TD WIDTH=50% ALIGN=CENTER>

 <INPUT TYPE=button VALUE=”UP” onClick=’x=0;y=-1'>

 <INPUT TYPE=button VALUE=”LEFT” onClick=’x=-1;y=0'>
 <INPUT TYPE=button VALUE=”RIGHT” onClick=’x=1;y=0'>

 <INPUT TYPE=button VALUE=”DOWN” onClick=’x=0;y=1'>

Scripting

 </TD>
 </TR></TABLE>

 </FORM>

 <HR>

 <H1><ILAYER VISIBILITY=SHOW NAME=”word”>Word</ILAYER></H1>

 </BODY>

</HTML>

This produces a simple interface like the one shown in Figure 9.5.

A simple text
animation program.

Here’s how it works from the user’s point of view: The default direction of motion is to the right.
If the user clicks start, the word starts moving. If the user clicks a direction button, the word
stops moving. The user can change speeds with the appropriate buttons and can stop the mo-
tion by clicking the stop button.

Underneath, there is a little more going on, but the program is surprisingly simple, thanks to
layers.

There are three key variables:

■ animate—This variable indicates whether the word is currently moving or stopped.
Possible values are true and false.

■ x—Indicates the direction of horizontal motion at any given time. A value of 1
indicates movement to the right, -1 to the left, and 0 vertical motion.

Using JavaScript with Dynamic HTML

9

■ y—Indicates the direction of vertical motion at any given time. A value of 1 indicates
movement down, -1 up, and 0 horizontal motion.

The other main component of the script is the function doMove(). This function is initially
called when the user clicks the start button. The function does a few simple things. First, it
checks the value of animate: if it is false, the function exits.

If animate is true, however, the function needs to move the word. The first thing that happens
is the moveBy() method of the layer object moves the object in the direction indicated by x
and y. Each time doMove() is called, the word is moved one pixel in a given direction. Finally,
setTimeout() is used to schedule the next movement of the word, with speed indicating how
long to wait before calling doMove() again. In this way, doMove() keeps getting called, at the
intervals indicated by the value of the variable speed, until animate changes the value to false.

Now, let’s look at what happens when the user clicks each button. The start and stop buttons
are simple. Using the onClick event handler, the start button sets animate to true and calls
doMove() to start the animation. Stop simply sets animate to false. If animate had been true,
then doMove() will be called as scheduled by the last call and with animate set to false, motion
will stop.

The direction buttons all do basically the same thing: They set the values of x and y as needed
to change motion to the requested direction. If animate is true then the next scheduled call to
doMove() will start animating with the new values of x and y.

There is one interesting point to note here. We use in-line layers so the layer simply sits on the
line after the horizontal rule. (In-line layers are discussed later in Chapter 12.) There is no need
for sizing or positioning the layer. Another interesting point is that the layer can move any-
where in the document window including up into the control area above the horizontal rule as
shown in Figure 9.6.

screen
Another new object in JavaScript 1.2 is the screen object. With the screen object, it’s possible
to ensure that your content fits on a user’s screen without difficulty and to ensure that your
layouts aren’t altered by excessively large or small displays.

The screen object provides six properties for verifying the properties of the user’s display but
offers no methods, as outlined in Table 9.3.

screen

Name Description

availHeight Indicates the height of the screen in pixels after taking into account
user interface features such as taskbars or menu bars displayed by the
operating system.

continues

Scripting

availWidth Indicates the width of the screen in pixels after taking into account user
interface features such as taskbars or menu bars displayed by the
operating system.

height Indicates the height of the screen in pixels without taking into account
user interface features.

width Indicates the width of the screen in pixels without taking into account
user interface features.

pixelDepth Indicates the number of bits per pixel—this generally correlates with
colorDepth (for example, a pixelDepth of 8 matches a colorDepth of
256, a pixelDepth of 4 matches a colorDepth of 16, and so on).

colorDepth Indicates the number of colors that can be displayed—this generally
correlates with pixelDepth (for example, a colorDepth of 256 matches
a pixelDepth of 8, a colorDepth of 16 matches a pixelDepth of 4, and
so on).

The layer can move
anywhere in the
window.

Name Description

It’s important to note that, unlike most properties of the layer object, the values of the prop-
erties of the screen object cannot be set by a script.

To show how to use these properties, we can create a simple HTML page that loads the correct
version of a title image based on the width of a user’s screen:

Using JavaScript with Dynamic HTML

9

<HTML>
<HEAD>
<TITLE>screen Object Example</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript1.2">
if (screen.availWidth <= 640) {
 document.writeln(‘’);
} else if (screen.availWidth <= 800) {
 document.writeln(‘’);
} else {
 document.writlen(‘’);
}
</SCRIPT>
</BODY>

What this page does is really very simple. The script first checks if the available width is less
than or equal to 640 pixels. If it is, then the smallest title image is used. Failing that, the script
checks if the width is less than or equal to 800 pixels and if so loads the next largest title. Fi-
nally, if both conditions have failed, the largest image is loaded. This produces results similar
to Figures 9.7 and 9.8.

With a low screen
resolution the smallest
title is loaded.

Events are the key to making JavaScript such a useful tool. With the advent of JavaScript 1.2,
the mechanisms for handling events has been greatly expanded and its flexibility and power
increased. In this section, we are going to focus on several new features found in Netscape
Communicator and particularly how they work with DHTML.

Scripting

The main role of JavaScript is to add interactivity to Web pages. In order for this to happen,
scripts need to be written to react to actions the user makes. These actions can be anything
from moving the mouse to typing on the keyboard to clicking a button. User actions create
events and programmers can write event handlers—pieces of JavaScript code that run when-
ever a particular event occurs—to create interactivity when these actions occur.

For example, you find forms on the Web that tell you the data you entered is invalid before
ever submitting the data to the server (as shown in Figure 9.9) or pages that pop up dialog
boxes asking you for information before displaying the page.

Different objects or page elements can have different types of events associated with them and,
by extension, different types of event handlers. Table 9.4 outlines the types of events that exist
in JavaScript 1.2.

Name When It Happens

Abort User aborts loading of an image

Blur User or script removes focus from a form element, window, or frame

Change User removes focus from a select, text, or textarea field and the
content of the field has changed

Click User clicks link or form element

On an average 800 ×
600 pixel SVGA
display, the medium
title would be loaded.

Using JavaScript with Dynamic HTML

9

DblClick User double-clicks link or form element

DragDrop User drops object on a Navigator window

Error Loading of a document or image causes an error

Focus User or script gives focus to a form element, window, or frame

KeyDown User presses a key

KeyPress User presses and holds a key down

KeyUp User releases a key

Load A document or frameset completes loading

MouseDown User presses a mouse button

MouseUp User releases a mouse button

MouseMove User moves the cursor

MouseOut User moves the cursor out of an object

MouseOver User moves the cursor over an object

Move User or script moves a window or a frame

Reset User resets a form

Resize User or script resizes a window or frame

Select User selects some text in a text or textarea field

Submit User submits a form

Unload User or script exits a document

Using event handlers, it
is possible to react to
user actions, such as
clicking a submit
button.

Name When It Happens

Scripting

Each of these events has an event handler associated with it. The names of the event handlers
are all of this form:

onEventHandlerName

Event handlers appear alongside attributes of HTML tags. For instance, to program an action
for when the MouseDown event for an image occurs, you could use the following form:

<IMG SRC=”some image file” onMouseDown=”code to execute when the mouse is clicked

on the image”>

event
The event object is the core of events. The object provides information about the context within
which an event occurred and this information can be used in the event handler to ensure that
the correct action is taken.

Several properties are available in the event object and these are outlined in Table 9.5.

event

Name Description

type Indicates the type of event that occurred (for example, MouseDown,
KeyPress, Abort, and so on)

target Indicates the object to which the event was sent

layerX Indicates the object’s width when a resize event occurs or the cursor’s
horizontal position in pixels relative to the layer containing the object

layerY Indicates the object’s height when a resize event occurs or the cursor’s
vertical position in pixels relative to the layer containing the object

pageX Indicates the cursor’s horizontal position in pixels relative to the page

pageY Indicates the cursor’s vertical position in pixels relative to the page

screenX Indicates the cursor’s horizontal position in pixels relative to the screen

screenY Indicates the cursor’s vertical position in pixels relative to the screen

which Indicates, numerically, the mouse button that was pressed or the ASCII
value of a pressed key

modifiers Indicates any modifier keys pressed when a mouse or key event
occurs—possible modifier keys are ALT_MASK, CONTROL_MASK,
SHIFT_MASK, and META_MASK

data Indicates, in an array of strings, the URLs of objects dropped in a
DragDrop event

Using JavaScript with Dynamic HTML

9

It is important to note that the data property of the DragDrop event requires extended privi-
leges granted by signing scripts. See the section on signing scripts later in this chapter for more
about the role signed scripts play.

The use of the properties is numerous. To name just a few:

■ Allow users to drag files into a Web page from Explorer (Windows 95 and NT) or
Finder (Mac) and have that file uploaded to the server.

■ Create multiple actions for clicks on a button—for instance, a standard left-click
could cause a new page to load, a right-click could pop up another Window asking for
information, and a shift-click could display help information.

■ Allow the user to select and move layers around inside the Navigator window the way
they would move icons around on a Windows 95 or Macintosh desktop.

In order to use the event object, we need to understand how to access it. In a script embedded
in an event handler in an HTML tag, we can simply use the keyword event to access the object:

In addition, the event object is passed as an argument to event handlers.

For instance, in the following example, we create a function to do the same thing as just de-
scribed, and then explicitly assign it as an event handler to a form button’s onClick event:

<SCRIPT LANGUAGE=”JavaScript1.2">
function type(e) {
 alert(e.type);
 return false;
}
document.testform.testbutton.onclick = type;
</SCRIPT>
<FORM NAME=testform>
<INPUT TYPE=submit NAME=testbutton VALUE=”Click Me”>
</FORM>

JavaScript 1.2 introduces another capability that greatly extends the capability of JavaScript to
deal with events in a robust, comprehensive, and easy to manage fashion. This feature is called
event capturing.

Let’s consider the following scenario: A Web designer wants to create a page where the user
can only click in certain fields of a form and on the submit button. Other fields can’t be clicked
in and any attempt to do so should generate a warning message for the user.

One way to do this is to write an event handler for each field that you don’t want the user to
click in and have the handler generate the warning.

However, event capturing provides another alternative. If the window is designated to capture
all Click events, then a click anywhere in the window will be handled by the window and
its associated onClick event handler. Using a set of four methods, this event handler can

Scripting

determine whether a warning is needed and generate the warning. Table 9.6 describes the meth-
ods used for event capturing. Any window, document, or frame can capture events using these
methods.

Name Description

captureEvents(event names) Indicates which events should be captured. Event names
take the form Event.CLICK, EVENT.DRAGDROP, and so on.
captureEvents can take a list of more than one event
separated by |.

releaseEvents(event names) Indicates that the named events should no longer be
captured. Event names take the form Event.CLICK,
EVENT.DRAGDROP, and so on. captureEvents can take a
list of more than one event separated by |.

routeEvent(event object) Indicates that an event handler for the event should be
found and executed. If an appropriate handler is found,
the handler is executed. The value returned by the
handler is returned.

handleEvent(event object) Used to bypass the normal event capturing hierarchy
and causes an explicit object to handle the event. For
instance, all Click events could be handled by the first
link in a page:
document.links[0].handleEvent(captured event

object).

Using these methods for capturing events that occur in pages loaded from servers other than
the one the script originates from requires that your script requests extended privileges by sign-
ing them appropriately. A discussion of signing scripts is provided later in this chapter.

As a small example of capturing events, the following script allows the window to capture the
MouseMove event and use this to display the coordinates to the mouse in the status bar of the
window (as shown in Figure 9.10):

<SCRIPT LANGUAGE=”JavaScript1.2">
function stat(e) {
 self.status = “X: “ + e.pageX + “, Y: “ + e.pageY;
}
window.captureEvents(Event.MOUSEMOVE);
window.onmousemove = stat;
</SCRIPT>

Let’s make sure we understand what’s happening here. First, we define the stat() function.
This function is what will be executed when the MouseMove event occurs. After we have the
function defined, we call captureEvents() to capture the MouseMove event. Finally, we need to

Using JavaScript with Dynamic HTML

9

specify that the stat() function should be called when the event occurs by assigning the func-
tion to the event.

The mouse coordinates
are displayed in the
status bar.

Increasingly, JavaScript is being used for more than simply creating forms that can check the
data being entered for accuracy or perform simple visual tricks.

With the advent of layers and other components of DHTML and associated expansion of
JavaScript in JavaScript 1.2, Web developers will need to—and want to—create sophisticated
libraries of functions and objects for reuse in many pages and by many people.

In order for this to be effective, we need a way to maintain these libraries in separate files and
then include them in as many pages as are needed. Since JavaScript 1.1, this has been possible
using the SRC attribute of the <SCRIPT> tag.

In its simplest form, the SRC attribute can be used like this:

<SCRIPT LANGUAGE=”Version of JavaScript” SRC=”URL of JavaScript library file”>

SRC

.js

http://home.netscape.com

Scripting

One of the benefits of this approach is that your scripts are automatically hidden from other
browsers that don’t support JavaScript. At the same time, though, this technique requires an
additional server request and server access, which may be problematic on a slow server or across
a slow connection to the Internet.

You can combine library files with the SRC attribute with your own scripts using a single <SCRIPT>
tag:

<SCRIPT LANGUAGE=”Version of JavaScript” SRC=”URL of JavaScript library file”>
<!-- HIDE FROM OTHER BROWSERS
 More JavaScript Code
// STOP HIDING -->
</SCRIPT>

Although the concept of signed scripts may be new in Netscape Communicator, the idea of
signing pieces of code isn’t. For instance, signing is the basis for the security mechanisms sur-
rounding ActiveX components downloaded by Microsoft Internet Explorer. Using the signa-
ture, it is possible to identify the source of a component and determine whether it has been
tampered with—possibly maliciously—before you give it permission to run amok on your
computer.

Signing scripts requires several steps:

1. Request expanded privileges.

2. Use an ARCHIVE attribute in your <SCRIPT> tags.

3. Use an ID attribute in <SCRIPT> tags for in-line scripts and event handler scripts.

4. Sign your scripts.

The whole point of signed scripts is that they can request expanded privileges from the client.

Among the actions you need privileges for are

■ Setting properties of the event object

■ Getting values of properties of the history object

■ Getting the value of the data property from a DragDrop event

■ Using the preference method of the navigator object

■ Adding or removing directory bars, location bars, menu bars, and similar user inter-
face features

■ Capturing events from external pages displayed in a frame

■ Moving or placing a window off the screen

■ Resizing or creating a window smaller than 100 pixels by 100 pixels

■ Generating a file upload

Using JavaScript with Dynamic HTML

9

■ Submitting forms to mailto: or news: URLs

■ Using most about: URLs

In order to use these features you need to include an appropriate call to Navigator’s Java secu-
rity classes. This call takes the following form:

netscape.security.PrivilegeManager.enablePrivilege(“a target”);

What’s important is that you choose the right target for the privilege you are requesting. Table
9.7 outlines the six targets you can request expanded privileges for and what they provide.

Name What It Allows You to Do

UniversalBrowserRead Get the value of properties of the history object; get the
value of the data property of the event object in a
DragDrop event; use most about: URLs

UniversalBrowserWrite Set values of properties of the event object; set values of
properties of the history object; add or remove directory
bars, location bars, menu bars, and similar user interface
features; capture events from external pages displayed in
a frame; move or place a window off the screen; resize or
create a window smaller than 100 pixels by 100 pixels

UniversalFileRead Generate a file upload

UniversalPreferencesRead Get the value of a preference using the preference
method of the navigator object

UniversalPreferencesWrite Set the value of a preference using the preference
method of the navigator object

UniversalSendMail Submit forms to mailto: or news: URLs

ARCHIVE ID
All signed scripts are stored in Java archive (JAR) files that include the digital signature. You
use the ARCHIVE attribute to indicate the name of the JAR archive in the first <SCRIPT> tag in a
page:

<SCRIPT ARCHIVE=”some JAR file name”>
Some JavaScript code
</SCRIPT>

This will tell the signing process where the JAR file should be stored.

You can include multiple scripts and event handlers in a page in a single JAR file by simply
specifying the JAR file in the first <SCRIPT> tag using the ARCHIVE attribute and then assigning
sequential ID values to <SCRIPT> tags and tags with event handlers:

Scripting

<HTML>
<HEAD>
<SCRIPT ARCHIVE=”some JAR file name” ID=1>
Some JavaScript code
</SCRIPT>
<SCRIPT ARCHIVE=”the same JAR file name as before” SRC=”some JavaScript file” ID=2>
</SCRIPT>
</HEAD>
<BODY onLoad=”some event handler” onUnload=”some event handler” ID=3>
Some HTML
</BODY>
</HTML>

Having made all these changes to a page with scripts in it, you are now ready to sign them. In
order to sign a script or scripts, you need a signing tool that signs your script digitally and stores
the results in a JAR file. To do this requires a little preparation the first time around:

1. Get an object signing certificate. You can get a certificate from a Certificate Authority
or issue your own with Netscape’s Certificate Server. Go to the site http://
developer.netscape.com/software/signedobj/jarpack.html for more information.

2. Download a signing tool. Netscape makes the following tools available on its Web
site: JAR Packager (a Java applet for signing Java applets, plug-ins, and other JAR
files—see Figure 9.11), JAR Packager Command Line (a stand-alone signing tool),
and Page Signer (a Perl script that uses JAR Packager Command Line). More informa-
tion is available at http://developer.netscape.com/software/signedobj/
jarpack.html.

JAR Packager.

Using JavaScript with Dynamic HTML

9

After you have these tools, you need to follow the enclosed instructions to sign the scripts and
create the necessary JAR file. Signing scripts requires care to make sure you do it right and it is
a good idea to read the overview provided by Netscape at http://developer.netscape.com/
library/documentation/communicator/jsguide/scripts.htm.

In this chapter, you learned about just a few ways that JavaScript can be used in Netscape Com-
municator to work with Dynamic HTML. Most important, you have seen how you can ma-
nipulate layers to produce custom and complex visual effects and animation in Web pages. We
have taken a look at how the wide range of events in Communicator can be leveraged with
JavaScript, and finally how script signing can be used to gain added access to system resources
for specialized applications.

Scripting

Using JavaScript for Internet Explorer Dynamic HTML

10

by Peter Belesis

■

■

■

■ SRC=

■

■

■

■

■

Scripting

If ever there was a classic love/hate relationship, it is that between Microsoft’s Internet Explorer
and JavaScript. On the love side, IE’s major scripting engine, JScript, is a JavaScript parser and
most examples on the Microsoft site use “JavaScript” as the scripting language identifier. Then
the hate kicks in, and all references to JavaScript are omitted when the time comes for an offi-
cial definition of JScript.

Such definitions of JScript are plentiful and diverse in the Microsoft documentation. One ar-
ticle describes JScript as “Microsoft’s implementation of the ECMAScript scripting
language…with some enhancements for Internet Explorer.” In another, it is “a powerful scripting
language…implemented as a fast, portable, lightweight interpreter for use in World Wide Web
browsers and other applications that use ActiveX controls, OLE Automation servers, and Java
applets.”

Confusing? Very much so, but it doesn’t have to be. In this chapter we will try to sift through
the petty jargon of bad marketing and shed some light on using JavaScript with IE4.

Microsoft developed a JavaScript parser for Explorer without the assistance of Netscape, the
JavaScript originators. Although the purpose of the development was to allow Navigator scripts
to run on Explorer, the language that was being parsed was christened JScript.

Through common usage, “JavaScript” has come to mean both the scripting language of Netscape
Navigator and the main scripting language of Explorer. “JScript” is regarded as nothing more
than an alias for IE’s implementation of JavaScript. Because IE’s implementation is the topic
at hand, the “JScript” identifier will be used in this chapter for IE-specific JavaScript and
“JavaScript” for general cross-browser JavaScript.

Netscape introduced JavaScript in Navigator 2. Soon thereafter, JScript 1.0 was built into
Explorer 3. Navigator 3 shipped with JavaScript 1.1. JScript 2.0, incorporating many of the
JavaScript 1.1 features, became available as an upgrade to Explorer.

Today, Navigator 4 hosts JavaScript 1.2, and Explorer 4 hosts JScript 3.0. Table 10.1 illus-
trates this development.

JScript 3.0, arriving on the scene last, provides most of the JavaScript 1.2 features, but com-
bined with Explorer’s comprehensive Document Object Model (DOM) and CSS property
reflection, JScript 3.0 has become a more powerful tool than JavaScript. Given the direction
the World Wide Web Consortium (W3C) is taking with the DOM standard, it is likely that
JScript’s expanded properties and methods will be the model for the next version of JavaScript.

Using JavaScript for Internet Explorer Dynamic HTML

10

Version JavaScript Compatibility Shipped In

JScript 1.0 JavaScript 1.0 (NN2) Explorer 3.0

JScript 2.0 JavaScript 1.1 (NN3) Explorer 3.02 (some builds) available
as upgrade module

JScript 3.0 JavaScript 1.2 Explorer 4.0
(approx.) (NN4)

Explorer 4 recognizes the following SCRIPT tags as containing JavaScript statements, whether
cross-browser or not:

<SCRIPT></SCRIPT>
<SCRIPT LANGUAGE=”JScript”></SCRIPT>
<SCRIPT LANGUAGE=”JavaScript”></SCRIPT>
<SCRIPT LANGUAGE=”JavaScript1.1"></SCRIPT>
<SCRIPT LANGUAGE=”JavaScript1.2"></SCRIPT>

As with JavaScript, JScript statements can be included anywhere on the page. The page posi-
tion is at the author’s discretion, depending on what prerequisites the script has. If the script,
for example, refers to a collection outside a function, it is best included at the end, when the
collection in question has been created and filled. Functions called after page load are best kept
within the HEAD tag.

Unlike JavaScript, JScript has no version identifier available to the LANGUAGE= attribute. Au-
thors can, however, dynamically check for version information with JScript proprietary func-
tions. The next section, “The JScript Script Engine,” describes these functions.

Using “JScript” as the LANGUAGE= value is useful for hiding script from Navigator, which does
not recognize it. Use this value for Explorer-specific statements. Cross-browser statements should
be enclosed in “JavaScript” SCRIPT containers, making it available to both browsers. Even
though one is tempted to include DHTML-specific script with the “JavaScript1.2” value
(allowing access only to fourth-generation browsers), it is not recommended because there might
be popular JavaScript1.1/JScript 2 features—such as the Image object used for rollovers, for
example—that may be inadvertently hidden from browsers that support it.

LANGUAGE=”JavaScript”

LANGUAGE=”JScript”

Scripting

Script is usually enclosed between the HTML start and end comment tags, <!-- and -->, hid-
ing it from non-JavaScript browsers. Position the closing identifier, to avoid generating a
JavaScript error, after a JavaScript comment identifier:

<SCRIPT LANGUAGE=”JavaScript”>
<!-- hide from non-JavaScript browsers

...include script here...

//--> end hiding, but hide from JavaScript as well
</SCRIPT>

JScript does not require the final JavaScript comment. IE will parse the following correctly:

<SCRIPT LANGUAGE=”JavaScript”>
<!-- hide from non-JavaScript browsers

...include script here...

-->
</SCRIPT>

The second example generates an error in Navigator if “JavaScript” is the LANGUAGE value. With
this attribute setting, the use of the JavaScript comments is mandatory. If the script uses
“JScript”, no Navigator error is generated.

Unlike Netscape’s JavaScript, the rendering engine of which is packaged as an inseparable part
of the browser, JScript’s engine exists as an external module. This allows for updates to the
scripting engine without the need to upgrade the browser. Although we know that Navigator 3
supports JavaScript 1.1, we cannot be sure what version of JScript is supported by Explorer 3.
The early releases shipped with JScript 1; the last release shipped with JScript 2. Early release
owners had the option of upgrading their engines with a simple download.

Explorer 4, as previously mentioned, is shipped with the JScript 3 engine. Possible bug fixes
might lead to a new JScript 3 build—one that would be made available for download. It is not
only conceivable but probable that Explorer 4 users will soon be working with different script
engines.

With this in mind, JScript, since version 2, has four unique built-in functions that enable au-
thors to identify the exact version and build of the JScript engine used to view their page. The
information retrieved from the functions can be used to conditionally execute script. These
functions are

■ ScriptEngine() returns the scripting language in use as a string. The three possible
values are JScript, VBA (Visual Basic for Applications), and VBScript.

In Explorer 4, if the LANGUAGE= attribute of <SCRIPT> has a value of a JavaScript version
or JScript or is omitted completely, ScriptEngine() returns the string “JScript”.

Using JavaScript for Internet Explorer Dynamic HTML

10

■ ScriptEngineMajorVersion() returns the major version number of the script engine as
an integer.

In Explorer 4, this returns 3.

■ ScriptEngineMinorVersion() returns the minor version number of the script engine
(after the decimal) as an integer.

The first release version of Explorer 4 returned 0.

■ ScriptEngineBuildVersion() returns the build version number of the script engine as
an integer.

An October 1, 1997 version of Explorer 4 returned 2026.

The following script combines the four functions to obtain complete information on the
engine in use. Because neither JScript 1 nor JavaScript supports these functions, we performed
an additional check:

<SCRIPT LANGUAGE=”JavaScript”>
if (typeof(ScriptEngine) + “” != “undefined”) {
 se = ScriptEngine();
 seMaj = ScriptEngineMajorVersion();
 seMin = ScriptEngineMinorVersion();
 seB = ScriptEngineBuildVersion();
 fullInfo = (se + “ “ + seMaj + “.” + seMin + “ “ + seB);
 document.write(fullInfo);
}
else { document.write(“JScript 1 or JavaScript”) }
</SCRIPT>

Using the same sample engine as before, the result is JScript 3.0 2026.

SRC=
Explorer 4 recognizes the SRC= attribute of the <SCRIPT> tag and reads and attempts to execute
any JavaScript code in the external *.js file. One can assume then that the following tag safely
isolates any JScript from parsing attempts by Navigator:

<SCRIPT LANGUAGE=”Jscript” SRC=”IEspec.js”></SCRIPT>

Not so. Navigator 4 does not attempt to load the file, true, but Navigator 3 does! Navigator 3
was, of course, the first and, at that time, only browser to recognize the SRC= attribute of <SCRIPT>.
Somehow, the eventuality of other browsers, and even newer versions of their own browser,
supporting the attribute escaped Netscape. Navigator 3 attempts to execute any external file
whether it supports the language specified by the LANGUAGE= attribute or not!

Note the following HTML and the results it produces:

<HTML>
<HEAD>
<TITLE>Navigator 3 SRC Bug</TITLE>
</HEAD>
<BODY>

Scripting

 <SCRIPT LANGUAGE=”JavaScript1.2" SRC=”javaExt.js”></SCRIPT>
 <SCRIPT LANGUAGE=”JScript” SRC=”jsExt.js”></SCRIPT>
 <SCRIPT LANGUAGE=”Sanskrit” SRC=”sanExt.js”></SCRIPT>
</BODY>
</HTML>

The preceding referenced external files each have one line of script:

The file, javaExt.js, has this line:

document.write(“
I am code in an external JavaScript 1.2 file”);

The file, jsExt.js, contains this line:

document.write(“
I am code in an external JScript file”);

Finally, sanExt.js, has this line:

document.write(“
I am code in an external Sanskrit file”);

Explorer 4 produces the results illustrated in Figure 10.1.

External JavaScript
files—IE4.

Figure 10.2 illustrates Navigator 4’s rendering.

Finally, Navigator 3’s erroneous display is visible in Figure 10.3.

Using JavaScript for Internet Explorer Dynamic HTML

10

In the Microsoft scheme of things, several scripting engines coexist in the same browser. The
objects available to JScript are therefore split into two groups: those specific to JScript and those
common to all scripting languages.

The former group has functions, operators, object constructors, statements, pre-DHTML
objects, methods and properties, and the like.

The common group has most DHTML objects, object properties, many methods, events,
collections, and so on.

Although this differentiation did not exist in older versions, the present division is described
as “objects provided by the JScript engine” and “objects provided by Internet Explorer.”

Netscape considers all properties, methods, and events as part of JavaScript proper, making
the Microsoft dichotomy confusing to Navigator scripters.

External JavaScript
files—Netscape
Navigator 4.

External JavaScript
files—Netscape
Navigator 3.

Scripting

The new features that JScript 3.0 does not share with the other script engines are almost 100
percent compatible with Netscape’s JavaScript 1.2. When using these features, either enclose
the script with a JavaScript 1.2 identifier, or conditionally execute it after testing for DHTML
browsers. Differences will be mentioned when we look at the features in detail later in this
chapter.

JScript 3 provides several new tools for controlling statement execution in scripts. These are
the switch, do… while, and labeled statements, available in Navigator as well.

The Date, Array, and String objects have been expanded. The Date object was expanded to
provide better internationalization. The other two objects have new methods for improved
manipulation. The string methods can now take regular expressions as arguments.

JScript has adapted Perl regular expressions to its own scripting engine for powerful string match-
ing options.

As mentioned in the introduction, although the use of these features is attributed to JavaScript
in the SCRIPT tag, they are not necessarily cross-browser. Some features, like the Document
Object Model reflection properties, are IE-specific, making them available to JScript and the
other IE scripting engines. Others, like CSS positioning and many events, are partly compat-
ible with Netscape’s version. If “JavaScript” is used as the language identifier, be sure to condi-
tionally execute script after checking for browser compatibility.

Explorer’s comprehensive Document Object Model (DOM) is reflected into JScript with new
collections, objects, properties, and methods. Hundreds of new properties and many new meth-
ods arise out of this reflection. A detailed discussion can be found in Part IV, “The Document
Object Model.”

Using JavaScript for Internet Explorer Dynamic HTML

10

All cascading style sheet properties are also reflected into JScript with the comparable scripting
properties. Part II, “Cascading Style Sheets,” explores this CSS reflection.

New event reflection and expanded event handling apply to any page element. See Chapter
16, “The Internet Explorer 4.0 Event Model: Event Bubbling,” for IE’s unique approach to
events.

The remainder of this chapter will concentrate on the new unique-to-JScript features, which
are cross-browser JavaScript compatible.

More often than not, a script is called upon to execute a statement or group of statements only
if certain conditions are met. Conditional statements such as if...else and loops such as for
and while have been a mainstay of JScript since version 1. JScript 3 introduces the do...while,
switch, and labeled statements.

do...while
Familiar from C, the do...while loop executes a block of statements once and then repeats the
execution until a specified condition returns false. This obligatory run-through is the differ-
ence between it and the older, plain while loop. The following example demonstrates both
loops. The do...while loop displays the value of counter once even though it is already out of
the range of acceptable values (according to the while condition). The simple while loop does
not display anything because it compares values on the first execution as well.

<HTML>
<HEAD>
<TITLE>while Test</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

if (!document.all) {return}

function loop() {
 counter = 1;
 do {
 first.insertAdjacentHTML(“BeforeEnd”,counter);
 counter++;
 } while (counter<1)

 counter = 1;
 while (counter<1) {
 second.insertAdjacentHTML(“BeforeEnd”,counter);
 counter++;
 }
}

Scripting

</SCRIPT>
</HEAD>
<BODY>

<P>while away</P>
<P ID=”first”>do...while: </P>
<P ID=”second”>while: </P>

</BODY>
</HTML>

insertAdjacentHTML()

Any statement can have a label identifier. It can be a single-line statement or a compound state-
ment enclosed in braces, such as if or while in the following example. Labels appear on the
lines before the statements they identify and end with a colon.

1 abel :
2 if (brothersKeeper) {
3 ...statements...
4 cain :
5 while (marked) {
6 ...statements...
7 break abel;
8 ...statements...
9 }
10 ...statements...
11 }
12 ...rest of script...

In the example, the abel label is associated with the if conditional—that is, lines 2-11. Simi-
larly, cain identifies the while loop, lines 5-9. The line execution proceeds as follows:

If the brothersKeeper boolean evaluates to true, the if statements are executed line
by line. The labeled while loop is entered if marked is true. When the break abel is
encountered, program execution in abel is terminated and continues after the if
closing brace. Therefore, lines 1, 2, 3, 4, 5, 6, 7, and 12 are executed.

If brothersKeeper is true and marked is false, lines 1, 2, 3, 4, 5, 11, and 12 are
executed.

Using JavaScript for Internet Explorer Dynamic HTML

10

Although you can use labeled statements in any if, while, do...while, and for group of state-
ments, the most common use is with the new switch statement.

switch
Instead of using multiple if or nested if...else statements, authors can create a lookup table
of sorts by matching a label to an expression’s value. If the label preceded by the case identifier
matches the expression, the statements immediately following are executed. Execution contin-
ues until a break statement is encountered. If no listed label matches the expression, then the
default case is executed.

The following example assumes that three functions are accessible from the keyboard. A key
press of “N” or “n” calls the goNext() function, “P” or “p” calls the goPrev() function, and “X”
or “x” calls the exit() function. The document.onkeypress event handler calls the function
getKey() to process the key press. After the passed ASCII integer value is converted to a string
and made lowercase for easier lookup, the switch statement compares the string to a list of
possible values and executes the corresponding code. If no comparison returns true, then the
default code is executed. In this case, the default action is to break out of the lookup with no
further processing.

function getKey() {
 whichKey = String.fromCharCode(event.keyCode).toLowerCase();
 switch (whichKey) {
 case “n”:
 goNext();
 break;
 case “p”:
 goPrevious();
 break;
 case “x”:
 exit();
 break;
 default:
 break;
 }
}

document.onkeypress = getKey;

Use switch when multiple values may exist for an expression, as in the key press example.
If another key action is to be defined, simply insert another case statement.

The rapid internationalization of the Web has prompted the inclusion of new methods for the
JavaScript Date object. At the same time, DHTML’s need for improved string manipulation
has led to the creation of new String methods.

Scripting

Date
JScript 3 has expanded the Date object in accordance with ECMA and JavaScript 1.2, with
several new methods.

To demonstrate the new methods, let us first create a sample Date object called samsDate. In
our example the date is “December 1, 1997” and the time is 13:21:20. Our computer is in
New York, keeping New York time, which is five hours earlier than Universal Coordinated
Time (Greenwich mean time). The method arguments are self-explanatory with two excep-
tions: The second argument, the month, is 0-indexed, so the twelfth month, December, is 11.
The final argument is a millisecond count, included for completeness.

samsDate = new Date(97,11,1,13,21,20,676);

The following table documents the changes in our samsDate object as we use the new methods:

New Value of
Method Action samsDate

samsDate.setFullYear(1966) stores 1966 as year December 1, 1966
13:21:20:676

samsDate.getFullYear() returns 1966

samsDate.setMilliseconds(898) stores 898 as milliseconds December 1, 1966
13:21:20:898

samsDate.getMilliseconds() returns 898

samsDate.setUTCFullYear(1996) stores 1996 as UTC year December 1, 1996
18:21:20:898 UTC

samsDate.getUTCFullYear() returns 1996

samsDate.setUTCMonth(6) stores 6 (July) as UTC month July 1, 1996
18:21:20:898 UTC

samsDate.getUTCMonth() returns 6

samsDate.setUTCDate(4) stores 4 as UTC date July 4, 1996
18:21:20:898 UTC

samsDate.getUTCDate() returns 4

samsDate.setUTCHours(8) stores 8 as UTC hour July 4, 1996
09:21:20:898 UTC

samsDate.getUTCHours() returns 8 (9 a.m.)

Using JavaScript for Internet Explorer Dynamic HTML

10

samsDate.setUTCMinutes(55) stores 55 as UTC minutes July 4, 1996
09:55:20:898
UTC

samsDate.getUTCMinutes() returns 55

samsDate.setUTCSeconds(44) stores 44 as UTC seconds July 4, 1996
09:55:44:898
UTC

samsDate.getUTCSeconds() returns 44

samsDate.setUTCMilliseconds(989) stores 989 as UTC milliseconds July 4, 1996
09:55:44:989
UTC

samsDate.getUTCMilliseconds() returns 989

samsDate.getUTCDay() returns 4 (Thursday)

samsDate.toUTCString() returns Thu, 04 Jul 1996 09:55:44 UTC

samsDate.toLocaleString() returns 07/ 04/96 04:55:44

JScript has one unique Date method, unsupported by JavaScript1.2. You can use the
getVarDate()method with ActiveX or custom objects accepting date values in VT_DATE format.
In the example, samsDate.getVarDate() returns “Thu, Jul 4 04:55:44 UTC-0500 1996”.

String
Explorer 4 provides many scripting objects, properties, and methods for manipulating text.
Chapter 11, “Dynamically Changing Content,” discusses several of these. Because text is nothing
but a string, JScript 3 introduces new methods for the old String object, giving authors many
tools for user-input interaction, conditional page updates, form-input verification, and many
instances of dynamic decision-making and changes.

All the new methods are compatible with JavaScript 1.2.

Because all programmers are by now tired of the over-used “Hello World” sample string, the
methods outlined in the following paragraphs use a new and unique string:

samsStr = “Hello There World”

 New Value of
Method Action samsDate

Scripting

charCodeAt()
A sibling of the old charAt() method, charCodeAt() returns the Unicode (ASCII) encoding of
the character at the indexed location in the string.

stringReference.charCodeAt(index)

samsStr.charCodeAt(0) returns 72 (the encoding of H).

fromCharCode()
The fromCharCode()method takes one or more codes and creates a new String object. To use
it, assign the new object to a variable.

String.fromCharCode(encoding1, encoding2, encodingn)

In the following example, newStr has a value of H:

newStr = String.fromCharCode(72);

Several codes, included as arguments, create a multicharacter string. In the next example, newStr
has a value of Hello:

newStr = String.fromCharCode(72, 101, 108, 108, 111);

fromCharCode() is most often used with the new onkeypress event handler. The switch state-
ment example in this chapter illustrates a real-world use.

concat()
concat() is a more efficient way to achieve string concatenation than the old “string1 + string2”.
The following example combines a second string with an original string, changing the value of
the original string. The syntax is

stringReference1 = stringReference1.concat(stringReference2)

Let’s combine a new string with our samsStr example:

moreStr = “ and Hockey Fans”
samsStr = samsStr.concat(moreStr)

The value of samsStr is now “Hello There World and Hockey Fans”.

You can also use the following, which creates a new third string with the concatenated first and
second strings:

stringReference3 = stringReference1.concat(stringReference2)

Still using our samsStr example, the following code results in newStr having a value of “Hello
There World and Hockey Fans” with samsStr retaining its original value of “Hello There World”.

newStr = samsStr.concat(moreStr)

Using JavaScript for Internet Explorer Dynamic HTML

10

slice()
The slice()method returns a new String object containing a substring of the original string,
which can be assigned to a variable for later use. The syntax is

stringReference.slice(index)

With only one argument, the string section that is returned begins at the specified index and
ends at the end of the string being sliced. In the following example, newStr is created with a
value of “There World”.

newStr = samsStr.slice(6)

An optional second argument defines the endpoint of the section:

stringReference.slice(index1, index2)

In the following example, newStr has a value of “There”:

newStr = samsStr.slice(6,11);

The second argument may be a negative index, in which case the endpoint is found by offset-
ting from the string’s termination. This integer is not zero based, so the first negative character
accessible is the second-to-last one.

stringReference.slice(index1, -index2)

In this example, newStr has a value of “There Worl”:

newStr = samsStr.slice(6,-1)

And in this example, newStr has a value of “There”:

newStr = samsStr.slice(6,-6)

split()
If we need to create an array of strings out of a single string—to use in searches, for example—
we provide split with a substring argument on which to divide the original string. The substring
is replaced with the standard array comma delimiters. The Array object is created automati-
cally. The substring argument can be a regular expression. The syntax is

arrayReference = stringReference.split(substring)

The following code creates an array named newArray, which contains three array elements,
“Hello”, “There”, and “World”, since the string was broken on instances of the space character:

newArray = samsStr.split(“ “)

newArray[0] has a value of “Hello”. newArray[1] is “There” and newArray[2] is “World”.

In the next example, where we split on the double “l”, newArray has two elements, “He” and “o
There World”:

newArray = samsStr.split(“ll”)

Scripting

Therefore, newArray[0] has a value of “He” and newArray[1] is “o There World”.

We can also use a regular expression as the split() argument. Regular expressions are discussed
later in the section “Regular Expressions.”

The following assignment creates a regular expression for matching all instances of the letter
“l” (g for global).

re = /l/g

We include the regular expression variable in our method, as we would any substring variable:

newArray = samsStr.split(re);

The preceding returns the array “He,o There Wor,d”, where newArray[0] is “He”, newArray[1]
is “o There Wor”, and newArray[2] is “d”.

If we use the preceding example with a substring instead of a regular expression, the result is
different. The second “l” in “Hello” creates an array element with a null value—that is, the
following example returns an array of “He,,o There Wor,d”.

newArray = samsStr.split(“l”)

In this case, newArray[0] is “He”, newArray [1] has a value of null, newArray[2] is “o There
Wor”, and newArray[3] is “d”.

Both examples have their uses. Keep in mind that a seemingly identical substring and regular
expression can generate different results.

search()
Step aside, indexOf()! search() does everything this old method did and with regular expres-
sions as well. The syntax options for this method are

stringReference.search(substring)

stringReference.search(regExp)

Like indexOf(), search returns the zero-based index of the substring’s location in a successful
search. In an unsuccessful search, it returns -1.

In the following example, newInd has a value of 2, the index of the double “l”.

newInd = samsStr.search(“ll”)

The regular-expression version of the above also returns 2:

newInd = samsStr.search(/ll/)

Searching for a nonexistent substring returns -1, as in the following:

newInd = samsStr.search(“oo”)

Using JavaScript for Internet Explorer Dynamic HTML

10

replace()
The replace()method, of course, replaces a portion of a string with new text. It finds the por-
tion to be replaced through a string or regular-expression argument. The power of this method
is demonstrated only if a regular expression is used, simply because the substring argument
cannot specify a complex search string or global and conditional replacements. The two syntax
options are

stringReference.replace(findString,replaceString)

stringReference.replace(regExp,replaceString)

Using a substring argument, we will have only the first instance replaced. In this example, newStr
is “Herlo There World”:

newStr = samsStr.replace(“l”,”r”);

With a regular-expression argument, we can replace all instances of a substring. In the follow-
ing example, newStr is “Herro There Worrd”:

newStr = samsStr.replace(/l/g,”r”);

match()
The match()method, like split(), returns an array of values corresponding to the matches found
of a substring or regular expression in a target string.

The following example, using a substring argument, returns a single-array element with a value
of “l”, the matched substring:

newArray = samsStr.match(“l”);

In IE4, three additional, nonindexed, named elements are also created, providing useful infor-
mation about the match. The complete newArray would be

newArray[input] = “Hello There World”
newArray[index] = 2
newArray[lastIndex] = 3
newArray[0] = “l”

newArray[input] stores the string on which the match was performed. newArray[index] is the
inclusive start index of the match. Because we are dealing with a zero-based index, the first oc-
currence of “l”, the third letter, is 2. newArray[lastIndex] is the noninclusive end index of the
match—in our case the very next letter, the second “l”.

Scripting

If we use a global regular expression as an argument, newArray will have three indexed elements,
the three occurrences of “l”:

newArray = samsStr.match(/l/g);

newArray has the following elements:

newArray[input] = “Hello There World”
newArray[index] = 15
newArray[lastIndex] = 16
newArray[0] = “l”
newArray[1] = “l”
newArray[2] = “l”

Because we have more than one match, newArray[index] and newArray[lastIndex] now store
the inclusive start and noninclusive end indices of the final match, respectively.

Let’s use a slightly more complex regular expression in another match. This time we will match
any “l” that is followed by any word character:

newArray = samsStr.match(/l\w/g)

This time newArray has the following elements:

newArray[input] = “Hello There World”
newArray[index] = 15
newArray[lastIndex] = 17
newArray[0] = “ll”
newArray[1] = “ld”

The new String methods combined with the power of regular expressions give the Web page
author unprecedented flexibility over page presentation. Unfortunately, this power is taking a
back seat to WOW! features of DHTML, such as element animation.

The next section illustrates a simple, timesaving, resource-efficient application.

JScript 3 introduces, parallel with JavaScript 1.2, the powerful regular expression tool for string
matching, replacing, and manipulation. JScript regular expressions are based on the Perl model,
and those familiar with Perl will come up to speed immediately and notice very few differ-
ences.

A complete examination of regular expressions is beyond the scope of this chapter. Regular
expressions have an extensive library of pattern identifiers, metacharacters, and modifiers. Here
we provide a short introduction that lets you immediately begin using regular expressions.

A regular expression string “pattern” is delimited by forward slashes without the normal string-
enclosing quotes. If you want to match the string “Static HTML”, you can create a regular ex-
pression by simple pattern enclosure:

samsOrig = “Static HTML is here and static HTML will last forever”;
samsPattern = /Static HTML/;

Using JavaScript for Internet Explorer Dynamic HTML

10

samsNew = “Dynamic HTML”;
samsOrig = samsOrig.replace(samsPattern, samsNew);

Our string, samsOrig, now has the value of “Dynamic HTML is here and static HTML will last
forever”.

A pattern can have modifiers. Two of the most often used are g for global matching and i for
case-insensitive matching. They are simply appended after the slashes in the regular expression:

samsOrig = “Static HTML is here and static HTML will last forever”;
samsPattern = /static hTmL/gi;
samsNew = “Dynamic HTML”;
samsOrig = samsOrig.replace(samsPattern, samsNew);

samsOrig is now “Dynamic HTML is here and Dynamic HTML will last forever”.

You can add metacharacters inside the slashes. Escape these characters with backslashes to avoid
confusion with regular text:

\w matches only letters, numbers, or underscores. It was demonstrated previously in
the match() example.

\b matches a word boundary (space, period, and so on).

In the following example, “st” will be matched only if it begins a word:

samsOrig = “Static HTML is here and static HTML will last forever”;
samsPattern = /\bst/gi;
samsNew = “Acrob”;
samsOrig = samsOrig.replace(samsPattern, samsNew);

The two instances of “st” beginning a word are replaced, but the “st” in the word “last” is
not. samsOrig is now “Acrobatic HTML is here and Acrobatic HTML will last forever”.

In the same way, we can match instances of “st” that occur at the end of a word:

samsPattern = /st\b/gi;
samsNew = “Acrob”;
samsOrig = samsOrig.replace(samsPattern, samsNew);

samsOrig now has a value of: “Static HTML is here and static HTML will laAcrob forever”.

Many more modifiers, metacharacters, and special characters exist. Complete documentation
of the JavaScript implementation can be found on both the JavaScript 1.2 site at http://
developer.netscape.com/library/documentation/communicator/jsguide/js1_2.htm, and the
JScript site at http://www.microsoft.com/jscript/.

In addition to the literal representation of the regular-expression pattern, JScript lets you cre-
ate an instance of the new object RegExp to contain the pattern. This is a good idea if the code
repeatedly uses the pattern.

The following example demonstrates simple regular-expression use combined with the new string
methods to dynamically add links to a Web page.

Scripting

Consider this probable real-world scenario: A large educational, commercial, or technical site
needs many in-page links to other pages—some on other servers, others on the same server.
Keywords identify these links in the page proper. For example, a reference to Microsoft cer-
tainly gets a Microsoft link. This is a well-known URL that
is not about to change. Other URLs might change. How do you change all links on all pages?
A new URL appears and should get linked from many of the pages already posted. How can
you change or append them quickly and efficiently?

The example has a simple English course outline snippet from a university. Several authors are
mentioned in the course blurb. These authors might have pages to be linked in the bibliogra-
phy page of the site. To avoid constantly updating the course page if new information is added
to the bibliography page, you create a routine to dynamically create links each time the page is
loaded, reflecting all changes and additions.

The whole script or just the referenced string can be in an external file. Making adjustments to
the single string in the one external JScript file changes the links on possibly hundreds of Web
pages:

<HTML>
<HEAD>

<SCRIPT LANGUAGE=”JScript” SRC=”authList.js”></SCRIPT>

<SCRIPT LANGUAGE=”JScript”>

// begin contents of minimum possible external file

 authLinked = “Roth, Dickens”

// end contents of possible external file

 function makeLinks() {

 allText = document.body.innerHTML;
 URLText = “bibliography.html#”

 pattern = /\s*,\s*/
 arAuthLink = authLinked.split(pattern);

 for (count=0; count<arAuthLink.length; count++) {

 searchStr = arAuthLink[count];
 URLText = URLText.concat(searchStr.charAt(0));

 replaceStr = searchStr.link(URLText);

 patternSearch = new RegExp(searchStr, “g”);
 allText = allText.replace(patternSearch, replaceStr);
 }

 document.body.innerHTML = allText;
 }

Using JavaScript for Internet Explorer Dynamic HTML

10

</SCRIPT>
</HEAD>
<BODY onLoad=”makeLinks()”>

<P>English Literature 101 will introduce you to the pantheon of British
and American writers. Among the many masterpieces to be studied will be
works by Charles Dickens, Herman Melville, Martin Amis, Norman Mailer, and
Philip Roth.</P>

</BODY>
</HTML>

The SCRIPT, which could be contained completely in an external file, has a string assignment
and the makeLinks() function. The string assignment should be in an external file, allowing it
to be referenced by multiple pages.

A string therefore hosts the names of the authors the bibliography page has references to. In
the example, it contains “Roth” and “Dickens.”

The body HTML has no links, just the plain text. Figure 10.4 illustrates the display of the
body HTML, before our script is run.

The non-dynamic
display.

When the page loads, the onLoad event handler of the BODY tag calls the one and only function:
makeLinks().

The function immediately stores all the page HTML (all the HTML between <BODY> and
</BODY>, that is) in a string variable.

It also initializes a string variable containing the bibliography page URL. This string ends with
a hash. Assume that the bibliography page has named anchors for each letter of the alphabet.
The created link takes the user straight to the named anchor.

Scripting

A regular-expression pattern is assigned to the variable pattern. This regular expression uses
the \s metacharacter, which matches any white space. White space can be a space, line feed,
form feed, tab, and so on. It also uses the special character *, which matches zero or more oc-
currences of the preceding character. Therefore, the regular expression matches any comma
that may or may not be preceded by some white space and may or may not be followed by
some white space.

This pattern is then used to create an array from the author string using the split() method.
The array now has the following elements:

arAuthLink[0] = “Roth”
arAuthLink[1] = “Dickens”

Using the for loop, the script cycles through the array one element at a time. First, the element
(author’s name) is assigned to the variable searchStr.

The next line uses the old string method charAt() to isolate the first character of the author’s
name. This letter is then appended to the URLtext variable with the new concat() method. In
the case of the first author, Roth, URLtext now contains bibliography.html#R.

The very powerful, but rarely used, old JScript and JavaScript method link() is then used to
create the appropriate HTML link text. This text is stored in the replaceStr variable.

replaceStr contains “Roth”.

An instance of the RegExp object is created to be used in the search. The object takes two argu-
ments—the string pattern and any modifiers. The author’s name of course, is the string to be
searched for, and the search must be global. These arguments are the same as using /Roth/g.

Finally, the script searches for the unlinked author’s name throughout the body HTML vari-
able and replaces it with the linked version.

The new body HTML is displayed on the page when it is assigned back to the body’s innerHTML
property. Figure 10.5 illustrates the updated display:

The dynamic display.

Using JavaScript for Internet Explorer Dynamic HTML

10

This routine demonstrates many of the new string methods with regular expressions. It can be
modified to include multidimensional arrays with different links for different source text. It
might not move anything across the page, but it is an example of the timesaving and resource-
saving power of Dynamic HTML.

It is not always possible to script for both dynamic browsers. The core operators, statements,
and methods in JScript 3 and JavaScript 1.2 are more or less the same. JScript’s capability to
access the complete Document Object Model and CSS property values, however, gives it a power
that JavaScript has yet to achieve. Unless you are writing for a controlled environment, such as
an intranet, there should be considerations for both browsers.

Conditional exposure of script should not be based on browser identification or browser ver-
sion. Unfortunately, most browser-detection scripts suggest this approach. Consider its weak-
nesses: If a script is exposed only to a certain browser version, what happens when a browser by
a different vendor adopts support for the features in question? One must go back and change
every page to accommodate the new browser as well—certainly not the most efficient coding
technique.

Image
Navigator 3 introduced the Image object and the document.images array. This allowed for im-
age swapping on-the-fly and led to the creation of many image rollovers. Because Navigator 3
was the only browser supporting it, many authors used properties of the Navigator object to
identify the browser being used and hide the code from all but Navigator 3.

The JScript 2 engine supports the Image object, and it shipped in some later builds of Explorer
3.02. What does one do—go back and check for Explorer 3.02 and accommodate that browser
as well? The module concept in Internet Explorer lets you have the JScript 2 engine with Ex-
plorer 3.0 or 3.01, so what should have been done in the first place?

The answer, of course, is that you should have detected support of the Image object by check-
ing for the existence of the document.images array:

if (document.images) {

...image object script goes here...

}

Any browser version that appears with support for this feature will see the script.

Scripting

We, as authors, do not care what vendor manufactured our client’s browser, nor do we care
what the version number is. We care that whatever browser is visiting our page sees only script
that it understands.

Avoid using names and version numbers. Can anyone guarantee that in version 5, Explorer
won’t support present Navigator-specific code, or vice versa? Because the two browsers have
different DOMs, they each have unique arrays or collections to host properties of the model.
Navigator 4 has a unique document.layers array and Explorer 4 has a unique document.all
collection. The most efficient dynamic browser-detection script then becomes

IE4 = (document.all) ? 1 : 0;
NN4 = (document.layers) ? 1 : 0;
ver4 = (IE4 || NN4) ? 1 : 0;

Three variables are created: IE4, which is true if the document.all collection exists; NN4, which
is true if the document.layers array exists; and ver4, which is true if either of the previous two
variables is true. (The names IE4 and NN4 are used for clarity. They could just as easily have
been allBrowser and layerBrowser.)

In the future, if Navigator adopts the Explorer DOM or a third browser appears that supports
one of the two models, the detection script will still work.

Some JScript is impossible to translate. The TextRange object and its properties and methods
provide an example. Such code should be completely hidden from Navigator.

if (IE4) {

...Explorer-specific script...

}

If the script is in a function, use a single-line conditional to return the incompatible browser.
This way, there is less chance of brace-matching errors:

function navStuff() {
 if (!NN4) {return};

 ...Navigator-specific script...

}

Many times, both browsers support the required result but need to go about it differently, as in
positioning an element, for instance. If you have an element named elMoveMe and you need to
move it 100 pixels to the right and 150 pixels down on the page, Explorer would require one
of the two following sets of code:

Using JavaScript for Internet Explorer Dynamic HTML

10

document.all.elMoveMe.style.pixelLeft += 100;
document.all.elMoveMe.style.pixelTop +=150;

elMoveMe.style.pixelLeft += 100;
elMoveMe.style.pixelTop += 150;

To accomplish the same in Navigator, either one of the two following lines will suffice:

document.elMoveMe.moveBy(100,150);

document.elMoveMe.offset(100,150);

Both Navigator script snippets are more efficient than the Explorer versions because a single
method is used. You can, however, create a script that will work on both equally well.

Explorer does not have a two-argument method for moving elements. Navigator elements do
not have a pixelLeft or pixelTop property.

Both browsers, however, supply their positioned elements with a left and top property. The
Explorer versions are strings reflecting the CSS property declaration (such as 240px). Navigator’s
properties are integers (such as Explorer’s pixelLeft and Top). Explorer accepts an integer as a
property assignment and then internally converts it to a string. The following code works on
both browsers:

if (ver4) {
 elToMove = (IE4) ? elMoveMe.style : document.elMoveMe;
 elToMove.left = parseInt(elToMove.left) + 100;
 elToMove.top = parseInt(elToMove.top) + 150;
}

This is a lowest common denominator approach. It makes no difference to browser perfor-
mance and sacrifices browser-specific features for less elegant but compatible features.

Explorer 4 introduces a major new update to its primary scripting engine, JScript 3. Starting
life as a one-step-behind JavaScript clone, JScript has grown to be completely compatible with
the latest JavaScript version (1.2). In addition, it can also manipulate the new properties and
methods generated by Explorer’s comprehensive DOM and all CSS properties.

You have taken a detailed look at the different ways to include JScript in Web pages, with ref-
erence to browser-specific and cross-browser applications. JScript provides new statements for
controlling program flow, such as do…while and switch. It has also added new internationaliza-
tion methods for the Date object and powerful retrieval and manipulation methods for the String
object. The latter, with its new capability to use Perl-like regular expressions, has perhaps be-
come the most useful object for Dynamic HTML.

Scripting

Dynamically Changing Content

11

by Peter Belesis

■

■

■

■

Scripting

The term Dynamic HTML (DHTML), as mentioned in earlier chapters, has been bounced
around for years, always in reference to on-demand pages built on the server before client down-
load. Today, DHTML reduces the server workload by allowing content change after the page
has been downloaded. This capability greatly increases update speed and expands the potential
for interactive pages.

In this chapter, we will look at the tools offered by the document object models (DOMs) and
scripting engines in Netscape Navigator 4 and Microsoft Internet Explorer 4 (IE4) for chang-
ing page content on the client side. We will conclude with the DHTML Author Quiz, a simple
question-and-answer session with a student, demonstrating a real-life application of dynamic
content change in IE4. This example can be easily expanded with the tools we will discuss to
create a full-blown educational application.

Previous versions of JavaScript allowed you to dynamically change the values of form elements,
but it was not until JavaScript 1.1 and the introduction of the image object that you got a taste
of what has become today’s DOM. The capability to change the source file (src property) of
an already displayed image, combined with event handlers, has provided the tool for image
display on demand, rollover effects, and simple animations.

Although the browser manufacturers have agreed to abide by the emerging standards, their
implementations of dynamic content change capabilities differ. Netscape has expanded the
concept of frames to include positioning, whereas Microsoft has attempted to expose every
element of the document to change. The scripting methods are similar, fortunately, but most
object properties are unique to each browser.

Netscape Navigator 4 introduced a new HTML tag, <LAYER>, and adopted the W3C’s Posi-
tioning HTML Elements with Cascading Style Sheets. Both of these features are discussed in great
detail in Part II, “Cascading Style Sheets,” and Chapter 22, “Using Layers.” In this section we
concern ourselves with using these new features to dynamically change page content.

LAYER
To properly envision the LAYER concept, consider this simplified definition:

■ A layer is nothing more than a frame that can be absolutely positioned and can exist in
2.5 dimensions—that is, it can occupy the same 2D space as another frame.

■ Layers, like frames, are documents unto themselves, with a document property that is
in turn an object, with all the properties of the top-level document object. They
capture events in the same way as the top-level window or document.

Consequently, to change content in a layer, you follow the same procedures used to change
content in any regular HTML page:

Dynamically Changing Content

11■ Change the source HTML file or

■ Use the write() method of its document object

LAYER
When the page is displayed, regardless of whether a layer has been defined with an SRC= at-
tribute, changing its src property will load a new HTML page into the layer. Also, if the SRC
attribute has a value, any in-page HTML between the LAYER start and end tags is ignored.

In the following example, the file book1.html is displayed in the layer in response to a link click:

<HTML>
<HEAD><TITLE>src Change 1</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>
 function change(which) {
 document.goodRead.src=”book1.html”
 }
</SCRIPT>

</HEAD>
<BODY>

<P>Good Read</P>

<LAYER
ID = “goodRead”
PAGEX = 120
PAGEY = 50
WIDTH = 300
CLIP = 400,150
BGCOLOR = “palegreen”>
 <CENTER>Click on the link above for a Good Read!</CENTER>
</LAYER>

</BODY>
</HTML>

Corresponding to the different ways of referencing a layer are the respective ways to set its prop-
erties. We could have changed the src property in any of the following ways:

document.layers[“goodRead”].src = “book1.html” or

document.layers.goodRead.src = “book1.html” or

document.layers[0].src = “book1.html” or

document.goodRead.src = “book1.html”

The external file, book1.html, has a BODY tag with this attribute:

<BODY BGCOLOR=lightgrey>

In our example, the layer properties set by the HTML attributes in its start tag are maintained.
The external file will wrap at 300 pixels, and the display will be clipped at 400 × 150 pixels.

Scripting

Note that any attributes in the external file’s BODY tag that correspond to possible LAYER attributes
will override those of LAYER if set. In the code listed previously, the external file has the BGCOLOR
attribute set to lightgrey. The background color of the layer will seem to be light grey. Al-
though the HTML content of the external file wraps at 300 pixels, the layer’s width property,
the background colors, and background images expand to the clip margins.

ILAYER
If you need to create an in-flow layer that will require updating, do not use the ILAYER tag. The
results, although fun to witness, will probably not relate in any way to your intentions.

LAYER

LEFT TOP PAGEX PAGEY

ILAYER LAYER

load()
Changing the src property of a LAYER keeps the width property intact. There are times when
the new content warrants changing the width property. For this we have the load() method,
whose syntax looks like this:

layerReference.load(filename, width)

The argument for the name of the external file is given, of course, as a string; the width in
pixels.

This example has two links that load two different external files. The first wraps at 300, the
other at 400:

<HTML>
<HEAD><TITLE>load() Change2</TITLE>

<SCRIPT>

 function change(which) {
 howWide = (which == 1) ? 300 : 400

Dynamically Changing Content

11 document.goodRead.load(“book” + which + “.html”, howWide)
 }

</SCRIPT>

</HEAD>

<BODY>
<P>Good Read 1

 Good Read 2</P>

<LAYER ID = “goodRead”
PAGEX = 100
PAGEY = 50
WIDTH = 250
CLIP = 400,150
BGCOLOR = palegreen>
 <CENTER>Good Reads</CENTER>
</LAYER>

</BODY>
</HTML>

document.write()
Every layer defines a new x-y coordinate system for all its contained HTML. This contained
HTML is reflected into the layer’s document property, which is, in turn, itself an object. A layer’s
content can be changed by writing directly to this document using the open(), write(), and
close() methods. For example, to display the tired phrase “Hello World” in a layer, we would
use the following code:

layerReference.document.open();
layerReference.document.write(“Hello World”);
layerReference.document.close();

All the layer-addressing methods in this code are valid. If our layer were named “tiredPhrase”,
the following pairs would all produce the same result:

document.layers[“tiredPhrase”].document.write(“Hello World”);
document.layers[“tiredPhrase”].document.close();

document.layers.tiredPhrase.document.write(“Hello World”);
document.layers.tiredPhrase.document.close();

document.layers[index].document.write(“Hello World”);
document.layers[index].document.close();

document.tiredPhrase.document.write(“Hello World”);
document.tiredPhrase.document.close();

document.open() document.write()

The close()

Scripting

Every layer’s document property has a layers array that contains all child layers nested within
the parent. Each child layer has its own document property, which has an array of nested layers,
and so on. The following HTML defines several nested layers:

<LAYER ID=”grGrandDad”>
 <LAYER ID=”grandDad”>
 …content to change is here…
 </LAYER>
 <LAYER ID=”grandMa”>
 <LAYER ID=”ma”>
 <LAYER ID=”sis”>
 …content to change is also here…
 </LAYER>
 </LAYER>
 </LAYER>
</LAYER>

If we needed to change the content of grandDad with document.write(), we would need to
reference it as a child of grGrandDad. That is

document.layers[“grGrandDad”].document.layers[“grandDad”].document.write(new HTML);
document.layers[“grGrandDad”].document.layers[“grandDad”].document.close();

The “sis” layer, which is nested even deeper, would need a much longer reference:

document.layers[“grGrandDad”].document.layers[“grandMa”].document.layers[“ma”].
➥document.layers[“sis”].document.write(new HTML);
document.layers[“grGrandDad”].document.layers[“grandMa”].document.layers[“ma”].
➥document.layers[“sis”].document.close();

Any number of document.write() statements can be used to build the new content of a layer.
The layer will be redrawn once the close() method is used. Successive writes to the same layer
will, of course, erase all previous content.

Netscape’s underlying engine for cascading style sheets (CSS)–positioned elements is the same
as the LAYER engine, so all the rules mentioned in the previous section apply. To flesh out
omissions in the CSS specification that correspond to LAYER attributes, Netscape has introduced
several proprietary CSS properties:

layer-background-color

layer-background-image

include-source

These extend CSS to support the LAYER attributes of BGCOLOR, BACKGROUND, and SRC, respec-
tively. If the layer in the first code snippet were to have an external source upon declaration, it
would be defined in Netscape-CSS as follows:

Dynamically Changing Content

11#goodRead {
 position: absolute;
 left: 120;
 top: 50;
 width: 300;
 clip: rect(0 150 400 0);
 layer-background-color: palegreen;
 include-source: url(“book2.html”)
}

It would be defined in the HTML page as follows:

<DIV
ID = “goodRead”>
 <CENTER>Click on the link above for a Good Read!</CENTER>
</DIV>

or

 <CENTER>Click on the link above for a Good Read!</CENTER>

relative position ILAYER

document.write()
The procedure for changing the contents of a CSS-positioned element with the write() method
is exactly the same as that for a layer.

It is worth noting here, however, that a standard has emerged in layer and CSS element refer-
encing. For no reason other than clarity, authors are using the layers array method for referring
to a LAYER and the direct object name method for referring to a CSS element.

Our page HTML defines the following LAYER:

<LAYER ID=”headHoncho”>
</LAYER>

Most authors would use this code for the layer reference:

document.layers[“headHoncho”];

Conversely, our HTML may contain the following CSS-positioned element:

<DIV ID=”headHoncho”>
</DIV>

Scripting

In this case, the reference most often seen is the following:

document.headHoncho;

LAYER

IE4’s expanded DOM has exposed not only every element, but—using the tools available to
us—every single letter, comma, and period in a document.

With scripting, the author can isolate any part of a document and add, modify, or delete
it dynamically. In this section, we will look at the various ways Explorer allows us to achieve
client-side content change.

We begin with author-scripted style changes and then proceed to text and HTML modifica-
tions. Outside the scope of this section, however, lies the all-powerful TextRange object, which
can allow the user to decide what to change and where.

More often than not, the first experiments with dynamic content change in IE4 revolve around
CSS styles. A complete exploration of IE4’s dynamic styles can be found in Chapter 6, “Text
and Fonts with Style,” but no self-respecting chapter devoted to content dynamics can pro-
ceed without at least a quick overview.

Problem: Text links should change color when the mouse passes over them and return to their
original color when the mouse leaves.

Solution 1: In-line style property change:

I am a
<A

Dynamically Changing Content

11HREF = “linkOne.html”
STYLE = “color: red”
onMouseOver = “this.style.color = ‘blue’”
onMouseOut = “this.style.color = ‘red’”>red link.

The this keyword is reserved by JavaScript to refer to the object at hand, in this case the link.
We simply change the color property of the object’s style declaration.

Solution 2: In-line class change:

.red { color: red }

.blue { color: blue }

I am a
<A
HREF = “linkOne.html”
CLASS = red
onMouseOver = “this.className = ‘blue’”
onMouseOut = “this.className = ‘red’”>red link.

In this example we used className, which is a direct property of the object, because it is cre-
ated by the CLASS= attribute and not by STYLE=.

Any combination of properties can be modified with this method. But what if we have two or
more types of links, with many classes to choose from?

Solution 3: Function-generated class change:

<HTML>
<HEAD><TITLE></TITLE>

<STYLE TYPE=”text/css”>

 .red { color: red }
 .yellow { color: yellow }
 .blue { color: blue }
 .weirdname { color: cornflowerblue }

</STYLE>

<SCRIPT LANGUAGE=”JavaScript”>

 var origClass = null;

 function swapClass(whichClass) {
 whichEl = event.srcElement;

Scripting

 origClass = whichEl.className;
 whichEl.className = whichClass;
 whichEl.onmouseout = changeBack;
 }

 function changeBack() {
 whichEl = event.srcElement;
 whichEl.className = origClass;
 }

</SCRIPT>
</HEAD>
<BODY>

 <P>I am a
 <A
 HREF = “linkOne.html”
 CLASS = “red”
 onMouseOver = “swapClass(‘blue’)”>red link.</P>
 <P>I am a
 <A
 HREF = “linkTwo.html”
 CLASS = “yellow”
 onMouseOver = “swapClass(‘blue’)”>yellow link.</P>
 <P>I am a
 <A
 HREF = “linkThree.html”
 CLASS = “weirdname”
 onMouseOver = “swapClass(‘yellow’)”>cornflowerblue link.</P>

</BODY>
</HTML>

Here we keep the body HTML typing to a minimum and let the script gather its own informa-
tion through the event object. In the HTML element, we define only the action for the mouseover
event: to call the swapClass() function, passing with it the name of the class to switch to.

The swapClass() function uses the event object generated by the mouseover to identify the
element that fired the event. When the element is identified, the function places the present
class name of the object in the origClass variable, which has been initialized outside the func-
tion, making it globally available.

Using the passed argument, a new class name is applied to the object. This done, it defines the
onmouseout event handler for the object: Go to the changeBack() function.

The changeBack() function uses the event object in the same way as swapClass() and restores
the original class name of the object.

This example introduces several good scripting techniques:

■ Keep the HTML to a minimum

■ Let the script gather as much information to use as arguments as possible

■ Make functions globally available, without need for changes if HTML is changed

Dynamically Changing Content

11
IE4 provides two new object properties and one method for dynamically changing text after
initial browser formatting and display:

objectReference.innerText

objectReference.outerText

objectReference.insertAdjacentText()

The following properties are for changing HTML:

objectReference.innerHTML

objectReference.outerHTML

objectReference.insertAdjacentHTML()

All of these can be properties or methods of the following HTML elements:

A ADDRESS B BIG BLOCKQUOTE

BODY BUTTON CAPTION CENTER CITE

CODE DD DFN DIR DIV

DL DT EM FIELDSET FONT

FORM H1 H2 H3 H4

H5 H6 I IFRAME KBD

LABEL LEGEND LI LISTING MARQUEE

MENU OL P PLAINTEXT PRE

S SAMP SMALL SPAN STRIKE

STRONG SUB SUP TD TH

TT U UL VAR XMP

In other words, they are element dependent.

To best illustrate the differences of these properties, let’s apply them to the following text
passage:

Call me Ishmael. Some years ago—never mind how long precisely—having little or no
money in my purse, and nothing particular to interest me on shore, I thought I would
sail about a little and see the watery part of the world.

The HTML for this passage follows:

<P> Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.</P>

Scripting

.innerText
This value of the .innerText property must be both retrieved and set (read/write).

The inner text of the B element with the “moniker” ID can be referenced as follows:

document.all.moniker.innerText

moniker.innerText

In the present example, this inner text has a value of “Ishmael” because “Ishmael” is the text
within the named tag. It is the inner text.

In this case, because we know the element ID, the comprehensive all collection (containing
every element in the page) is redundant, much like referring to a human being as an “inhabit-
ant of Earth.”

Retrieve the value of moniker.innerText and assign it to a variable like this:

var narrator = moniker.innerText

Change the value of moniker.innerText like this:

moniker.innerText = “Barney”

When changed, the HTML of the passage would read as follows:

<P> Call me <B ID=”moniker”>Barney. Some years ago...

Explorer would reformat all affected layout to accommodate the new text, which is one letter
shorter than the original. In this case, the paragraph would be reformatted.

The following code can be used to experiment with the innerText property. It demonstrates
retrieval and setting of the property with a toggle function:

<HTML>
<HEAD><TITLE>innerText</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

 var isOrig = true;

 function chgInnerTxt(){
 if (isOrig) {
 origName = moniker.innerText;
 moniker.innerText = “Barney”;
 }
 else {
 moniker.innerText = origName;
 }

 isOrig = !isOrig;
 }

Dynamically Changing Content

11</SCRIPT>
</HEAD>
<BODY>
<P>
Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.
</P>
<BUTTON onClick=”chgInnerTxt()”>Change Name (.innerText)</BUTTON>
</BODY>
</HTML>

Even though HTML is text as well, the innerText property will strip any HTML upon
retrieval. Suppose the example read as follows:

Call me <B ID=”moniker”>Ish<I>m</I>ael.

moniker.innerText would still be “Ishmael” and the formatting would be lost forever.

Now suppose we tried to change moniker with the following:

moniker.innerText = “<I>Barn</I>ey”

Our screen display looks like this:

Call me <I>Barn</I>ey.

That is, Explorer would process this as if the HTML were as follows:

Call me <B ID=”moniker”><I>Barn</I>ney

.outerText
The value of the .outerText property can be both retrieved and set (read/write).

The outer text of the B element with the “moniker” ID can be referenced as follows:

moniker.outerText

It has a value of “Ishmael”. Even though the outer text of the element includes the element
tags, they will be stripped from the string.

outerText ID

ID

Scripting

The following code has a good reason to use outerText: We are not swapping proper names, as
in the previous example. On the toggle, however, it generates an error because the tag no longer
exists:

<HTML>
<HEAD><TITLE>innerText</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

 var isOrig = true;

 function chgOuterTxt(){
 if (isOrig) {
 origName = moniker.outerText;
 moniker.outerText = “anything you want”;
 }
 else {
 moniker.outerText = origName;
 }

 isOrig = !isOrig;
 }

</SCRIPT>
</HEAD>
<BODY>

<P>Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.</P>
<BUTTON onClick=”chgOuterTxt()”>Change Name (.outerText)</BUTTON>
</BODY>
</HTML>

The passage HTML has now been changed to the following:

<P>Call me anything you want. Some years ago...

.insertAdjacentText()
This method takes two parameters and inserts the textstring into the element object at the
specified position:

objectReference.insertAdjacentText(position, textstring)

Because it inserts text, it is nondestructive.

The position string can have one of four values: “BeforeBegin”, “AfterBegin”, “BeforeEnd”,
and “AfterEnd”. These values are explained in the sections that follow.

“BeforeBegin”
If we use the “BeforeBegin” position variable, the text in the textstring variable is inserted
immediately before the element. It resides outside the element’s enclosing tags, so it is not
affected by any formatting the element generates.

Dynamically Changing Content

11For example, say we have the following code:

nothing.insertAdjacentText(“BeforeBegin”, “absolutely “)

It would generate this HTML:

absolutely <I ID=”nothing”>nothing particular to interest me on shore,</I>

“AfterBegin”
The “AfterBegin” position variable causes the text in the textstring variable to be inserted
after the element starting tag but before any other enclosed content, like this:

nothing.insertAdjacentText(“AfterBegin”, “absolutely “)

This code gives us the following (our inserted text will be italicized):

<I ID=”nothing”>absolutely nothing particular to interest me on shore,</I>

“BeforeEnd”
“BeforeEnd” inserts the text before the element closing tag and after any other enclosed con-
tent. For example, say we have the following code:

nothing.insertAdjacentText(“BeforeEnd”, “ or anywhere else, for that matter, “)

This produces the following HTML (our inserted text will be italicized):

<I ID=”nothing”>nothing particular to interest me on shore, or anywhere else,
for that matter, </I>

“AfterEnd”
“AfterEnd” inserts the text immediately after the element and is unaffected by element format-
ting. Say we have the following code:

nothing.insertAdjacentText(“BeforeEnd”, “ or anywhere else, for that matter, “)

This results in the following:

<I ID=”nothing”>nothing particular to interest me on shore,</I> or anywhere else,
for that matter,

This code will help you visualize these differences. Use the reset button to restore the original
formatting of the paragraph, like this:

<HTML>
<HEAD><TITLE>insertAdjacentText</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

 function doMoby() { passage.innerHTML = moby }

 function insAdjTxtBB() {
 insText = “absolutely “;
 nothing.insertAdjacentText(“BeforeBegin”, insText)
 }

Scripting

 function insAdjTxtAB() {
 insText = “absolutely “;
 nothing.insertAdjacentText(“AfterBegin”, insText)
 }

 function insAdjTxtBE() {
 insText = “ or anywhere else, for that matter, “;
 nothing.insertAdjacentText(“BeforeEnd”, insText);
 }

 function insAdjTxtAE() {
 insText = “ or anywhere else, for that matter, “;
 nothing.insertAdjacentText(“AfterEnd”, insText);
 }

</SCRIPT>
</HEAD>

<BODY onLoad=”moby = passage.innerHTML”>

<P ID=”passage”>
Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.
</P>

<CENTER>
<BUTTON onClick=”doMoby()”>Reset</BUTTON>

<BUTTON onClick=”insAdjTxtBB()”>.insertAdjacentText(“BeforeBegin”)</BUTTON>

<BUTTON onClick=”insAdjTxtAB()”>.insertAdjacentText(“AfterBegin”)</BUTTON>

<BUTTON onClick=”insAdjTxtBE()”>.insertAdjacentText(“BeforeEnd”)</BUTTON>

<BUTTON onClick=”insAdjTxtAE()”>.insertAdjacentText(“AfterEnd”)</BUTTON>
</CENTER>

</BODY>
</HTML>

.innerHTML
In the immediately preceding code, the innerHTML property is used to reset the paragraph to its
original formatting. It is also used to assign the paragraph’s content to a variable when the page
loads. Consequently, the value of this property can be both retrieved and set (read/write).

innerHTML

innerText

This property will probably be the one used most often, because when applied to a positioned
element, it is similar to Navigator’s document.write() method and is useful in minimizing cross-
browser scripting.

Dynamically Changing Content

11Here is an example of using innerHTML to both replace content and add formatting through
tags:

<HTML>
<HEAD><TITLE>innerHTML</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

 isOrig = true;

 function chgInnerHtml(){
 if (isOrig) {
 origTime = howlong.innerHTML;
 howlong.innerHTML = “<I>20 to be exact</I>”;
 }
 else {
 howlong.innerHTML = origTime;
 }

 isOrig = !isOrig;
 }

</SCRIPT>
</HEAD>

<BODY>

<P ID=”passage”>
Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.

</P>

<CENTER>
<BUTTON onClick=”chgInnerHtml()”>Change Time (.innerHTML)</BUTTON>
</CENTER>

</BODY>
</HTML>

.outerHTML
The value of the .outerHTML property can be both retrieved and set (read/write).

Like its text counterpart, this property can be destructive, because it replaces the start and end
element tags. Conversely, this feature can be used to replace tags to change formatting. If the
tags are changed and we need to maintain a reference to the element, the ID attribute must be
included in the start tag. If we needed to change the moniker to “Barney”, change the bold to
italic, and maintain the reference, we would use the following script:

moniker.innerHTML = <I ID=”moniker”>Barney</I>

Scripting

Unlike outerText, if we assign the value of outerHTML to a variable, the HTML remains intact
and can be used. We cannot use it in a toggle function, however, unless we have maintained
the ID, as in the previous line of code. The following code generates an error:

<HTML>
<HEAD><TITLE>outerHTML</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

 isOrig = true;

 function chgOuterHtml(){
 if (isOrig) {
 origTime = howlong.outerHTML;
 howlong.outerHTML = “<I>20 to be exact</I>”;
 }
 else {
 howlong.outerHTML = origTime;
 }

 isOrig = !isOrig;
 }

</SCRIPT>
</HEAD>

<BODY>

<P ID=”passage”>
Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.

</P>

<CENTER>
<BUTTON onClick=”chgOuterHtml()”>Change Time (.outerHTML)</BUTTON>
</CENTER>

</BODY>
</HTML>

.insertAdjacentHTML()
The .insertAdjacentHTML() method is the same as insertAdjacentText(), except it parses any
HTML included.

Let’s use the same examples we used to illustrate .insertAdjacentText.

The following code

nothing.insertAdjacentHTML(“BeforeBegin”, “absolutely “)

results in this HTML:

Dynamically Changing Content

11absolutely <I ID=”nothing”>nothing particular to interest me on shore,</I>

Because the HTML has been inserted before the start of the I tag, the resulting display has just
bolded text.

This code

nothing.insertAdjacentHTML(“AfterBegin”, “absolutely “)

results in text that is both bold and italic, because the insertion is done after the start of the I
tag:

<I ID=”nothing”>absolutely nothing particular to interest me on shore,</I>

Inserting with the “Before End” position variable

nothing.insertAdjacentHTML(“BeforeEnd”, “ or anywhere else,
 for that matter, “)

again results in bold-italic text because we are still within the I tag:

<I ID=”nothing”>nothing particular to interest me on shore, or anywhere else,
 for that matter, </I>

“AfterEnd”, of course, places our HTML after the I tag end:

nothing.insertAdjacentHTML(“AfterEnd”, “ or anywhere else,
 for that matter, “)

so our text is again just bold:

<I ID=”nothing”>nothing particular to interest me on shore,</I>
or anywhere else, for that matter,

The following code combines the four methods and adds a different way of assigning the
innerHTML value:

<HTML>
<HEAD><TITLE>insertAdjacentHTML</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

 function doMoby() { passage.innerHTML = moby }

 function insAdjHtmlBB() {
 insHtm = “absolutely ”;
 nothing.insertAdjacentHTML(“BeforeBegin”, insHtm)
 }

 function insAdjHtmlAB() {
 insHtm = “absolutely ”;
 nothing.insertAdjacentHTML(“AfterBegin”, insHtm)
 }

 function insAdjHtmlBE() {
 insHtm = “ or anywhere else, for that matter, ”;
 nothing.insertAdjacentHTML(“BeforeEnd”, insHtm)
 }

Scripting

 function insAdjHtmlAE() {
 insHtm = “ or anywhere else, for that matter, ”
 nothing.insertAdjacentHTML(“AfterEnd”, insHtm)
 }

</SCRIPT>
</HEAD>

<BODY>

<P ID=”passage”>
Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little
or no money in my purse, and <I ID=”nothing”>nothing particular
to interest me on shore,</I> I thought I would sail about a
little and see the watery part of the world.
</P>

<CENTER>
<BUTTON onClick=”doMoby()”>Reset</BUTTON>

<BUTTON onClick=”insAdjHtmlBB()”>.insertAdjacentHTML(“BeforeBegin”)</BUTTON>

<BUTTON onClick=”insAdjHtmlAB()”>.insertAdjacentHTML(“AfterBegin”)</BUTTON>

<BUTTON onClick=”insAdjHtmlBE()”>.insertAdjacentHTML(“BeforeEnd”)</BUTTON>

<BUTTON onClick=”insAdjHtmlAE()”>.insertAdjacentHTML(“AfterEnd”)</BUTTON>
</CENTER>

<SCRIPT LANGUAGE=”JavaScript”>moby = passage.innerHTML</SCRIPT>
</BODY>
</HTML>

innerHTML body

There are a few things to remember when replacing HTML:

■ HTML to be inserted must be valid in the context of the full page. For example, we
cannot replace “passage” in our example with: “<P>This is the first paragraph
</P>”, because the HTML page result would look like this: <P ID=passage><P>This is
the first paragraph</P></P> with invalid nested P tags. Attempting this will generate
an error.

Dynamically Changing Content

11■ HTML to be inserted must be valid when standing alone. It cannot be fragmented:
“<I>This has no end tag” will have an end tag appended automatically by Explorer
to avoid conflicts with later elements, resulting in “<I>This has no end tag</I>”.
Attempting this will not generate an error.

■ No insertions can be made while the page is loading. (This also applies to text.) We can
retrieve the value of the inner-outer properties while the page loads, but only after the
elements referenced have been created and closed. The last code snippet in the
previous example demonstrates this. We cannot, however, make any changes until the
page has fully loaded. The earliest change is made through the onLoad event handler.

■ Collections will be updated. At least the all collection will be updated to reflect the new
HTML layout. Other collections could be affected as well. Keep this in mind if
referencing by index value; it might need updating.

■ Overlapping elements will be modified. If the element content you are replacing
contains an overlap from another element, the start or end tag of one of the elements
will be moved to avoid a double overlap.

Example 1:
<B ID=”boldguy”>This is bold <I> this is bold-italic
 this is Italic</I>.

Say we used the following script:

boldguy.innerHTML = “<BIG>I am big</BIG>”

The result would look like this:

<B ID=”boldguy”><BIG>I am big</BIG><I>this is Italic</I>.

Example 2:
This is bold <I ID=”italicguy”> this is bold-italic
this is Italic</I>.

Say we have the following code:

italicguy.innerHTML = “<BIG>I am big</BIG>”

This produces the following:

This is bold <I ID=”italicguy”><BIG>I am big</BIG></I>.

■ Setting property with empty string deletes content/element. Pasting an empty string deletes
the element’s content (innerText, innerHTML) or the element itself (outerText,
outerHTML).

All the examples shown in this chapter bind content change to events. Even link selections are
events (click events), and more often than not, content change will be the result of an event.

We can also script a change to occur after a certain period of time has elapsed or have the change
occur at regular intervals.

Scripting

The very first version of JavaScript introduced the setTimeout() method of the window object.
It is used to evaluate a script expression, passed as a string, after a specified number of millisec-
onds:

setTimeout(expression, msecs);

The evaluation can be canceled before it occurs, if we first assign the identifier returned by the
method to a variable and then pass that variable as an argument in the clearTimeout() method,
like this:

var timerID = setTimeout(expression, msecs);
clearTimeout(timerID);

More often than not, the expression passed is a function call, with or without arguments. Both
Navigator and Explorer support a new method: setInterval(). This replaces the oft-used hack
of recursive setTimeout() calls by evaluating an expression or calling a function repeatedly, every
specified number of milliseconds, like this:

var timerID = setInterval(expression, msecs);
clearInterval(timerID);

Navigator extends the two methods by offering a function-only syntax option:

var timerID = setTimeout(functionName, msecs, [arg1, arg2...]);
var timerID = setInterval(functionName, msecs, [arg1, arg2...]);

It does nothing different from the old version, except that it allows one to pass arguments in a
slightly easier fashion, especially if variables are being passed.

Explorer extends the two methods as well. Its third, optional parameter is language, a string
specifying which script language the code should be executed in:

var timerID = setTimeout(functionName, msecs, [language]);
var timerID = setInterval(functionName, msecs, [language]);

To achieve cross-browser compatibility, it is best to use the nonextended compatible methods.

The following code uses both methods. The only content of the SPAN element with an ID of
purse is the word purse. When the Time-out button is clicked, the setTimeout() method is
invoked, which calls the function snatchPurse() in three seconds. This function simply changes
the HTML in purse to <I>Gucci hand bag</I>.

The Interval button calls the start() function. This in turn initializes a counter and uses the
setInterval() method to call the rotateNames() function every second. rotateNames() saves
the inner text of the moniker element for reinsertion later and replaces the content of moniker
with a name from the array previously initialized. The counter is incremented, and a second
later the next name is substituted, until the end of the array when the repeated calls are
canceled with clearInterval() and the original name is placed back in the element.

Dynamically Changing Content

11<HTML>
<HEAD><TITLE>time methods</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

arMoniker = new Array(
 “Raskolnikof”,
 “Portnoy”,
 “Yossarian”,
 “Fagin”,
 “Alyosha”,
 “Tartuffe”,
 “Spock”,
 “Bond, James Bond”
)

function start() {
 pointer = 0;
 naming = setInterval(“rotateNames()”,1000)
}

function rotateNames(){
 if (pointer == 0) { origName = moniker.innerText };
 if (pointer < arMoniker.length) {
 moniker.innerText = arMoniker[pointer];
 pointer++;
 }
 else {
 moniker.innerText = origName;
 clearInterval(naming);
 }
}

function snatchPurse() {
 purse.innerHTML = “<I>Gucci hand bag</I>”;
}

</SCRIPT>

</HEAD>
<BODY>

<P>
Call me <B ID=”moniker”>Ishmael. Some years ago - never mind how long precisely - having little or nomoney in my
➥purse, and <I ID=”nothing”>nothing
particular to interest me on shore,</I> I thought I would sail
about a little and see the watery part of the world.
</P>

<BUTTON onClick=”setTimeout(‘start()’,3000)”>Timeout</BUTTON>
<BUTTON onClick=”switchNames()”>Interval</BUTTON>

</P>

</BODY>
</HTML>

Scripting

The best way to appreciate real-world uses for all the content change techniques we’ve discussed
is, obviously, to witness them in action in a useful page.

To this end, we have combined many of IE4–relevant properties and methods and developed
this short quiz script. A discussion follows.

<HTML>
<HEAD><TITLE>DHTML Unleashed Author Quiz</TITLE>

<STYLE TYPE=”text/css”>

 #quiz {
 position: absolute;
 visibility: hidden;
 text-align: center;
 width: 400;
 background-color: lightgrey;
 border: thick gray ridge;
 margin: 10px;
 }

</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

 arQuestions = new Array();
 arrayCounter = questCounter = reviewCounter = 1;
 wrongAns = rightAns = lateAns = 0;

 function newQA(question,fName,lName) {
 arQuestions[arrayCounter] = new Array();
 arQuestions[arrayCounter][0] = question;
 arQuestions[arrayCounter][1] = fName;
 arQuestions[arrayCounter][2] = lName;
 arrayCounter++;
 }

 newQA(“Who wrote the book we have been quoting from?”,”Herman “,”Melville”);
 newQA(“Which author began a book \”It was the best of times...?\””,
 ➥”Charles “,”Dickens”);
 newQA(“Who coined the term ‘Catch-22’?”,”Joseph “,”Heller”);
 newQA(“Who wrote over 1000 pages about an Idiot?”,”Fyodor “,”Dostoyevsky”);
 newQA(“Who placed a Catcher in a grain type?”,”J.D. “,”Salinger”);

 totQuestions = (arrayCounter - 1);

 function startIt(first) {
 if (questCounter > totQuestions) {
 questCounter = 1;
 wrongAns = rightAns = lateAns = 0;
 }
 quizQuest.innerText = arQuestions[questCounter][0];
 if (first) {
 startLink.outerText=””;
 quiz.style.left = ((document.body.clientWidth - quiz.offsetWidth) / 2);
 quiz.style.visibility = “visible”;
 }

Dynamically Changing Content

11 else {
 quizEntry.innerHTML = origEntry
 }
 document.forms.test.elements[0].focus();
 ticker = setTimeout(“tooLate()”, 10000);
 }

 function answered() {
 clearTimeout(ticker);
 studentAnswer = document.forms.test.elements[0].value.toLowerCase();
 authLName = arQuestions[questCounter][2].toLowerCase()
 if (studentAnswer.indexOf(authLName) != -1) {
 correctAns();
 }
 else {
 dummy();
 }
 }

 function tooLate(){
 lateAns++;
 respTxt = “
Sorry, your time is up.
”
 response(respTxt);
 }

 function dummy(){
 wrongAns++;
 respTxt = “
Sorry, your answer is incorrect.
”
 response(respTxt);
 }

 function correctAns() {
 rightAns++;
 respTxt = “
You are right!
”
 response(respTxt);
 }

 function response() {
 quizEntry.innerHTML = respTxt + respDisplay();
 questCounter++;
 }

 function respDisplay(respTxt){
 respString = “The correct answer is: “
 + “” + arQuestions[questCounter][1]
 + arQuestions[questCounter][2]+ “”;
 if (questCounter == totQuestions) {
 respString += “

QUIZ Score:
”
 + “ Correct Answers: “ + rightAns.toString().bold()
 + “
 Not-so-correct Answers: “
 + wrongAns.toString().bold()
 + “
 No Response: “ + lateAns.toString().bold()
 + “
You got “ + rightAns + “ out of “
 + totQuestions + “ correct.
”
 + rightAns + “/” + totQuestions
 + “ = “ + ((rightAns/totQuestions)*100) + “%”
 + “

<BUTTON onClick=’listThem()’>”
 + “Review Questions</BUTTON>”
 + “
<P><BUTTON onClick=’startIt()’>”
 + “Start Over</BUTTON></P>”;

Scripting

 }
 else {
 respString += “
<P><BUTTON onClick=’startIt()’>”
 + “Go on to Question “ + (questCounter+1) + “</BUTTON></P>”
 }
 return respString;
 }

 function listThem() {
 quiz.innerHTML = “”;
 reviewCounter = 1;
 showQuest();
 flipThrough = setInterval(“showQuest()”,2000);
 }

 function showQuest(){
 if (reviewCounter == arQuestions.length) {
 clearInterval(flipThrough);
 revQuest = “<P><BUTTON onClick=’location.reload()’>”
 + “Next Quiz</BUTTON></P>”;
 }
 else {
 revQuest = “<P><I>” + arQuestions[reviewCounter][0] + “</I>
”
 + arQuestions[reviewCounter][1]
 + arQuestions[reviewCounter][2]
 + “</P>”;
 reviewCounter++;
 }
 quiz.insertAdjacentHTML(“BeforeEnd”, revQuest);
 }

</SCRIPT>

</HEAD>
<BODY onLoad=”origEntry = quizEntry.innerHTML”>

<DIV ID=”startLink” ALIGN=CENTER>
<P><BIG>Welcome to DHTML Unleashed’s
Author Quiz</BIG></P>

<P>For each of the 5 questions, enter the name of an author in the field
provided and click the Submit Question button.
You have 10 seconds for each question.</P>
<BUTTON onClick=”startIt(true)”>Start Quiz</BUTTON></DIV>

<DIV
ID=”quiz”>

<I ID=”quizQuest”></I>

 <FORM NAME=”test” onSubmit=”answered()”>
 <INPUT TYPE=TEXT SIZE=30>

 <INPUT TYPE=SUBMIT VALUE=”Submit Answer”>
 </FORM>

</DIV>

</BODY>
</HTML>

Dynamically Changing Content

11
The students or users are welcomed by an introduction screen, stating the rules of the quiz and
warning them about the time limit for each question—in this case, ten seconds. Figure 11.1
illustrates this opening screen.

The Quiz Welcome
screen.

When the students press the Start Quiz button, the screen is replaced by the first question with
a form entry field for the answer. See Figure 11.2 for an illustration of the first question.

The Quiz Question
screen.

Scripting

If the students answer by filling in the form and clicking the Submit Answer button or if their
ten seconds elapse, a reply screen is displayed, informing the students of whether their answer
was correct or if they were late in responding. See Figure 11.3 for a sample timed-out answer
screen. In every case, the correct answer is supplied along with a button to proceed to the next
question.

The Quiz Answer
screen.

This routine is repeated until all questions have been displayed. On the final reply screen, a
tabulation of results is also presented, along with a percentage grade, illustrated in Figure 11.4.

The students are presented with two options: to start again, in which case the first question is
displayed and the quiz proceeds as before; or to review the questions, in which case a new screen
presents each question with its answer, appending them one by one every two seconds. Fig-
ure 11.5 shows this screen after all questions have been appended.

At the end of the review, the students press a button to exit the Quiz.

We now go through the code step by step, as the rendering engine of Internet Explorer would.

A CSS-positioned element is defined in our STYLE tag: #quiz. This element will later contain
the main Q&A screens. Although a position is defined, the actual pixel positioning is omit-
ted. We will position it on the page later.

In our JavaScript, we create an array for our questions and answers and declare some global
variables. The counter variables are initialized with a value of 1, for easier human-like count-
ing. Variables for the different kinds of answers (wrong, right, and late) are of course initialized
with 0. Next, we have our first function, newQA(). (We will discuss all functions in the code
when they are actually used, not when they are displayed on the page; it will be easier to
follow.)

Dynamically Changing Content

11
The Quiz Results
screen.

The Quiz Review
screen.

Scripting

Next, we have five consecutive calls to the newQA() function with three arguments each. Every
time newQA() is called, it takes an element in the arQuestions array, starting with element 1,
and creates a new array off each element. These new arrays are populated with the question,
the first name of the author, and the last name. This multidimensional array structure makes
it easy for us to reference the data with counters. After the new array is created, arrayCounter
is incremented, pointing to the next array element to be filled.

We initialize a variable to remember the total number of questions, and the remainder of the
script contains functions to be compiled and put aside for later.

Our BODY tag has an onLoad event handler, which we’ll get to when the page has finished load-
ing. The first element on our page is a DIV container, aligned in the center of the page, named
startScreen. It contains straightforward HTML with the welcome information and the Start
Quiz button.

The next element, which contains all the remainder of the page elements, is the DIV defined in
our STYLE. Presently it is hidden, so the students see only the welcome screen. In this hidden
container we have an empty I named element (quizQuest) and a BR for formatting. quizQuest
will later host our questions.

quizEntry, a SPAN container, holds the answer-insertion FORM.

That’s it for the HTML. The rest is performed dynamically with Explorer’s content-changing
properties and methods.

When the page loads, the onLoad event handler fires and assigns the HTML contained in our
still-hidden SPAN to a variable, origEntry. Now our answer form, to be used for each question,
is just a variable away.

When the students have read the welcome and are ready to proceed, the script springs back
into action. The Start Quiz button calls startIt(), with one argument: true. Although startIt()
will be called every time we go to a new question, this is the only time an argument will be
included. We are telling startIt() that we are just coming off the welcome screen.

The first thing startIt() does is to check whether our question counter is more than our total
questions. In other words, it checks to see whether the quiz is being repeated or is in progress—
if repeated, the variables are reset.

Using the question counter, the current question is retrieved from the array and placed in our
italicized element quizQuest. The question contains no HTML, so the innerText property is
used.

startIt() now checks to see whether we are starting for the first time, using our passed argu-
ment. If we are, it deletes the startScreen DIV completely, by assigning an empty string to its
outerText property. The students’ welcome screens disappear from their monitors, and
our hidden DIV moves up on the screen. It is centered horizontally by accessing the

Dynamically Changing Content

11document.body.clientWidth property, which stores the pixel width of the browser window, and
is made visible. The students see the first question. Before startIt() returns, it quickly gives
focus to the form field, to save the students a mouse click, and starts counting off the ten sec-
onds with the setTimeout() method. In ten seconds, the tooLate() function will be called.

If the students reply in the allotted time, the function answered() is called by the FORMs onSubmit
handler. Immediately, the time-out is cleared, canceling the call to the tooLate() function.
answered() converts the answer to lowercase and compares it to a lowercase version of the author’s
surname. The surname suffices as an answer. If the answer is correct, the correctAns() function
is called; if not, dummy() is called.

If the students do not reply in ten seconds, control is passed to tooLate(). This function is
similar to correctAns() and dummy(). In fact, they can be combined into one. They all incre-
ment their respective answer counters and provide a custom string to be used in the upcoming
screen response. Then they pass that string to the response() function.

In response(), this string is combined with another string: the return value of the function
respDisplay(). respDisplay() creates a string with the correct answer and, if the student is not
at the last question, a button to navigate to the next question. This string is passed back to
response() when the function returns. Back in response(), the innerHTML property of quizEntry
is invoked to display the combined string on the screen in place of the entry form.

The students continue to the second question, but this time startIt() does not find a passed
argument, so it retrieves the stored HTML from our onLoad call and reassigns it to quizEntry,
creating a new answer entry form identical to the original.

This cycle is repeated until the students reach the last question. RespDisplay() will create a
longer string with an appended tabulation of results and two buttons: one to review all the
questions and one to start the quiz again.

If the quiz is restarted, startIt() will first reset relevant variables before proceeding. The script
will cycle through as before.

If the students choose to review the questions, the listThem() function deletes the content of
the main DIV by assigning a blank string to its innerHTML property. innerText would have done
the same, of course. Our reviewCounter is set to 1, and we call the function showQuest() to
display the first question and answer set. Using the setInterval() method, we place additional
calls to showQuest() every two seconds until all our questions have been reviewed.

Every time showQuest() is called, it checks to see if the questions are finished. If they are not,
it assigns a question and the appropriate answer to a string and uses the insertAdjacentHTML()
method to update the quiz DIV, one question at a time. This method of appending HTML to
the end of an element gives the impression on screen of a scrolling, expanding container. When
the questions are finished, the clearInterval() method cancels the function calls and an Exit
button is displayed. In our example, the Exit button reloads the page, but that is just a place-
holder.

Scripting

The quiz has been purposely written in a not-so-efficient manner. This gives it modularity and
makes it easier to explain. Many variables and functions can be combined. Some redundancies
could be omitted. It demonstrates, however, many of the Explorer properties and methods for
changing content dynamically—albeit with text examples—but image, applet, and control
manipulation follows exactly the same rules.

Although the browser vendors are moving toward a common standard, currently the proce-
dure for changing content dynamically in Navigator and IE4 still differs greatly.

Navigator’s LAYER tag and its handling of positioned CSS elements continues the tradition of
the FRAME tag. Change is based on the replacement of the contents of the layer/element
document property, either through the document.write() method or by loading a new external
HTML page.

IE4’s comprehensive DOM and its reflection into JavaScript allows for the addition, inser-
tion, replacement, and deletion of any element with instant page redraw. To this end, four
powerful properties and two methods have been introduced: innerText, outerText, innerHTML,
outerHTML, insertAdjacentText(), and insertAdjacentHTML().

This chapter provided examples of changing content in both browsers with all the tools pro-
vided. A script for a simple Q&A quiz was developed for IE4, illustrating a real-life application
for the new properties and methods.

Content change alone does not a DHTML page make. However, when content change is com-
bined with the techniques discussed in Chapter 12, “Dynamic Positioning,” your pages will
truly come alive.

Dynamic Positioning

12

by Matthew Zandstra

■

■

■

layerTool

■

z-index

■

■

■

■ layerObject

■

■

■

Scripting

The fourth-generation browsers give the coder nearly total control over page layout at last. Even
better, their extensions to JavaScript introduce movement, depth, and even rudimentary intel-
ligence to page elements.

This is a chapter about scripted positioning. It is also in part about objects and how object-
oriented programming techniques can help you to breed smart page elements.

With Internet Explorer 4.0 (IE4) and Netscape Communicator 4.0, browser scripting has come
of age, and Web pages will never be the same again.

In this chapter you will learn about:

■ The basic cascading style sheet (CSS) properties for dynamic positioning

■ Automatic cross-browser scripting

■ Scripting position, movement, and depth

■ Image maps with Dynamic HTML (DHTML)

■ Object-oriented JavaScript techniques

How many times have you produced an exciting Web environment, only to find that another
browser rejects your script or interprets it eccentrically? It’s a fact of life for Web publishers
that various browsers behave differently, and it’s our responsibility to compensate accordingly.

Almost all the examples in these pages will work on both IE4 and Netscape Communicator
4.0, thanks to code designed to compensate for scripting differences and browser quirks.

Occasionally, though, irreconcilable differences are impossible to avoid. Explorer does not
support the CSS clip property, for example. If you don’t explicitly set the width property of
an element, it will default to fill all available horizontal space from the left of the element to the
right margin of the parent element.

Communicator’s support for the CSS width and height properties is not reliable; most of the
time an element will shrink to the width and height of its contents. The clip property is par-
tially supported. If clip is set within the style declaration, Communicator will ignore it. If it is
set by a script, Communicator will clip the element accordingly.

There are some key differences in JavaScript syntax that are less problematic. We will auto-
mate a fix for these differences in this chapter.

Web coding is the art of the possible, and rather than halve your audience at a stroke, we
concentrate in this chapter on the shared features of the fourth-generation browsers, compensat-
ing for and working around differences where necessary.

Dynamic Positioning

12

Cascading style sheets allow the coder unprecedented control over page elements. He or she
can animate elements, change their relative depths, and make them appear or disappear. Be-
fore we can explore this level of dynamism, however, we must first assemble our page elements
and assign styles to them. Some impressive effects are possible without writing even a line of
JavaScript.

One of the great frustrations for the Web designer has always been the inability to place page
elements accurately.

DHTML gives the coder much greater control over layout, allowing him or her to place ele-
ments on the page with pixel accuracy. Alternatively, he or she can allow the browser to flow
elements, placing them relative to one another in the traditional manner.

Cascading style sheets (CSS) allow for this control through the position property, which can
be initialized in the style definition. The position property defaults to static if left uninitialized.
Otherwise, you have a choice of two values: relative or absolute.

Very often, you’ll want your CSS elements to be positioned conventionally in relation to other
elements on the page. When the browser window is resized, your page will be reflowed as nor-
mal and your elements positioned accordingly.

This is easy to set up in your style definition by setting the position property to relative.
Listing 12.1 shows the code for a relatively positioned element.

<HTML>
<HEAD>
<TITLE>relative positioning</TITLE>
</HEAD>
<STYLE TYPE=”text/css”>
.myClass{
 POSITION: relative;
 COLOR: red;
 FONT-SIZE: 40pt;
 FONT-FAMILY: sans-serif
 }
</STYLE>
<BODY>
Some standard text before the element
<DIV CLASS=”myClass”>
hello you
</DIV>
Some standard text after the element
</BODY>
</HTML>

Scripting

As you can see in Figure 12.1, the style is applied, and the element is positioned with the docu-
ment flow—that is, sandwiched between the starting and finishing text.

Relative positioning
with the <DIV> element.

You can control this to some extent through your choice of tag. Applying a relatively posi-
tioned style to a <DIV> tag, as in Figure 12.1, will result in the element being treated as a block,
sitting in its own space. For inline placement, use the tag. This will align your element
as if it belonged within a line of text. Figure 12.2 shows the same example as Figure 12.1, using
 rather than <DIV>.

Relatively positioned elements are not simply at the mercy of the browser, however. You can
exercise quite a lot of control through the top and left properties. With the position property
set to relative, these will act as offsets. By initializing the top property, for example, you shift
your element by that many pixels from its default top edge. So we can make text sink below or,
if we use a negative value, float serenely above its line:

.myClass{
 POSITION: relative;
 COLOR: red;
 TOP: 30px;
 LEFT: 0px;
 FONT-SIZE: 40pt;
 FONT-FAMILY: sans-serif
 }

Notice that the top and left properties both require the addition of code that defines their
units—pixels in this case—like this:

TOP: 30px;
LEFT: 0px;

Dynamic Positioning

12

It is also possible to define the left and top properties in percentages. The element will be
offset by the given proportion of its parent element’s width.

TOP: 10%;
LEFT: 0%;

There are times when you will need to take control of your page elements and tell them exactly
where to go. You can do this by setting the position property to absolute in your style defini-
tion, like this:

.myClass{
 POSITION: absolute;
 //.. etc
 }

We can then use the top and left properties to force an element to a particular point on the
page. Unless our element is nested within another, the element will take the top-left corner of
the browser window (or, more properly, the <BODY> element) as its referent. Listing 12.2 dem-
onstrates the code for an absolutely positioned element.

<HTML>
<HEAD>
<TITLE>absolute positioning</TITLE>
</HEAD>
<STYLE TYPE=”text/css”>

Relative positioning
with the
element.

continues

Scripting

.myClass{
 POSITION: absolute;
 COLOR: red;
 TOP: 100px;
 LEFT: 100px;
 FONT-SIZE: 40pt;
 FONT-FAMILY: sans-serif
 }
</STYLE>
<BODY>
Some standard text before the element

hello you

Some standard text after the element
</BODY>
</HTML>

You can see in Figure 12.3 that our element no longer has any real relationship with the sur-
rounding text. Other elements will not make room for it, and it won’t respect their space.

An absolutely
positioned element.

This fact can be used to achieve some interesting effects (not to mention some that are just
plain ugly). How about a nice drop shadow, for example? In Listing 12.3 we create a shadow
and place it three pixels to the left of and above another element.

Dynamic Positioning

12

<HTML>
<HEAD>
<TITLE>drop shadows with positioning</TITLE>
</HEAD>
<STYLE TYPE=”text/css”>
.myClass{
 POSITION: absolute;
 COLOR: red;
 FONT-SIZE: 40pt;
 FONT-FAMILY: sans-serif;
 Z-INDEX:2;
 }
.container{
 POSITION: absolute;
 TOP: 100px;
 LEFT: 100px;
 }
#shadow{
 COLOR: #aaaaaa;
 TOP: -3px;
 LEFT: -3px;
 Z-INDEX:1;
 }
</STYLE>
<BODY BGCOLOR=”#ffffff”>
Some standard text before the element
<DIV CLASS=”container”>

 hello you

 hello you

</DIV>
Some standard text after the element
</BODY>
</HTML>

This code introduces a new property: z-index. This determines which element will be upper-
most; we will deal with it more fully in the section titled “z-index.” Notice that we have used
nesting in Listing 12.3. The container element is absolutely positioned in relation to the BODY
element. In their turn, the child elements are absolutely positioned in relation to the parent.
We have used negative values for the top and left properties of the shadow element. Using this
technique you only need worry about the positioning of the parent element on the page. Note
also that the parent element could be relatively positioned.

Figure 12.4 shows the code in action.

Before CSS came along, our drop shadow effect would have required an image and the over-
head of a new connection to the server.

Scripting

height width
Officially, CSS allows you to set both the height and the width of your elements. In practice,
however, you should be cautious of this feature. At the moment, Netscape Navigator 4.0 is
unreliable at best in its implementation of the width property. Its support for the height prop-
erty is effectively nonexistent. To confuse matters even further, IE4 sets the width property of
an element to the space available in the enclosing element by default, so it’s a good idea to
explicitly set this property—especially if you are going to set a background property as well.

The height and width properties can be specified in either pixels or percentages.

overflow
The overflow property should work only with elements whose position property is set to
absolute. It determines what should happen if the width or height of an element is less than
that of the content. The possible values of the overflow property include none, clip, and scroll.
The default is none, which allows content that exceeds an element’s dimensions to be displayed.

Because of the erratic behavior of the height and width properties, this property is probably
best avoided for the present. It should be borne in mind, however, that both Microsoft and
Netscape are committed to implementing the full CSS specification.

visibility
Visibility is a more reliable property than overflow and comes in very handy when scripting
CSS elements. It accepts three values: visible, hidden, and inherit. If this property is not initial-
ized, it defaults to inherit; that is, any element using it will take on the visibility of its parent

A drop shadow with
absolute positioning
and nesting.

Dynamic Positioning

12

element. The visibility property is fully accessible to scripting in both Communicator and
Internet Explorer, and we use it in the examples demonstrated in this chapter. Its syntax looks
like this:

#youWontSeeMe{
 VISIBILITY:hidden
 }

z-index
The drop shadow code in Listing 12.3 shows a good example of z-index in action. We wanted
the shadow to appear behind the display text, no matter what order our elements were read by
the browser. z-index gives us that control. z-index accepts an integer. Elements with higher
z-index properties will display in front of those with lower ones. z-index is measured in rela-
tion to the parent element.

clip
clip is patchily implemented at present by Communicator and not at all by Explorer. It allows
you to mask areas of an element. In Communicator, it is accessible to browser scripts and is
therefore an excellent tool for creating low-overhead dynamic image maps. Officially, one should
be able to clip an element from a CSS declaration with this syntax:

CLIP: rect (top right bottom left)

This should not be trusted, however. In practice, it is better to clip elements from a script. We
deal with this in the section “Cutting Corners: Dynamic Image Maps Using Only Two Images.”

This is a chapter about dynamic positioning, and there’s little dynamism without scripting.
Luckily, both of the fourth-generation browsers allow the control of many CSS properties
through JavaScript (or JScript, Internet Explorer’s JavaScript implementation). The scripting
model used by each browser differs somewhat from that of the other, but not so much that
cross-browser code isn’t possible.

To access a CSS element or one of its properties, you first need to assign it a unique name,
using the ID argument of the element tag, like this:

<DIV ID=”layerID” class=”layerStyle”>
...
</DIV>

In Netscape 4.0, you can now refer to your element as follows:

document.layers[‘layerID’]

The code for IE4 is a little different:

document.all[‘layerID’]

Scripting

Unfortunately, the waters are muddied even further if you need to access one of the element’s
properties. Let’s take the example of the top property. With Netscape 4.0, you can go right
ahead:

document.layers[‘layerID’].top

With IE4, however, there’s just a little more work to do:

document.all[‘layerID’].style.top

Where CSS properties use a hyphen, the JavaScript syntax differs slightly. JavaScript does not
allow the use of hyphens for variables or property names, so it supports interCap notation in-
stead. z-index, for example, becomes zIndex.

We have enough now to set the position of an element dynamically in each of the fourth-
generation browsers. In Listing 12.4 we create an example that will work with Netscape 4.0.

<HTML>
<HEAD>
<TITLE>scripting position - communicator</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function random (limit)
 {
 return (Math.round(((Math.random())*1000))%limit)+1;
 }
function moveElement()
 {
 document.layers[‘movingElement’].left=random(300);
 document.layers[‘movingElement’].top=random(300);
 }
</SCRIPT>
<STYLE TYPE=”text/css”>
.comeAlong{
 POSITION: absolute;
 TOP: 100px;
 LEFT: 100px;
 }
</STYLE>
<BODY BGCOLOR=”#ffffff”>

<DIV ID=”movingElement” CLASS=”comeAlong”>
<FORM>
<INPUT TYPE=BUTTON VALUE=”you move me” ONCLICK=”moveElement()”>
</FORM>
</DIV>
</BODY>
</HTML>

This code creates a singularly annoying form button, which leaps to a random location when
clicked.

Dynamic Positioning

12

In the style definition we have set up a basic class called comeAlong, initializing the position,
top, and left properties. It is important to establish that we will be working with an absolutely
positioned element. If we had omitted this, our element would have defaulted to position:
static, and we would not have been able to change its location.

In the body of our document, we have applied this class to a <DIV>, or block-level, element
with the unique name movingElement. This element holds only a simple form button, which
calls a JavaScript function, moveElement(), when clicked.

moveElement() sets the top property of comeAlong to a random number and then does the same
to the left property; our button then jumps to its new location.

To make this work in Internet Explorer 4.0, we need change only two lines:

document.layers[‘movingElement’].left=random(300);
document.layers[‘movingElement’].top=random(300);

These lines should become the following:

document.all[‘movingElement’].style.left=random(300);
document.all[‘movingElement’].style.top=random(300);

How about making the code work on both browsers? Well, we could set a switch in our
moveElement() function so that the correct code is executed for the correct browser, like this:

function moveElement()
{
if (navigator.appName==”Netscape”
 {
 document.layers[‘movingElement’].left=random(300);
 document.layers[‘movingElement’].top=random(300);
 }
else
 {
 document.all[‘movingElement’].style.left=random(300);
 document.all[‘movingElement’].style.top=random(300);
 }
}

This may not seem like a clumsy solution at first glance. After all, it certainly works. Consider,
though, a large script—a game, for instance. You would have to use a browser test similar to
the one listed here every time you needed to access or set an element’s properties. Your code
would soon become ugly and confusing.

In the next section we define a neat way of overcoming the browsers’ differences.

layerTool

The layerTool object is designed to take the hard work out of cross-browser coding. Its con-
structor performs a browser test and then assigns different functions to an object method,
layerProp(), according to the result. Its syntax looks like this:

Scripting

var L=new layerTool();
function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }
function exProp()
 {
 return document.all[arguments[arguments.length-1]].style;
 }
function navProp()
 {
 retVal=””;
 for (var x=0;x<arguments.length;x++)
 {
 retVal+=”document.layers[\’”+arguments[x]+”\’]”;
 if (x!=arguments.length-1)
 retVal+=”.”;
 }
return eval(retVal);
}

Later on, if we need to set a layer property, we need only call the layerProp() method, like
this:

L.layerProp(‘myLayer’).top=100;

In Listing 12.5 we re-create our annoying button example, this time using the layerTool object.

<HTML>
<HEAD>
<TITLE> scripting position - cross browser</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”javascript”>

var L=new layerTool();
function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }
function exProp()
 {
 return document.all[arguments[arguments.length-1]].style;
 }
function navProp()
 {
 retVal=””;
 for (var x=0;x<arguments.length;x++)
 {
 retVal+=”document.layers[\’”+arguments[x]+”\’]”;
 if (x!=arguments.length-1)

Dynamic Positioning

12

 retVal+=”.”;
 }
 return eval(retVal);
 }
function random (limit)
 {
 return (Math.round(((Math.random())*1000))%limit)+1;
 }
function moveElement()
 {
 L.layerProp(‘movingElement’).left=random(300);
 L.layerProp(‘movingElement’).top=random(300);
 }
</SCRIPT>
<STYLE TYPE=”text/css”>
.comeAlong{
 POSITION: absolute;
 TOP: 100px;
 LEFT: 100px;
 }
</STYLE>
<BODY BGCOLOR=”#ffffff”>
<DIV ID=”movingElement” CLASS=”comeAlong”>
<FORM>
<INPUT TYPE=BUTTON VALUE=”you move me” ONCLICK=”moveElement()”>
</FORM>
</DIV>
</BODY>
</HTML>

The only real changes in this example are the addition of the layerTool object and the calls to
its layerProp() method in moveElement().

One feature of the layerTool object worth mentioning is its support for nesting. Contrary to
some reports, it is possible to access nested <DIV> elements in Communicator. The code is a
little tortuous, however. To refer to an element called inner nested within another called outer,
the Communicator code might look like this:

document.outer.document.inner

or

document.layers[‘outer’].document.layers[‘inner’]

The navProp() function, which is associated with the layerProp() object method, deals with
this property by testing for the number of arguments passed to it. It loops through the argu-
ments using concatenation to build a string similar to the code listed previously. It then uses
eval() to create a usable return value. To access a nested element in both browsers, therefore,
is simple:

L.layerProp(‘outer’,’inner’)

Now that we have a layerTool class in place, we can move on to create some real cross-browser
code.

Scripting

z-index
One of the greatest advantages of CSS is the power to exploit a new dimension in the docu-
ment object. Not only can layers be made to overlap one another, but the coder can exert
dynamic control over his or her ordering with the JavaScript zIndex property. Remember that
hyphenated CSS elements cannot be accessed by JavaScript using the same syntax. You must
use InterCap notation to dispense with the hyphen. In JavaScript, therefore, z-index becomes
zIndex.

So why is this feature so useful? Why should we want to be able to control the relative depth of
layers? Consider a simple animation. A spaceship is approaching a planet, passing in front of it.
A quick switch of zIndex and it disappears behind it, giving the powerful illusion of depth on
the page. Depth is also useful as a way of organizing information. The card file metaphor has
been implemented in many programs and CD-ROM environments. Figure 12.5 shows a simple
Web implementation.

Using z-index to create
a simple card file effect.

First we should create five “cards,” all implementing a style called shuffleClass, like this:

.shuffleClass{
 POSITION: absolute;
 VISIBILITY: visible;
 LEFT: 10px;
 WIDTH:150px
 }

Dynamic Positioning

12

Each card will have its own ID property running from note1 to note5. This kind of naming is
very useful for scripting, because we can use loops to refer to each card in turn. shuffleClass
establishes absolute positioning and left, background, and width properties. The cards’
dimensions are set again within the elements themselves using the width and height arguments
of a table cell tag. Without the tables, Netscape would collapse each element to the size of its
contents. The IDs override the shuffleClass’s left property and initialize a top property, set-
ting each element 30 pixels below and 50 pixels to the right of the last. z-index is established
in ascending order, like this:

#note2{
 TOP: 130px;
 LEFT: 60px;
 Z-ORDER: 2
 }
#note2{
 TOP: 160px;
 LEFT: 110px;
 Z-ORDER: 3
 }

To control these layers, we should create a layerObject object to manage the layer properties.
This in turn will make use of the layerTools object to ensure cross-browser compatibility. The
layerObject object syntax looks like this:

function layerObject(layerID,z)
 {
 this.layerID=layerID;
 this.depth=z;
 this.oldDepth=z;
 this.draw=drawLayer;
 this.setZorder=setZorder;
 }
function setZorder(z)
 {
 this.depth=z;
 }
function drawLayer()
 {
 L.layerProp(this.layerID).zIndex=this.depth;
 }

This class takes two parameters in its constructor, the ID of the layer and its current z-index.
It has two methods: setZorder() accepts an integer and applies it to the layerObject object’s
depth property; and the drawLayer() function (or draw() method) uses the layerTool object to
apply the depth property to the layer, changing the elements’ ordering on the page.

The structure of this class raises several questions with regard to style. Why have we used our
own property for z-index, rather than simply interrogating the element’s z-index property
directly? Well, IE4 will not always return values for CSS properties unless they have first been
set within the script, so we have to ask for z-index as a parameter.

Why does setZorder() merely change the depth property of the layerObject object and not
apply the new value to the layer itself? In the section “A Smart layerObject,” we’ll be extending

Scripting

the layerObject to handle other behaviors, including movement. It makes sense, therefore, to
change our various object properties and then apply these changes to the layer in one go, using
the drawLayer() method. In some circumstances we might want to make more changes before
we apply them all.

The layerObject object is a powerful way of maintaining control of page elements, so much so
that we will be extending it as the chapter progresses. However, none of the elements have any
knowledge of any of the others, which leaves us with a problem. How can we bring one of our
layers to the front if we have no way of knowing the depth of all the others? Clearly we need to
write some code to manage our layerObject objects, such as the following:

function noteManager()
 {
 this.LayerList=new Array();
 this.add=addLayer;
 this.select=select;
 }
function addLayer(layerObject)
 {
 this.LayerList[this.LayerList.length]=layerObject;
 }
function select(LayerName)
 {
 for (x=0;x<this.LayerList.length;x++)
 {
 if (this.LayerList[x].layerID==LayerName)
 {
 if (this.LayerList[x].depth==100)
 {
 this.LayerList[x].setZorder(this.LayerList[x].oldDepth);
 }
 else
 {
 this.LayerList[x].setZorder(100);
 }
 }
 else
 {
 this.LayerList[x].setZorder(this.LayerList[x].oldDepth);
 }
 this.LayerList[x].draw();
 }
 }

The noteManager object has only two methods, addLayer() and select(). addLayer() expects
a layerObject object, which it adds to its layerList property. select() is called from a hyperlink
with the containing element’s ID as a parameter.

select() iterates through the layerList array looking for a match. If it finds one, it tests for
the layerObject object’s depth property, setting it either to 100 if the element is not already
selected or to its default depth (stored in the layerObject’s defaultDepth property) if it is. In
this way a user can click to bring an element to the front and click again to send it back to its

Dynamic Positioning

12

usual place in the stack of elements. If no match is found on an iteration, the layerObject’s
depth property is set to its defaultDepth. The last line in the loop calls the draw() method of
the layerObject, finally applying the value of the depth property to the layer’s z-index property.

The noteManager is the organizing force of the script, overseeing the interrelation of all
layerObject objects, which in turn set the properties for their corresponding page elements.
This structure is a useful one for creating interactive pages, and we will be returning to it in the
section “Making It Move.”

In the meantime, there are two more steps to complete: First, we must actually create our
objects; and second, we must make sure that the select() method of the noteManager class can
be called from the page.

To create the layerObject objects, we should create an init() function that can be called from
the document’s onLoad handler, like this:

function init()
 {
 tm=new noteManager();
 for (x=1;x<=5;x++)
 {
 tm.add(new layerObject(“note”+x,x));
 }
 }

Our noteManager is set up first and assigned to the variable tm. Then we use a loop to create five
layerObject objects, passing up a string corresponding to each element’s ID property and an
integer that will become the layerObject object’s depth (and the element’s z-index) property.
Each object is passed to the noteManager object via the noteManager class add() method. Note
that the layerObject objects are not assigned to their own variables even temporarily; our
noteManager object will store them for us in its layerList property.

Finally, we need to add hyperlinks to our elements. Because this is a chapter about positioning,
we’ve used simple JavaScript calls, rather than get bogged down by the respective event models
implemented by the fourth-generation browsers. See Part IV, “The Document Object Model,”
for more information about event models. We add the hyperlinks like this:

<div id=”note1" class=”shuffleClass”>
<table height=200 width=150 bgcolor=green cellpadding=10 border=1>
<tr><td valign=top>
About Us
<p>
links and information
</p>
</td></tr>
</table>
</div>

The hyperlink passes the value of the element’s ID property to noteManager’s select method.
Listing 12.6 shows the complete code for this script.

Scripting

<HTML>
<HEAD>
<TITLE>card file</TITLE>
</HEAD>

<SCRIPT LANGUAGE=”JavaScript”>

var L=new layerTool();
function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }
function exProp()
 {
 return document.all[arguments[arguments.length-1]].style;
 }
function navProp()
 {
 retVal=””;
 for (var x=0;x<arguments.length;x++)
 {
 retVal+=”document.layers[\’”+arguments[x]+”\’]”;
 if (x!=arguments.length-1)
 retVal+=”.”;
 }
 return eval(retVal);
 }
function layerObject(layerID,z)
 {
 this.layerID=layerID;
 this.depth=z;
 this.oldDepth=z;
 this.draw=drawLayer;
 this.setZorder=setZorder;
 }
function setZorder(z)
 {
 this.depth=z;
 }
function drawLayer()
 {
 L.layerProp(this.layerID).zIndex=this.depth;
 }
function noteManager()
 {
 this.LayerList=new Array();
 this.add=addLayer;
 this.select=select;
 }
function addLayer(layerObject)
 {
 this.LayerList[this.LayerList.length]=layerObject;
 }

Dynamic Positioning

12

function select(LayerName)
 {
 for (x=0;x<this.LayerList.length;x++)
 {
 if (this.LayerList[x].layerID==LayerName)
 {
 if (this.LayerList[x].depth==100)
 {
 this.LayerList[x].setZorder(this.LayerList[x].oldDepth);
 }
 else
 {
 this.LayerList[x].setZorder(100);
 }
 }
 else
 {
 this.LayerList[x].setZorder(this.LayerList[x].oldDepth);
 }
 this.LayerList[x].draw();
 }
 }
function init()
 {
 tm=new noteManager();
 for (x=1;x<=5;x++)
 {
 tm.add(new layerObject(“note”+x,x));
 }
 }
</SCRIPT>
<STYLE TYPE=”text/css”>
#note1{
 TOP: 100px;
 Z-ORDER: 1
 }
#note2{
 TOP: 130px;
 LEFT: 60px;
 Z-ORDER: 2
 }
#note3{
 TOP: 160px;
 LEFT: 110px;
 Z-ORDER: 3
 }
#note4{
 TOP: 190px;
 LEFT: 160px;
 Z-ORDER: 4
 }
#note5{
 TOP: 220px;
 LEFT: 210px;
 Z-ORDER: 5
 }

continues

Scripting

.shuffleClass{
 POSITION: absolute;
 BACKGROUND: green;
 VISIBILITY: visible;
 LEFT: 10px;
 WIDTH:150px
 }
A:link, A:visited, A:active {
 COLOR:blue;
 FONT-WEIGHT:bold;
 FONT-FAMILY: sans-serif;
 TEXT-DECORATION: none
 }

</STYLE>
<BODY BGCOLOR=”#000000" ONLOAD=”init()”>

<DIV ID=”note1" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=GREEN CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
About Us
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note2" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=GREEN CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Clients
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note3" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=GREEN CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Freebies
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note4" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=GREEN CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Links
<P>

Dynamic Positioning

12

links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note5" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=GREEN CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Welcome
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

</BODY>
</HTML>

In the days of Netscape 2.0 and Internet Explorer 3.0, dynamic image maps could only be
achieved with an applet or a plug-in element. Then Netscape 3.0 heralded the JavaScript
image object, allowing the coder to produce crude animations and effective mouseovers. While
impressive, this technique involved the preloading of many images, slowing down access.

DHTML offers an elegant solution to this problem: the clip property. clip allows the coder
to restrict the portion of a CSS element displayed. Creating image maps, therefore, is simply a
matter of creating a highlight image, with all the hotspot areas active, placing it above another
image with the hotspots in their default state, and then clipping the top image to show indi-
vidual highlights as the mouse traverses the map. In Communicator, JavaScript can change the
clipping of an element simply by accessing its clip property and setting top, left, bottom, or
right to the desired integer, like this:

document[‘layer’].clip.top=25

That’s the good news. The bad news is that at the time of this writing, IE4, PR2 does not sup-
port the clip property. It is likely that this will be fixed in the final release.

Figure 12.6 shows a dynamic image map running on Communicator 4.0 with one of its hotspots
activated.

Scripting

To create our image map, we first need to define our style sheet and create the elements, like
this:

<STYLE TYPE=”text/css”>
.maps{
 POSITION:absolute
 }
#container{
 POSITION:relative
 }
#topLayer{
 VISIBILITY:hidden
 }
</STYLE>
<SCRIPT>
 m.writeMap(“myMap”);
</SCRIPT>

</HEAD>
<BODY BGCOLOR=”#FFFFFF”>

<DIV ID=”container”>
 <DIV ID=”bottomLayer” CLASS=”maps”>

 </DIV>
 <DIV ID=”topLayer” CLASS=”maps”>

 </DIV>
</DIV>

The two map elements, topLayer and bottomLayer, are nested within a container element. Both
are given absolute positions, which default to the top left-hand corner of the parent. Because
of this structure, all coordinates will be calculated relative to the container element rather than

The clip property used
to create a dynamic
image map.

Dynamic Positioning

12

the document. Note that the topLayer element’s visibility property is set to hidden. The clip-
ping will be applied by our script, so we need not worry about it yet.

As with a traditional image map, we need to define hotspots. In this case, however, the coordi-
nates will fulfill a dual function. In addition to determining the reactive areas of the images,
they will also form the basis of the clip property of the topLayer element. To manage this data,
we will create an Area object, like this:

function Area(X1,Y1,X2,Y2,url)
 {
 this.left=X1;
 this.top=Y1;
 this.right=X2;
 this.bottom=Y2;
 this.url=url;
 }

The Area object expects five parameters: coordinates for top, left, bottom, and right locations
of the hotspot as well as a string containing the target URL. The following array will serve to
store all the map’s areas:

p=new Array();
p[0]=new Area(25,30,125,75,”http://www.corrosive.co.uk/”);
p[1]=new Area(5,125,130,175,”http://www.corrosive.co.uk/”);
p[2]=new Area(115,100,225,126,”http://www.corrosive.co.uk/”);

A map object is needed to work with these Area objects. The map object has three methods: a
writeMap() method will write the traditional HTML for an image map, saving the coder the
bother of pasting in the map coordinates twice; a highlight() method will handle the clip-
ping; and a reset() method will restore the map to its mouseOut appearance:

function map(name,container,top,areas)
 {
 this.name=name;
 this.top=top;
 this.container=container;
 this.areas=areas;
 this.writeMap=writeMap;
 this. highlight=highlight;
 this.reset=reset;
 this.timeout=null;
 }
function writeMap (mapName)
 {
 document.write(“<map name=”+mapName+”>”);
 for (var x=0;x<this.areas.length;x++)
 {
 document.write(“<area shape=\”RECT\” href=’”+this.areas[x].url+”’
onMouseOver=’”+this.name+”.highlight(“+x+”)’ “);
 document.write(“onMouseOut=’”+this.name+”.reset()’ “);
 document.write(“COORDS=\””+this.areas[x].left+”,”+this.areas[x].top+”
“+this.areas[x].right+”,”+this.areas[x].bottom+”\”>”);
 }
 document.write(“</map>”);
 }

Scripting

function highlight(num)
 {
 clearTimeout(this.timeout);
 this.timeout=setTimeout(this.name+”.reset()”,5000);
 L.layerProp(this.container,this.top).visibility=”visible”;
 L.layerProp(this.container,this.top).clip.top=this.areas[num].top;
 L.layerProp(this.container,this.top).clip.left=this.areas[num].left;
 L.layerProp(this.container,this.top).clip.bottom=this.areas[num].bottom;
 L.layerProp(this.container,this.top).clip.right=this.areas[num].right;
 }
function reset()
 {
 L.layerProp(this.container,this.top).visibility=”hidden”;
 }

The map class’s constructor expects four parameters: a string representing the object’s name (a
string version of the variable to which the object is assigned), the ID property of the container
element, the ID property of the topLayer element, and the array of Area objects that we set up
earlier.

The writeMap() method iterates through the Area array, using the coordinate and url proper-
ties of each Area object to write the <AREA> tags to the page. It also uses the map object’s name
property to write mouseOver and mouseOut calls to the highlight() and reset() methods. If the
writeMap() method is to be used, it must be as the page loads. The call should be placed in the
body of the document, like this:

<SCRIPT>
 m.writeMap(“myMap”);
</SCRIPT>

The highlight() method does all the serious work. It accepts the index number of the Area
object associated with a hotspot. The topLayer element is then clipped according to the Area
object’s coordinate properties. Finally, the clipped element is made visible. Note the use of the
layerTool object. Because the topLayer element is nested within the container element, Netscape
needs a reference to both layers in order to access the topLayer element’s properties. The syn-
tax looks like this:

document.layers[‘container’].document.layers[‘topLayer’].clip.left=25;

or, in brief:

document.container.document.topLayer.clip.left=25;

The layerTool object will handle all that for you. Internet Explorer can directly access any layer,
nested or not; again the layerTool object will handle this, extracting only the last parameter
passed to its layerProp() method and returning the correct code, like this:

document.all[‘topLayer’].style.clip.left=25;

The reset() method is called onMouseOut and simply hides the topLayer element. The PowerPC
version of Communicator occasionally loses the mouseOut event, so setTimeout() is used to call
reset() after five seconds.

Listing 12.7 shows the script in its entirety.

Dynamic Positioning

12

<HTML>
<HEAD>
<TITLE>Dynamic image map</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var L=new layerTool();
function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }
function exProp()
 {
 return document.all[arguments[arguments.length-1]].style;
 }
function navProp()
 {
 retVal=””;
 for (x=0;x<arguments.length;x++)
 {
 retVal+=”document.layers[\’”+arguments[x]+”\’]”;
 if (x!=arguments.length-1)
 retVal+=”.”;
 }
 return eval(retVal);
 }

p=new Array();
p[0]=new Area(25,30,125,75,”http://www.corrosive.co.uk/”);
p[1]=new Area(5,125,130,175,”http://www.corrosive.co.uk/”);
p[2]=new Area(115,100,225,126,”http://www.corrosive.co.uk/”);

var cyc=0;
m=new map(“m”,”container”,”topLayer”,p);
function Area(X1,Y1,X2,Y2,url)
 {
 this.left=X1;
 this.top=Y1;
 this.right=X2;
 this.bottom=Y2;
 this.url=url;
 }
function map(name,container,top,areas)
 {
 this.name=name;
 this.top=top;
 this.container=container;
 this.areas=areas;
 this.writeMap=writeMap;
 this. highlight=highlight;
 this.reset=reset;
 this.timeout=null;
 }

continues

Scripting

function writeMap (mapName)
 {
 document.write(“<map name=”+mapName+”>”);
 for (x=0;x<this.areas.length;x++)
 {
 document.write(“<area shape=\”RECT\” href=’”+this.areas[x].url+”’
onMouseOver=’”+this.name+”.highlight(“+x+”)’ “);
 document.write(“onMouseOut=’”+this.name+”.reset()’ “);
 document.write(“COORDS=\””+this.areas[x].left+”,”+this.areas[x].top+”
“+this.areas[x].right+”,”+this.areas[x].bottom+”\”>”);
 }
 document.write(“</map>”);
 }
function highlight(num)
 {
 clearTimeout(this.timeout);
 this.timeout=setTimeout(this.name+”.reset()”,5000);
 L.layerProp(this.container,this.top).visibility=”visible”;
 L.layerProp(this.container,this.top).clip.top=this.areas[num].top;
 L.layerProp(this.container,this.top).clip.left=this.areas[num].left;
 L.layerProp(this.container,this.top).clip.bottom=this.areas[num].bottom;
 L.layerProp(this.container,this.top).clip.right=this.areas[num].right;
 }
function reset()
 {
 L.layerProp(this.container,this.top).visibility=”hidden”;
 }
</SCRIPT>
<STYLE TYPE=”text/css”>
.maps{
 POSITION:absolute
 }
#container{
 POSITION:relative
 }
#topLayer{
 VISIBILITY:hidden
 }
</STYLE>
<SCRIPT>
 m.writeMap(“myMap”);
</SCRIPT>

</HEAD>
<BODY BGCOLOR=”#FFFFFF”>

<DIV ID=”container”>
 <DIV ID=”bottomLayer” CLASS=”maps”>

 </DIV>
 <DIV ID=”topLayer” CLASS=”maps”>

 </DIV>
</DIV>

</BODY>
</HTML>

Dynamic Positioning

12

So far in this chapter we have used and reused several techniques that bear closer examination.
JavaScript is not strictly an object-oriented language; crucially, there is no built-in support for
inheritance (although we will be working around this in the section “The JavaScript Inherit-
ance”). Nevertheless, it is perfectly possible to create objects and to employ some object-
oriented techniques.

An object is simply a bundle of properties and methods. As such, it’s an excellent way of orga-
nizing information. Consider the image map example from Listing 12.7. The map object needed
to keep track of the image map’s hotspots. For each hotspot we simply bundled all the relevant
information into an Area object and placed the object into an array. The map object could get
at five separate pieces of information from each of the Area objects to which it had a reference.
Of course, we could have achieved the same effect by passing a two-dimensional array to the
map object, but such arrays tend to be confusing and difficult to read. Even worse, we would
have to write five lines of code for each hotspot, whereas with an object, only one line is neces-
sary after the class has been created.

In addition to storing information, objects can contain their own functionality. So, in the
z-index example we were able to do more than just access information from an array of
objects; we could instruct the objects to act based on that information. The noteManager object
contained a list of layerObject objects in a property called layerList. noteManager’s select method
could invoke the setZorder() and draw() methods of all the objects in its list.

We have seen another interesting facet of JavaScript in our layerTool object. Take another
look at the constructor:

function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }

There is a certain amount of magic in operation here. According to the user’s browser type,
one of two functions is assigned to the layerTool’s layerProp method. The coder who uses this
object need never know anything about that, though; all he or she needs to do is call the
layerProp() method, and the correct function will be invoked. This is one reason that object
methods and the functions to which they refer are often given different names. We will be
extending this crude form of polymorphism substantially later in the section “Bringing It All
Together.”

Scripting

Dynamism implies movement, but in the examples so far, little has moved. In the annoying
button example we demonstrated that it is possible to set the top and left properties of an
element with JavaScript; it is a relatively small step from there to create the illusion of continu-
ous movement. In the section on z-index we built a layerObject that managed the depth of
layers. We can expand that now to deal with motion.

Much of the code for sprite movement and management owes its inspiration to Michael
Morrison’s Java sprite classes. It says a lot for JavaScript’s evolution that it’s possible now to
port Java sprite classes to simplified JavaScript versions.

What would a layerObject need to know about in order to move itself around the page? A
starting position is essential.

We could simply demand two more integers in the layerObject class’s parameter list, one for
top and one for left. The coordinate combination is so common, however, it might be as well
to combine both parameters in a separate Point class, similar to the ones defined in Java and
Macromedia’s Lingo. Combining both parameters looks like this:

function Point(X,Y)
 {
 this.x=X;
 this.y=Y;
 }

That takes care of the sprite’s initial position and helps us as well with the next parameter the
layerObject object will be needing. The sprite will need to be told in which direction to move
and the speed at which it should do it. A Point object will do this job, determining an incre-
ment for the x and y axes.

Let’s extend the layerObject’s constructor:

function layerObject(layerID,pos,vel,z)
 {
 // properties
 this.layerID=layerID;
 this.position=pos;
 this.velocity=vel;
 this.depth=z;
 this.visibility=”visible”;
 // methods
 this.draw=drawLayer;
 this.setZorder=setZorder;
 }

The layerObject class now requires two new parameters: pos and vel. These should be Point
objects and are assigned to the properties position and velocity, respectively.

Dynamic Positioning

12

Remember, it’s safest to let your object assign element properties and to store its own version
of those that it’s interested in. Why is this? Isn’t it just a matter of duplication? Possibly, but it
can save you an awful lot of trouble. In both browsers it is often easier to set than to test CSS
properties. In Netscape, for example, the following test will return an integer:

document.layers[‘myLayer’].top;

In Internet Explorer, however, the equivalent test will return a string including the px charac-
ters at the end of the numerical value:

document.all[‘myLayer’].style.top

To use this, you would have to strip off the px and use parseInt() to convert the resultant
string. It’s much easier to avoid this and other quirks and incompatibilities by setting object
properties that in turn set element properties.

To make the sprite move, the object will need some more code—a setPosition() method to
change the position property, for example, and an extended draw() method to apply the posi-
tion to the relevant CSS properties. The syntax looks like this:

function drawLayer()
 {
 L.layerProp(this.layerID).zIndex=this.depth;
 L.layerProp(this.layerID).left=(this.position).x;
 L.layerProp(this.layerID).top=(this.position).y;
 }
function setPosition(pos)
 {
 this.position=pos;
 }

How will the velocity property be applied to the sprite’s current position? An update() method
will do this, and a lot more if we need it to. Its syntax looks like this:

function layerUpdate()
 {
 var newPos=new Point(this.position.x+this.velocity.x,
this.position.y+this.velocity.y);
 this.setPosition(newPos);
 }

The update() method creates a temporary Point object, adding the velocity property’s x and
y properties to those of the layerObject object’s position property. The new Point object is
then passed to the setPosition() method.

That’s enough to create a basic layer sprite. Listing 12.8 shows a script that applies the class,
with a few useful new methods thrown in, and Figure 12.7 shows our element as it floats across
the page.

Scripting

<HTML>
<HEAD>
<TITLE>moving layer object</TITLE>
</HEAD>

<SCRIPT LANGUAGE=”JavaScript”>
var L=new layerTool();
function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }
function exProp()
 {
 return document.all[arguments[arguments.length-1]].style;
 }
function navProp()
 {
 retVal=””;
 for (var x=0;x<arguments.length;x++)
 {
 retVal+=”document.layers[\’”+arguments[x]+”\’]”;
 if (x!=arguments.length-1)
 retVal+=”.”;
 }
 return eval(retVal);
 }
function Point(X,Y)
 {
 this.x=X;
 this.y=Y;

A single layer on the
move.

Dynamic Positioning

12

 }
function layerObject(layerID,pos,vel,z)
 {
 // properties
 this.layerID=layerID;
 this.position=pos;
 this.velocity=vel;
 this.depth=z;
 this.visibility=”visible”;
 // methods
 this.show=showLayer;
 this.hide=hideLayer;
 this.setPosition=setPosition;
 this.draw=drawLayer;
 this.update=layerUpdate;
 this.show();
 }
function setZorder(z)
 {
 this.depth=z;
 }
function showLayer()
 {
 L.layerProp(this.layerID).visibility=”visible”;
 }
function hideLayer()
 {
 L.layerProp(this.layerID).visibility=”hidden”;
 }
function drawLayer()
 {
 L.layerProp(this.layerID).zIndex=this.depth;
 L.layerProp(this.layerID).left=(this.position).x;
 L.layerProp(this.layerID).top=(this.position).y;
 }
function setPosition(pos)
 {
 this.position=pos;
 }
function layerUpdate()
 {
 var newPos=new Point(this.position.x+this.velocity.x,
 this.position.y+this.velocity.y);
 this.setPosition(newPos);
 }
function init()
 {
 mySprite=new layerObject(“sprite1”,new Point(0,0),new Point(5,5),1);
 cycle();
 }
function cycle()
 {
 mySprite.update();
 mySprite.draw();
 setTimeout(“cycle()”,30);
 }
</SCRIPT>
<STYLE>

continues

Scripting

#sprite1{
 POSITION: absolute;
 VISIBILITY: hidden
 }

</STYLE>
<BODY BGCOLOR=”#000000" onLoad=”init()”>
<DIV ID=”sprite1">

</DIV>
</BODY>
</HTML>

The layer element is given an absolute position property and starts out hidden. This is because
the layerObject should control the element’s location and visibility. A layerObject object
is created, passing up the element’s ID property, an initial location at the top left-hand corner
of the browser window, a velocity, and an integer to control the sprite’s depth. The cycle()
method simply calls the layerObject object’s update() and draw() methods over and over again.
You can exert some control over tempo by changing the delay parameter in setTimeout(). A
certain amount of trial and error will be necessary to balance tempo and velocity, although you
should bear in mind that different machines, platforms, and browsers will affect the speed and
smoothness of your sprite.

The layerObject sprite floats serenely from one corner of the screen to the other, disappearing
into virtual space. A smarter object would know when to stop…

layerObject
It is possible to add a certain amount of bounce to a moving element, simply by extending the
update() method and introducing a few new parameters. First, it will be necessary to define
the sprite’s boundaries. Once again, an object is the easiest way of doing this:

function rect(X1,Y1,X2,Y2)
 {
 this.left=X1;
 this.top=Y1;
 this.right=X2;
 this.bottom=Y2;
 }

You might notice that this class is similar to the Area class we created in the dynamic image
map example. It simply defines the boundaries of a rectangle.

Next, the layerObject object will need to be instructed about whether to bounce when it hits
a boundary. We can achieve this with a boolean parameter. Our constructor has now grown
yet again:

function layerObject(layerID,pos,vel,z,bounds,bounce)

Dynamic Positioning

12

The object instantiation must now also change to create a rect object and pass up a boolean
value to confirm that the sprite should bounce when it reaches its boundary—the bounds and
bounce parameters, respectively:

mySprite=new layerObject(“sprite1”,
 new Point(0,0),
 new Point(5,3),
 1,
 new rect(0,0,400,400),
 true);

The update() method will need to be extended to handle boundary collisions, like this:

function layerUpdate()
 {
 var newPos=new Point(this.position.x+this.velocity.x,
 this.position.y+this.velocity.y);
 if (this.bounce)
 {
 if (newPos.x>this.boundsRect.right || newPos.x<this.boundsRect.left)
 {
 this.velocity.x = this.velocity.x*-1;
 newPos.x += (this.velocity.x *2);
 }
 if (newPos.y>this.boundsRect.bottom || newPos.y<this.boundsRect.top)
 {
 this.velocity.y=this.velocity.y*-1;
 newPos.y+= (this.velocity.y *2);
 }
 }
 this.setPosition(newPos);
 }

A temporary Point object is created as before. However, before the object is passed on to
setPosition(), it is tested against the boundsRect property. If the newPos.x exceeds
boundsRect.right, for example, the velocity.x is inverted. newPos is amended to reflect the
change. The sprite will remain within its invisible prison, bouncing from wall to wall.

Our sprite is very independent just now—and sometimes that will be what you want. Occa-
sionally, though, you will want it to be a little more obedient. With just a few more methods
we can exert more control over layerObject objects.

To effect this, the layerObject object will need a journey() method, which will start the sprite
moving in a given direction, and a courseCorrect() method, which will tweak the sprite’s
velocity as it moves. They look like this:

function journey(target,jumps)
 {
 this.leaps=jumps;//number of jumps
 this.target=target;
 this.isGoing=true;
 }

Scripting

function courseCorrect()
 {
 var xDist=(this.target.x-this.position.x);
 var yDist=(this.target.y-this.position.y);
 if (this.leaps>1)
 {
 this.leaps--;
 this.velocity.x=Math.round(xDist/(this.leaps)) ;
 this.velocity.y=Math.round(yDist/(this.leaps));
 }
 else
 {
 this.isGoing=false;
 this.velocity=new Point(0,0);
 }
 }

The journey() method expects two parameters: a Point object, which defines the sprite’s
objective, and an integer for the number of hops the sprite should take on its way. The param-
eters are assigned to object properties, and a boolean flag, isGoing, is set to signal that the sprite
is underway.

The courseCorrect() function is called by update(). It simply calculates the remaining dis-
tance to travel along both axes, decrements the number of leaps still to take, and calculates new
values for velocity using these numbers.

update() must be amended to call courseCorrect(), like this:

function layerUpdate()
 {
 if (this.isGoing)
 this.courseCorrect();
 var newPos=new Point(this.position.x+this.velocity.x,
 this.position.y+this.velocity.y);
 if (this.bounce && ! this.isGoing)
 {
 if (newPos.x>this.boundsRect.right || newPos.x<this.boundsRect.left)
 {
 this.velocity.x = this.velocity.x*-1;
 newPos.x += (this.velocity.x *2);
 }
 if (newPos.y>this.boundsRect.bottom || newPos.y<this.boundsRect.top)
 {
 this.velocity.y=this.velocity.y*-1;
 newPos.y+= (this.velocity.y *2);
 }
 }
 this.setPosition(newPos);
 }

update() now checks for the isGoing property and calls courseCorrect() if appropriate. The
only other change here is an additional check for isGoing. If isGoing returns true, the bounds
checking is not implemented. In this way, an order to travel to a particular location takes pre-
cedence over a sprite’s constraints.

Dynamic Positioning

12

After amending the layerObject constructor to reflect the new functions and properties, we
can test the code, using a simple form interface in the body of the document:

<FORM NAME=”myForm”>
<INPUT TYPE=TEXT NAME=”xVal” SIZE=4>
<INPUT TYPE=TEXT NAME=”yVal” SIZE=4>
<INPUT TYPE=BUTTON VALUE=”send it”
onClick=”mySprite.journey(new Point(this.form.xVal.value,
➥this.form.yVal.value),10)”>
</FORM>

This form accepts numerical input and uses it to build a Point object. This is passed up to the
layerObject object’s journey() method, along with an integer representing the number of jumps
to take. In Figure 12.8 you can see our well-behaved sprite.

This well-behaved
element goes where it’s
told.

So far we have seen only one moving layerObject object at a time. Usually, though, you will
want to control more than one at any time. At first sight, the obvious way of doing this is sim-
ply to expand the cycle() method we defined in the section “Making It Move” to call the
update() and draw() methods of more layerObject objects. With lots of objects, however, that
would soon become unwieldy. Luckily, we’ve already defined a way of managing multiple sprite
objects. In the section “Shuffling the Pack: Dynamically Changing z-index,” we created a
noteManager object to organize layerObjects. This is a model we can extend:

function layerManager()
 {
 this.update=managerUpdate;
 this.add=managerAdd;

Scripting

 this.draw=managerDraw;
 this.layerList=new Array();
 }
function managerAdd(l)
 {
 this.layerList[this.layerList.length]=l;
 l.draw();
 l.show();
 }
function managerUpdate()
 {
 for (x=0;x<this.layerList.length;x++)
 {
 this.layerList[x].update();
 }
 }
function managerDraw()
 {
 for (x=0;x<this.layerList.length;x++)
 {
 this.layerList[x].draw();
 }
 }

The layerManager object is very simple. It defines only one property—layerList, an array that
stores references to all layerObjects passed to the add() method. The update() method iter-
ates through the layerList, calling each layerObject object’s update() method. The draw()
method does the same for each layerObject object’s draw() method.

With a few loops we can create lots of sprites very simply. We will create a new function,
writeLayers(), and call it from the Web page. The init() function will initialize a layerManager
object and add all our layerObject objects to it. The syntax looks like this:

function random (limit)
 {
 return (Math.round(((Math.random())*1000))%limit);
 }
var num_of_sprites=random(10)+3;
function init()
 {
 layerMan=new layerManager();
 for (var x=1;x<=num_of_sprites;x++)
 {
 layerMan.add(
 new layerObject(
 “sprite”+x,
 new Point (random(400),random(400)),
 new Point (random(20),random(20)),
 x,
 new rect(0,0,400,400),
 true
)
);
 }
 cycle();

Dynamic Positioning

12

 }
function cycle()
 {
 layerMan.update();
 layerMan.draw();
 setTimeout(“cycle()”,30);
 }
function writeSprites()
 {
 for (var x=1;x<=num_of_sprites;x++)
 {
 document.writeln (“<div id=’sprite”+x+”’ class=’sprites’>”);
 document.writeln (“</div>”);
 }
 }

First, a global variable called num_of_sprites is created, and a random integer between 2 and
10 is assigned to it. This total is used by both writeSprites() and init() in a for loop.
writeSprites() writes each CSS element to the Web page, giving each an ID property. All the
elements share a sprite class, which sets a position property of absolute.

Figure 12.9 shows the script in action.

Company at last. The
layerManager object
handles multiple layers
on the move.

The onLoad handler calls init(), which first creates a layerManager object, layerMan. Another
loop initializes the layerObject objects, randomizing the position and vector parameters. Each
layerObject object is added to the layerManager’s layerList.

The cycle() function repeatedly calls the layerManager object’s update() and draw() methods.

Scripting

It’s time to create a single page that combines some of the techniques that we have covered in
this chapter. Take a look through the code in Listing 12.9. All the code will work happily in
both fourth-generation browsers, apart from the image map we first looked at in the section
“Cutting Corners: Dynamic Image Maps Using Only Two Images.” In IE4, all the hotspots
will activate at once when the pointer passes over a link. This is not ideal, but the effect is not
unpleasing, so maybe we can call it a feature rather than a bug. We’ll examine some of the
code’s features in more detail afterward.

<HTML>
<HEAD>
<TITLE>Bringing it all together</TITLE>
</HEAD>

<SCRIPT LANGUAGE=”JavaScript”>
var L=new layerTool();
function layerTool()
 {
 if (navigator.appName==”Netscape”)
 this.layerProp=navProp;
 else
 this.layerProp=exProp;
 }
function exProp()
 {
 return document.all[arguments[arguments.length-1]].style;
 }
function navProp()
 {
 retVal=””;
 for (var x=0;x<arguments.length;x++)
 {
 retVal+=”document.layers[\’”+arguments[x]+”\’]”;
 if (x!=arguments.length-1)
 retVal+=”.”;
 }
 return eval(retVal);
 }
function Point(X,Y)
 {
 this.x=X;
 this.y=Y;
 }
function rect(X1,Y1,X2,Y2)
 {
 this.left=X1;
 this.top=Y1;
 this.right=X2;
 this.bottom=Y2;
 }
function foster(child,ancestor)

Dynamic Positioning

12

 {
 for (x in ancestor)
 {
 if (!(child [x.toString()]))
 child [x.toString()]=ancestor[x];
 }
 }
function random (limit)
 {
 return (Math.round(((Math.random())*1000))%limit);
 }

function layerObject(layerID,pos,vel,z,bounds,bounce)
 {
 // properties
 this.layerID=layerID;
 this.position=pos;
 this.velocity=vel;
 this.boundsRect=bounds;
 this.depth=z;
 this.bounce=bounce;
 this.visibility=”visible”;
 this.isGoing=false;
 this.active=true;
 // methods
 this.show=showLayer;
 this.setZorder=setZorder;
 this.hide=hideLayer;
 this.setPosition=setPosition;
 this.draw=drawLayer;
 this.update=updateLayer;
 this.journey=journey;
 this.courseCorrect=courseCorrect;
 this.show();
 }

function setZorder(z)
 {
 this.depth=z;
 }
function showLayer()
 {
 L.layerProp(this.layerID).visibility=”visible”;
 }
function hideLayer()
 {
 L.layerProp(this.layerID).visibility=”hidden”;
 }
function drawLayer()
 {
 L.layerProp(this.layerID).zIndex=this.depth;
 L.layerProp(this.layerID).left=(this.position).x;
 L.layerProp(this.layerID).top=(this.position).y;
 }
function setPosition(pos)
 {
 this.position=pos;
 }

continues

Scripting

function journey(target,jumps)
 {
 this.leaps=jumps;//number of jumps
 this.target=target;
 this.isGoing=true;
 this.active=true;
 }
function courseCorrect()
 {
 var xDist=(this.target.x-this.position.x);
 var yDist=(this.target.y-this.position.y);
 if (this.leaps>1)
 {
 this.leaps--;
 this.velocity.x=Math.round(xDist/(this.leaps)) ;
 this.velocity.y=Math.round(yDist/(this.leaps));
 }
 else
 {
 this.isGoing=false;
 this.velocity=new Point(0,0);
 }
 }
function updateLayer()
 {
 if (this.isGoing)
 this.courseCorrect();
 if (this.velocity.x==0 && this.velocity.y==0)
 this.active=false;
 else
 this.active=true;
 var newPos=new Point(this.position.x+this.velocity.x,
 this.position.y+this.velocity.y);
 if (this.bounce
&& ! this.isGoing)
 {
 if (newPos.x>this.boundsRect.right || newPos.x<this.boundsRect.left)
 {
 this.velocity.x = this.velocity.x*-1;
 newPos.x += (this.velocity.x *2);
 }
 if (newPos.y>this.boundsRect.bottom || newPos.y<this.boundsRect.top)
 {
 this.velocity.y=this.velocity.y*-1;
 newPos.y+= (this.velocity.y *2);
 }
 }
 this.setPosition(newPos);
 }

function noteObject(layerID,pos,z)
 {
 this.ancestor=new layerObject(layerID,
 pos,
 new Point(0,0),
 z,
 new rect(0,0,1000,1000),
 false);

Dynamic Positioning

12

 foster(this,this.ancestor);
 this.defaultDepth=z;
 this.home=pos;
 }

function noteManager()
 {
 this.LayerList=new Array();
 this.add=noteAdd;
 this.select=noteSelect;
 }

function noteAdd(LayerObj)
 {
 this.LayerList[this.LayerList.length]=LayerObj;
 this.zone=new Point(LayerObj.position.x+160,LayerObj.position.y);
 }

function noteSelect(LayerName)
 {
 for (var x=0;x<this.LayerList.length;x++)
 {
 if (this.LayerList[x].layerID==LayerName)
 {
 if (this.LayerList[x].depth==100)
 {
 this.LayerList[x].setZorder(this.LayerList[x].defaultDepth);
 this.LayerList[x].journey(this.LayerList[x].home,6);
 }
 else
 {
 this.LayerList[x].setZorder(100);
 this.LayerList[x].journey(this.zone,6);
 }
 }
 else
 {
 this.LayerList[x].setZorder(this.LayerList[x].defaultDepth);
 this.LayerList[x].journey(this.LayerList[x].home,6);
 }
 this.LayerList[x].draw();
 }
 }

function layerManager()
 {
 this.update=managerUpdate;
 this.add=managerAdd;
 this.draw=managerDraw;
 this.layerList=new Array();
 }
function managerAdd(l)
 {
 this.layerList[this.layerList.length]=l;
 l.draw();
 l.show();
 }

continues

Scripting

function managerUpdate()
 {
 for (x=0;x<this.layerList.length;x++)
 {
 if (this.layerList[x].active)
 this.layerList[x].update();
 }
 }
function managerDraw()
 {
 for (x=0;x<this.layerList.length;x++)
 {
 if (this.layerList[x].active)
 this.layerList[x].draw();
 }
 }

p=new Array();
p[0]=new Area(25,30,125,75,”http://www.corrosive.co.uk/”);
p[1]=new Area(5,125,130,175,”http://www.corrosive.co.uk/”);
p[2]=new Area(115,100,225,126,”http://www.corrosive.co.uk/”);

m=new map(“m”,”container”,”topLayer”,p);
function Area(X1,Y1,X2,Y2,url)
 {
 this.left=X1;
 this.top=Y1;
 this.right=X2;
 this.bottom=Y2;
 this.url=url;
 }

function map(name,container,top,areas)
 {
 this.name=name;
 this.top=top;
 this.container=container;
 this.areas=areas;
 this.writeMap=writeMap;
 this. highlight=highlight;
 this.reset=reset;
 this.timeout=null;
 }
function writeMap (mapName)
 {
 document.write(“<map name=”+mapName+”>”);
 for (x=0;x<this.areas.length;x++)
 {
 document.write(“<area shape=\”RECT\” href=’”+this.areas[x].url+”’
onMouseOver=’”+this.name+”.highlight(“+x+”)’ “);
 document.write(“onMouseOut=’”+this.name+”.reset()’ “);
 document.write(“COORDS=\””+this.areas[x].left+”,”+this.areas[x].top+”
“+this.areas[x].right+”,”+this.areas[x].bottom+”\”>”);
 }
 document.write(“</map>”);
 }

Dynamic Positioning

12

function highlight(num)
 {
 clearTimeout(this.timeout);
 this.timeout=setTimeout(this.name+”.reset()”,5000);
 L.layerProp(this.container,this.top).visibility=”visible”;
 L.layerProp(this.container,this.top).clip.top=this.areas[num].top;
 L.layerProp(this.container,this.top).clip.left=this.areas[num].left;
 L.layerProp(this.container,this.top).clip.bottom=this.areas[num].bottom;
 L.layerProp(this.container,this.top).clip.right=this.areas[num].right;
 }
function reset()
 {
 L.layerProp(this.container,this.top).visibility=”hidden”;
 }

function init()
 {
 layerMan=new layerManager();
 noteMan=new noteManager();
 var yPos=30;
 for (var x=1;x<=5;x++)
 {
 note=new noteObject(“note”+x,new Point(10,yPos),x);
 layerMan.add(note);
 noteMan.add(note);
 yPos+=30;
 }
 var xPos=200;
 for (var y=1;y<=3;y++)
 {
 temp=new layerObject(
 “heading”+y,
 new Point (xPos,300),
 new Point (random(30)-15,random(30)-15),
 200,
 new rect(180,30,500,400),
 true
)
 layerMan.add(temp);
 xPos+=150;
 }
 cycle();
 }
function cycle()
 {
 layerMan.update();
 layerMan.draw();
 setTimeout(“cycle()”,20);
 }
</SCRIPT>

<STYLE TYPE=”text/css”>
.shuffleClass{
 POSITION: absolute;
 WIDTH: 150px;
 VISIBILITY: hidden;
 }

continues

Scripting

.headings{
 POSITION:absolute;
 FONT-WEIGHT:100;
 FONT-FAMILY:sans-serif;
 COLOR:#0066cc;
 FONT-SIZE:24pt;
 VISIBILITY:hidden;
 }
.maps{
 POSITION:absolute;
 }
#container{
 POSITION:absolute;
 TOP: 130;
 LEFT:250;
 VISIBILITY: visible;
 }
#topLayer{
 VISIBILITY:hidden;
 }
A:link, A:visited, A:active{
 COLOR:#0D20AE;
 FONT-WEIGHT:bold;
 FONT-FAMILY: sans-serif;
 TEXT-DECORATION: none
 }
</STYLE>

<BODY BGCOLOR=”#ffffff” onLoad=”init()”>
<SCRIPT>
m.writeMap(“myMap”);
</SCRIPT>
<DIV ID=”note1" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=#CBD5FF CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
About Us
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note2" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=#CBD5FF CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Clients
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note3" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=#CBD5FF CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>

Dynamic Positioning

12

Freebies
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note4" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=#CBD5FF CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Links
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”note5" CLASS=”shuffleClass”>
<TABLE HEIGHT=200 WIDTH=150 BGCOLOR=#CBD5FF CELLPADDING=10 BORDER=1>
<TR><TD VALIGN=TOP>
Welcome
<P>
links and information
</P>
</TD></TR>
</TABLE>
</DIV>

<DIV ID=”container”>
 <DIV ID=”bottomLayer” CLASS=”maps”>

 </DIV>
 <DIV ID=”topLayer” CLASS=”maps”>

 </DIV>
</DIV>

<DIV ID=”heading1" CLASS=”headings”>
Dynamic
</DIV>
<DIV ID=”heading2" CLASS=”headings”>
Web
</DIV>
<DIV ID=”heading3" CLASS=”headings”>
Design
</DIV>
</BODY>
</HTML>

You can see this script in action in Figure 12.10. The words “Dynamic,” “Web,” and “Design”
float independently around the page. The image map works as before, with worms popping
from the apple as the mouse traverses hotspots. The card file is a little more sophisticated than
before: Selected cards leap to the front and float to the right as if pulled from the pack.

Scripting

The example shown in Figure 12.10 and Listing 12.9 might look like lots of work, but in
reality, most of the code consists of the classes that we’ve already created. In particular, the map,
layerOject, and layerManager classes are implemented.

The floating text elements are controlled by simple instantiations of our traditional layerObject
class. The class itself has been changed in one important respect: A new property—active—
has been added to the constructor and set by default to true. The update() method now tests
the object’s velocity property: If both its x and y properties are at 0, the active property is set
to false. What’s this all about? Well, the layerManager object used to call the update() and
draw() methods of all the layerObjects to which it had a reference. For objects that are not
moving, like the card file elements for example, an awful lot of effort was being wasted every
cycle, slowing down the script noticeably. Now the layerManager object checks the active
property of all its layerObject objects. It will only call update() or draw() if the object is cur-
rently active.

The instantiation of the layerObject objects is affected in the init() function, using a loop.
The loop creates each object, randomizing its vector property and incrementing its starting
position along the x axis.

The image map is entirely unchanged. Note that on IE4, the clipping will not work. If a hotspot
is activated, the entire top element will be shown.

There are, however, some interesting differences in our card file. We have introduced move-
ment so that the selected card floats to one side of the pack in addition to jumping to the front.
What makes this new code worth some analysis, furthermore, is the use of inheritance, per-
haps JavaScript’s most underrated feature and an important tool for Dynamic HTML coding.

Movement, depth, and
an image map. All our
techniques on one page.

Dynamic Positioning

12

It has often been written that JavaScript differs from Java in that it is not possible for one
JavaScript class to inherit properties and functions from another. Although it is true that in-
heritance is not built into the language, it is a simple matter to implement it. But why would
you want to? There are at least two good reasons: reusability and polymorphism.

Inheritance enables you to lay down functionality in a base class and build new features onto it
with derived classes. This means that you can create many objects that share core functionality,
without having to duplicate code. Furthermore, you can override the superclass’s methods so
that different child objects will behave differently to one another when their respective meth-
ods are called. This is known as polymorphism. Consider our layerManager object. It holds an
array of layerObject objects and calls the update() method of each in turn. If some of these
objects are, in fact, initialized from classes that override the layerObject class, they may behave
differently from conventional layerObject objects when their update() method is called, but
still have access to all the other methods of the layerObject class. If you were writing a game,
for example, you might create asteroid and spaceship objects—both inheriting from
layerObject. The asteroid objects could override the update() method in one way, and the
spaceship objects in others. All would have access to other layerObject methods but would
behave differently when their update() methods were called by the layerManager. And all without
having to duplicate any of the layerObject code.

So, how is inheritance implemented in JavaScript? In fact, as the code below shows, it’s very
easy indeed:

function base()
 {
 this.whoAreYou=baseWho;
 this.identity=”I am a base class”;
 }
function baseWho()
 {
 alert (this.identity);
 }

function child()
 {
 this.ancestor=new base()
 foster(this,this.ancestor);
 this.identity=”I am a child”; // overriding name property
 }

function foster(child,ancestor)
 {
 for (x in ancestor)
 {
 if (!(child [x.toString()]))
 child [x.toString()]=ancestor[x];
 }
 }

Scripting

obj=new child();
obj.whoAreYou();
obj.ancestor.whoAreYou();

All the magic is in the foster()method, which should be globally available. It uses the fact that
every object automatically creates an associative array of its properties. A child object should
first initialize its ancestor, passing any necessary parameters to it. To inherit the ancestor’s func-
tionality, the child must call foster() with a reference to itself and its parent as parameters.
The foster() function iterates through each of the ancestor’s properties, and assigns it to the
child (as long as the child has not defined its own version of that property). In our example
above, the child object overrides the ancestor’s identity property. When whoAreYou() is called,
therefore, it is the child’s identity property that is returned. The child can still access its parent’s
properties, however, simply by using the ancestor property.

We can see an example of this in action in our card file code:

function noteObject(layerID,pos,z)
 {
 this.ancestor=new layerObject(layerID,
 pos,
 new Point(0,0),
 z,
 new rect(0,0,1000,1000),
 false);
 foster(this,this.ancestor);
 this.defaultDepth=z;
 this.home=pos;
 }

function noteManager()
 {
 this.LayerList=new Array();
 this.add=noteAdd;
 this.select=noteSelect;
 }

function noteAdd(LayerObj)
 {
 this.LayerList[this.LayerList.length]=LayerObj;
 this.zone=new Point(LayerObj.position.x+160,LayerObj.position.y);
 }

function noteSelect(LayerName)
 {
 for (var x=0;x<this.LayerList.length;x++)
 {
 if (this.LayerList[x].layerID==LayerName)
 {
 if (this.LayerList[x].depth==100)
 {
 this.LayerList[x].setZorder(this.LayerList[x].defaultDepth);
 this.LayerList[x].journey(this.LayerList[x].home,6);
 }
 else

Dynamic Positioning

12

 {
 this.LayerList[x].setZorder(100);
 this.LayerList[x].journey(this.zone,6);
 }
 }
 else
 {
 this.LayerList[x].setZorder(this.LayerList[x].defaultDepth);
 this.LayerList[x].journey(this.LayerList[x].home,6);
 }
 this.LayerList[x].draw();
 }
 }

The noteManager object is similar to the version demonstrated in the section on z-index. One
difference is that it calls the journey() method of the noteObject objects it stores. It can do this
because the noteObject objects inherit from the layerObject class. Additionally, the noteObject
class has some properties not included in layerObject. The defaultDepth and home properties
allow each object to return to a specific depth and position when they are deselected. To
include these extra properties without inheritance would have meant hacking the layerObject
class itself. layerObject would be less reusable as a utility class in that it would have application-
specific features that would need to be removed the next time you used it.

Take a look at the code that instantiates the noteObject objects:

for (var x=1;x<=5;x++)
 {
 note=new noteObject(“note”+x,new Point(10,yPos),x);
 layerMan.add(note);
 noteMan.add(note);
 yPos+=30;
 }

noteObject requires only three parameters because many of the parameters required by
layerObject are the same for each noteObject object. It’s much easier to let the noteObject
class deal with these, demanding only those parameters that are likely to change from object to
object.

In this chapter we have developed several tools that can be reused and developed in your games
or environments. In particular, the layerObject class is a useful way of controlling CSS ele-
ments. Not only can the class itself be developed further, but with the help of the inheritance
techniques we have covered, child classes with widely differing functionality can be produced
to build upon its features. layerObject objects are easy to control with the layerManager class.

The layerTool object is a handy class for cross-browser scripting, and could be developed to
deal with other browser differences.

Despite Internet Explorer’s present inability to handle the clip property, the map class is a use-
ful means of creating easy and low-overhead mouseOver page elements.

Scripting

This chapter has not completely filled your dynamic positioning toolbox, but the utilities and
techniques presented here should form a good basis for your own work.

So where now? Well, that’s only limited by your imagination (and the occasional bug or in-
compatibility). Dynamic positioning heralds the possibility of genuine multimedia on a Web
page, without a plug-in in sight.

In terms of the scripts we’ve examined, layerManager and layerObject are crying out for at
least a couple of new features. One possibility you might consider in your development is some
code to handle collisions between sprites. The layerManager class’s update() method would
have to handle this. What about some code to create sprites made up of multiple layers or images?

The Internet is an excellent teacher, and there are some extremely useful sites around already
to help you with your development once you’ve exhausted the online resources available from
Microsoft and Netscape.

You should definitely check out the latest on CSS at W3C, in particular the W3C Working
Draft on Positioning HTML Elements with cascading style sheets at http://www.w3.org/TR/
WD-positioning.

Perhaps the best tutorial site around at the moment is Macromedia’s DHTML Zone at http:
//www.dhtmlzone.com/. A complete dynamic environment is presented, and tutorials tell you
how it was done.

Also excellent is the tip-based DHTML section of The WebMaster’s Reference Library at http:
//www.webreference.com/dhtml/. This site is particularly useful for issues of backward com-
patibility and cross-browser coding.

If it’s just a good reference you need, then http://www.htmlhelp.com/ is certainly worth a look.

Using VBScript as an Alternative Language

13

by John J. Kottler

■

■

■

Scripting

Dynamic HTML is a powerful tool that enables developers to create more interactive and in-
triguing Web pages. However as you have seen throughout this book, Dynamic HTML alone
does not make a great Web site. It is the scripting routines tied to the HTML Web pages that
make a truly dynamic experience. Most of the examples you have seen in this book were writ-
ten using JavaScript. This language is powerful and is completely capable of handling DHTML
in your Web pages. However, it is not the only language available.

JavaScript is a popular choice for client Web page scripts, mainly because it is the only lan-
guage that is compatible with both popular Web browsers on the market: Netscape Navigator
3.0/Communicator 4.0 and Microsoft Internet Explorer 3.0/4.0. If you have created Web pages
for the Internet, chances are you have run across the issue of optimizing your site for one browser
or the other. Since each browser has its own unique capabilities, it is difficult to create a single
site that truly uses the unique capabilities of one browser. To make use of the most innovative
features of each browser you would have to create separate versions of your Web pages opti-
mized for each one. This of course becomes time consuming and is very labor intensive.

Currently the VBScript scripting language is only available in Microsoft Internet Explorer and
not implemented in Netscape’s products. The only way Netscape comes close to implement-
ing a version of VBScript is via a special plug-in, which every user may not have installed on
their desktop. Therefore many Web page authors choose to use JavaScript, since it has been
implemented in both browsers.

Although both browsers support JavaScript, JavaScript has just recently become been a stan-
dardized language. Because JavaScript wasn’t a standardized language before now, Microsoft
implemented the language in its browsers as best it could without any specifications for the
language. Though both browsers supported JavaScript, they both supported different imple-
mentations of the language and object model. This slight difference caused some compatibil-
ity issues on the browsers for sites using JavaScript. Some things written for Netscape’s version
of JavaScript worked perfectly, but did not translate in Microsoft’s implementation.

In an attempt to finally standardize on a truly universal JavaScript language, a coalition of soft-
ware developers standardized on one model. ECMA-262 is the most recent name for a stan-
dard JavaScript/JScript. It is named after the European Computer Manufacturers Association,
which facilitated the process of setting a single implementation for the language.

In certain circumstances, you may still want to use VBScript and there are several good reasons
to use this language. You may simply have more experience with Visual Basic and the BASIC
language, the origins of VBScript. Or, you may have standardized on Internet Explorer within
an intranet environment. If this is the case, you can be assured that all the potential users of
your intranet site will also have VBScript and be able to fully utilize your site.

Whatever your reason, there will be times when you may prefer to use VBScript as your pri-
mary scripting language with Dynamic HTML. In this chapter, you will be introduced to
Dynamic HTML and how VBScript can be used with DHTML to create the same interactive
Web pages that you have seen in other sections of this book. Since VBScript is so tightly

Using VBScript as an Alternative Language

13

integrated with Microsoft Internet Explorer, you will also learn about this browser’s imple-
mentation of the Document Object Model (DOM). You must understand this model to write
VBScript that interacts with objects on a Web page.

Unfortunately, Dynamic HTML and the Document Object Model are new technologies that
have been supplied to the World Wide Web Consortium (http://www.w3c.org) for standard-
ization. You may experience some difficulty in implementing DHTML on your site because
the Document Object Model may differ slightly between browsers. In this chapter, we will
concentrate solely on the Microsoft Internet Explorer 4.0 browser, since currently it is the only
browser that works well with VBScript.

Document Object Model can be a scary term, particularly to those developers who are not
seasoned programmers. In reality, the Document Object Model, or DOM for short, is a rela-
tively simple concept. As a Web page designer, you are already familiar with an HTML page
(or document) and the items that make up that page. You’re familiar with the concept of set-
ting certain attributes or properties for particular HTML tags within a document. You are also
familiar with the scripting capabilities that allow you to cause those scripts to execute upon
certain actions, such as onClick.

The Document Object Model, exposed by Microsoft Internet Explorer 4.0, basically expands
upon these principles that you are already familiar with. In a sense, each object on a Web page
document, including the actual document itself, is exposed as an object that can be manipu-
lated by script commands. If you are already familiar with object-oriented programming, you
will quickly realize that each of these HTML objects contain properties and events of their
own.

HTML tags allow you to mark up items within a Web document, but in Dynamic HTML
they also serve as definitions for objects on that HTML page. Any bit of information that ex-
ists between the open and close HTML tags in a document can now be treated as an object. If
those HTML tags contain attributes or properties that you usually set within the opening HTML
tag, you can reference those same properties within your script to change them on-the-fly.

To finish explaining the Document Object Model, let’s take a quick look at events. When you
define tags with attributes in HTML, you notice that some HTML tag attributes allow you to
handle actions such as clicking the mouse. For example, with the INPUT tag you can specify that
particular script commands be run whenever anyone clicks on that HTML object. Usually you
can put this action in effect by adding the onClick attribute to the INPUT tag.

As powerful as this is, you are restricted to only being able to capture events on very specific
objects. With Dynamic HTML and the Document Object Model, it is possible to create scripts
that are triggered when any object on a page causes an action to occur. With this type of capa-
bility, it is now possible to add onClick or other events to objects such as heading tags (<H1>,
<H2>, <H3>, and so on), paragraph tags (<P>), or other formatting tags.

Scripting

In this chapter, you will be introduced to the Document Object Model as it applies specifically
to Internet Explorer 4.0 using VBScript as the language. To learn additional information about
how Microsoft and Netscape have implemented the Document Object Model, consult Chap-
ter 15, “Document Object Model Comparison.”

As we have already discussed, it is possible to treat each element on a Web Page as an object.
You can also access properties and set attributes on each of those Web page elements. There
are two ways you can address elements or objects on an HTML page: by unique name or by a
collection.

The easier approach for using Dynamic HTML objects in your VBScript is to uniquely name
each object that you want to reference in your scripts. By doing this, you can quickly and easily
identify that element by the name you assign it. Assigning a name to an element in Dynamic
HTML is easy, you simply use the ID= attribute with any opening tag and follow it with the
name that you would like to use to identify that element.

To understand this more fully, let’s take a look at a very simple example. Listing 13.1 shows a
very short HTML document that uses a combination of Dynamic HTML and VBScript to
create a more dynamic application. The results of this example can be found in Figure 13.1.

<HTML>
<TITLE>Dynamic HTML Unleashed</TITLE>
<BODY>

<SCRIPT LANGUAGE=”VBScript”>
sub changeFont(newSize)
 myFont.size=newSize
end sub
</SCRIPT>

Dynamic HTML and VBScript is fun!

<P>
<INPUT SIZE=2 TYPE=TEXT NAME=fontSize VALUE=”-3">
<INPUT TYPE=BUTTON VALUE=”Change Font Size” onClick=”changeFont(fontSize.value)”>

</BODY>
</HTML>

Using VBScript as an Alternative Language

13

ID

NAME

ID

As you can see in Listing 13.1, the FONT tag was used to create an object on the page named
myFont. That font tag was then referenced in the VBScript routine to change the size of the
font based on a value passed to the routine.

Each HTML element has its own set of properties, unique to that object. For example, you
know that the tag has SIZE, COLOR, and FACE attributes. You are aware that the <BODY>
tag contains BACKGROUND and BGCOLOR attributes. To use these objects in Dynamic HTML, you
can reference any attribute of an HTML element as a property of the object. You can retrieve
these properties for analysis or modification. For instance, the following syntax is legal for these
HTML elements:

myImage.src=”newpic.gif”
myFont.size=myFont.size+1
oldColor=Document.bgcolor

With Dynamic
HTML, you can
change properties of
elements on-the-fly such
as the size of the font.

Scripting

Document

ID <BODY>

It’s important to notice, however, that although almost every tag exposes its attributes as prop-
erties to be accessed via script, there are some attributes that may not be accessible directly as
named. Some names of attributes for HTML tags are the same names as reserved words within
scripting languages. If this is the case, the property name will be confused with the scripting
command in the script.

An example of this is the CLASS attribute for objects. Class is also a reserved word in scripting
languages to create new objects. To avoid ambiguity, the property for accessing the CLASS at-
tribute is className. There are few exceptions, but it is important to realize that they exist.

Although the direct relationship between properties in scripting and attributes in HTML tags
is fairly obvious, sometimes properties of objects lead to sub-objects. This is usually the case
for objects that can contain additional objects within them. In the world of HTML documents,
this occurs fairly frequently, particularly with the use of cascading style sheets (CSS).

In Dynamic HTML, style sheets allow the Web page developer the flexibility to create objects
on the page at exact pixel locations and at varying levels behind or in front of other objects on
the page. With style sheets, it’s possible to create very interactive applications by modifying
these values to create motion or other effects. (To learn more about motion with Dynamic
HTML and VBScript, see Chapter 24, “IE 4.0 Multimedia Effects with Dynamic HTML.”)

The power of style sheets is actually encapsulated in a second object, embedded within the page
object. For instance, the <DIV> tag can be used to define regions of grouped items on a Web
page. Within a <DIV> tag, you can specify several attributes including a STYLE attribute. How-
ever the STYLE attribute can have numerous attributes of its own. For example, you can set the
style’s color, position, or filter effects. Therefore the STYLE attribute can be thought of logically
as a sub-object of the original <DIV> object.

In this case, it’s just as easy to define or access properties for a sub-object. You can still use the
same syntax as before, but simply include all objects and sub-objects along the object hierar-
chy, separated by a period (“.”). For example to change the left position of a <DIV> object, you
could use the following syntax:

<DIV ID=myDiv STYLE=”left:320;position:absolute”>Some Text</DIV>
<SCRIPT LANGUAGE=”VBScript”>
 myDiv.style.left=120
</SCRIPT>

Using VBScript as an Alternative Language

13

As you can see, the original object myDiv is referenced first, followed by the sub-object style,
finishing with the actual property to change left.

In addition to retrieving information about HTML elements by name, you can traverse through
all the objects on a page. All elements on a Web page are stored in arrays of objects referred to
as collections. With these collections you can reference any item on the page, even those that
you have not named. This can be particularly useful for scripts that add or modify the contents
of a Web page. As items are removed or added to a page, you may need to reference the new
items by this method. You can also use scripts in conjunction with collections to learn how
objects are related to each other or to display statistics about a page. There are two types of
collections that can be accessed: the all collection and the children collection.

all
To find out about all of the tags on a page, you can use the all collection. This collection can
be referenced in relation to an object to find all of the tags or elements that exist within that
object. For instance, many tags in HTML are embedded within other tags. The <BODY> tag
does not function by itself unless there are numerous display tags embedded within that tag.
Likewise, the <TABLE> tag requires that <TD> or <TR> tags exist within that object in order to
display table cells. Of course you may have embedded tags nested within other embedded tags,
such as a <TD> tag within a <TABLE> tag that is within a <BODY> element.

To retrieve all of the elements no matter how deep within a collection associated with a par-
ticular HTML element, you can use the all collection with an initial object. Listing 13.2 shows
how to display all of the elements on an HTML page using VBScript and the all collection.
The page that is generated by the HTML and script in Listing 13.2 can be found in Figure 13.2.

all

<HTML>
<TITLE>
Dynamic HTML - Collections
</TITLE>

<BODY>
<H1>Dynamic HTML is Fun!</H1>
Why?
<UL ID=myTag>
 Because of script interaction
 Dynamic positioning and properties
 It just is!

<SCRIPT LANGUAGE=”VBScript”>
for l=0 to document.all.length

continues

Scripting

 document.write document.all(l).tagName & “
”
next
</SCRIPT>

</BODY>
</HTML>

Each document’s
collection holds a list of
all the elements found
on the page.

As you can see from Figure 13.2, the all collection returns a list of all elements found on the
HTML page. By performing a simple loop, we can iterate through all the items in the collec-
tion and write out their respective tag names. The all collection contains only a few properties
and methods that you can use, some of which we will cover shortly. These properties include:

■ length—Determines the number of elements that exist in that collection.

■ tagName—Returns the HTML tag that is found for the element you request.

■ item()—References each item in the collection. This method expects an integer value
to specify which numbered item in the collection you want to act upon. If you have
named your elements on the Web page with the ID attribute, you can pass the ID
name for the element into this method to identify that item.

Using VBScript as an Alternative Language

13

■ tags()—Traverses the collection for elements of a particular tag type and returns the
list of elements as another collection that you can act upon. This is helpful when you
want to find elements in a collection by their HTML tag type.

You may also have noticed that you can index each element of the all collection by supplying
an integer index value within parenthesis. For example, you will find that
document.all(2).tagName is equivalent to document.all.item(2).tagName. As shown previously,
there are two additional methods provided for collections: item() and tags(). You can use the
item method to retrieve a particular element from the collection by index or ID, or the tags
method to retrieve a group of elements from the collection.

item

0

1 0

To illustrate further, let’s take a look at a modified version of Listing 13.2. Listing 13.3 shows
a modified <SCRIPT> section for the HTML page listed in Listing 13.2.

tags() items()

<SCRIPT LANGUAGE=”VBScript”>
for l=0 to document.all.length-1
 document.write document.all(l).tagName+” ”
next

document.write “<P>There are “ & document.all.tags(“LI”).length-1 & _
 “ tags on this page.<P>”
document.write “The first tag on this page is: “ & _

continues

Scripting

 document.all.item(0).tagName & “<P>”
document.write “The ‘myTag’ element is a: “ & _
 document.all.item(“myTag”).tagName & “<P>”

</SCRIPT>

The basic difference between Listing 13.3 and Listing 13.2 is the addition of the last three
document.write statements. The first write statement invokes the tags method to collect all of
the elements in the HTML page that are tags. Because the tags method returns a collec-
tion, it is then possible to use some properties or methods on the collection, such as length.
This will count the number of tags on the page and write the result. The second and third
write statements illustrate how to display information in the collection by calling the item
method with an integer index and named ID respectively.

You’ll recall in Listing 13.2 that the ID myTag is associated with the tag in the HTML. As
you can see, it is possible to retrieve collections for the entire HTML document as well as other
elements in the HTML page that can have embedded elements. In this case, the unsigned list
element contains three additional list index elements that are retrieved by scripting code.

For many reasons, you will want to retrieve all of the embedded elements for any given ele-
ment, no matter how deeply embedded. You can see that the all collection allows you to do
that; it returns all elements related to the element you specify as well as any elements within
those that are returned. In some circumstances, you may need to simply return the list of all
elements directly related to an individual element. If you think of this hierarchically, you are
then asking for information on only the children of an element or parent. In this case, you do
not want to see the children’s children or other descendants.

Fortunately, it is quite easy to return solely the direct descendant of an element using the chil-
dren collection. This method returns the immediate HTML tags within a single HTML ele-
ment. For instance if there were a <TABLE> tag within a <BODY> tag in an HTML document,
only the <TABLE> element would appear in the children collection. The table’s <TD> and <TR>
tags would only be revealed using the all collection. Listing 13.4 shows the same Web page as
originally displayed in Figure 13.2, however this time we will display only the children tags of
the <BODY> tag instead of all tags for the document. The final result of this script is illustrated in
Figure 13.3.

children

<HTML>
<TITLE>
Dynamic HTML - Collections
</TITLE>

<BODY ID=myDocument>

Using VBScript as an Alternative Language

13

<H1>Dynamic HTML is Fun!</H1>
Why?

 Because of script interaction
 Dynamic positioning and properties
 It just is!

<SCRIPT LANGUAGE=”VBScript”>
msgbox myDocument.children.length
for l=0 to myDocument.children.length-1
 document.write myDocument.children(l).tagName & “
”
next
</SCRIPT>

</BODY>
</HTML>

Listing 13.4 displays
fewer HTML
documents because the
children collection is
used.

children <BODY>

children

document children

<HTML>

Scripting

In the world of object-oriented programming, setting properties and invoking methods is only
one part of creating applications. To create truly dynamic applications, it is essential that your
program can trap particular events that may occur on the Web page. If you have been pro-
gramming Web pages with scripts at all, you are familiar with the concept of adding event
handlers such as onClick to individual HTML elements such as <INPUT> tags. With this capa-
bility, it is possible to invoke a script based on an event that occurred for an object on the Web
page.

In the world of Dynamic HTML and the Document Object Model however, this concept of
event handling has been expanded. Now you can place event handlers on any object of the
Web page. You can describe events using more logical mechanisms and even create shared event
handlers that can be triggered for multiple objects on a page.

This chapter introduces you to the basics of event handling within Internet Explorer 4.0 using
VBScript. For additional information on event handling in VBScript, see Chapter 16, “The
Internet Explorer 4.0 Event Model: Event Bubbling.” For examples using JavaScript or Netscape,
please see Chapter 17, “The Communicator 4.0 Event Model: Event Capturing.”

You are already familiar with basic event handling such as the onClick event. With tags such as
the <INPUT> tag, you could trap a mouse click event to perform some type of action. For in-
stance, the following sample creates a basic button and displays a message box when it is clicked.

<INPUT TYPE=BUTTON
 VALUE=”Click Me”
 OnClick=”msgbox ‘You clicked me!’”
 LANGUAGE=”VBScript”
>

In the past, the onClick event was handled by very few HTML objects. With Dynamic HTML
however, it is possible to trap this event on any HTML object. Listing 13.5 illustrates this by
placing an onClick on a bold line of text and a heading.

<HTML>
<BODY>

<H1 onclick=”msgbox ‘Stop clicking on me!’” LANGUAGE=”VBScript”>
This is a Heading
</H1>

This is <B onclick=”msgbox ‘Be bold.’” LANGUAGE=”VBScript”>
BOLD text.

</BODY>
</HTML>

Using VBScript as an Alternative Language

13

LANGUAGE

If you view this page in Internet Explorer 4.0, you will see that you can click on the word
“BOLD” or anywhere on the heading line to reveal two different message boxes. If it’s possible
to add click events to the most basic of tags, you can apply them to any formatting tag. There
are some exceptions to this; for instance, you cannot create a click event for the <TITLE> tag
since that information is not displayed within the body of the Web browser. But most any tag
is capable of triggering events.

Listing 13.5 earlier in this chapter demonstrated a very simple example. A single line of source
code was executed for each event that was handled. Although simple, it wasn’t a very practical
example. Usually you will want to perform numerous options based on an event that is trig-
gered. To perform multiple operations at once, you should combine script commands into a
function or subroutine. One method for handling this is to create specific script elements for
an object and event using the <SCRIPT> tag.

In Dynamic HTML, the <SCRIPT> tag has been extended somewhat to accept two new param-
eters: FOR and EVENT. These two attributes together allow you to specify which object and event
you want to run script for on a Web page. The following list describes each of these properties:

■ FOR—The FOR property within the <SCRIPT> tag is used to designate which object is to
use the code between the <SCRIPT> and </SCRIPT> tags. Usually this property is set to
the ID name of another object on the Web page.

■ EVENT—After determining which object the script is written for, the EVENT attribute
specifies which event you want the script to handle. This tag usually simply contains
the name of the event to trap, such as onClick.

Listing 13.6 illustrates the use of the FOR and EVENT attributes to create a script that adjusts the
size of a font block on the page. Whenever you click on the glowing, bold text within the docu-
ment it will grow in size.

<SCRIPT>

<HTML>
<BODY id=DocBody BGCOLOR=#C0C0C0>

<SCRIPT FOR=”myBold” EVENT=”onClick” LANGUAGE=”VBScript”>
 msgbox myStyle.style.filter

continues

Scripting

 myFont.size=myFont.size+1
</SCRIPT>

<B ID=myBold>text

</BODY>
</HTML>

In this example, any code that exists between the <SCRIPT> and </SCRIPT> tags is executed
whenever the bold text is clicked. This is because the <SCRIPT> tag defines the FOR and EVENT
tags as myBold for the bold object and onClick for the click event.

FOR EVENT

VBScript was designed to handle events easily that are generated by actions in controls such as
ActiveX objects. To create an event handler for an ActiveX control, it is possible to simply cre-
ate functions or subroutines within your Web page that are named objectName_objectEvent.
For instance, if a control named “myControl” created an onClick event that could be handled
by VBScript, you would simply need to create a subroutine called myControl_onClick.

In Dynamic HTML, the same capabilities are available with VBScript. In this case, the objects
are HTML elements not just ActiveX controls. Listing 13.7 demonstrates the same Web page
as the one created in Listing 13.6, except this time the event is trapped by a properly named
subroutine.

FOR EVENT

<SCRIPT> onClick

Using VBScript as an Alternative Language

13

<HTML>
<BODY id=DocBody BGCOLOR=#C0C0C0>

<SCRIPT LANGUAGE=”VBScript”>
sub myBold_onClick
 msgbox myStyle.style.filter
 myFont.size=myFont.size+1
end sub
</SCRIPT>

<B ID=myBold>text

</BODY>
</HTML>

As you can see by viewing the HTML page in Listing 13.7, the results are identical to Listing
13.6. However, one advantage to this approach is that you can create all of your event handler
routines without the burden of constantly using the <SCRIPT> tags.

By now you can clearly see the power of creating event handlers for any object on a Web page.
There is also a minor drawback. What if you are creating a large number of objects on a Web
page for which you want to trap events? You could group all of those items into a <DIV> tag or
other grouping tag and then create events for that tag. But what if you want to share events
across multiple HTML elements without necessarily grouping them together? If this is the case,
you will have to rely on a new feature in Dynamic HTML called event bubbling.

With event bubbling, it is possible to define an event on an object and have that event be trig-
gered whenever that object invokes the event or additional elements within that object invoke
the event. For instance when multiple HTML events are embedded within a <DIV> tag and
that <DIV> tag contains an onClick event handler, clicking on the <DIV> tag or on any object
within the <DIV> tag will trigger the event.

Listing 13.8 demonstrates simple event bubbling by creating a DIV with bold and italic text
lines within that DIV. The DIV and each bold and italic line are assigned IDs that are displayed
in the myDiv_onClick subroutine. This subroutine is invoked whenever you click on the DIV,
the line of bold text, or the line of italic text. Clicking on each of these three elements yields
different results in the onClick event for the Web page, however.

Scripting

<HTML>
<BODY>

<SCRIPT LANGUAGE=”VBScript”>
sub myDiv_onClick
 msgbox window.event.srcElement.id
end sub
</SCRIPT>

<DIV ID=myDiv LANGUAGE=”VBScript”>
<B ID=myBold>This is Bold Text

<I ID=myItalic>This is Italic Text</I>
</DIV>
</BODY>
</HTML>

If you examine the page listed in Listing 13.8, you will see that clicking on the blank area of the
DIV causes the onClick event to display “myDiv”. If you click on either the bold or italic lines
however, you will see that the onClick event displays “myBold” or “myItalic.” This example
clearly demonstrates that you can bubble-up the click event from sub-elements into the main
element for handing. Yet, you can easily distinguish which objects are being clicked. This cre-
ates a generic event handler that you can use for multiple objects or the entire Web page.

When you work with bubbling events, you will quickly realize that multiple event handlers
may fire when an event is triggered. This is due to the fact that events explicitly developed for
an element fire first, then the event chain is bubbled-up and the element above in the hierar-
chy has its event fired. In our example in Listing 13.8, we created a single event for the DIV
element. Let’s also add an event for the bold () element. To accomplish this we can add the
following three lines after the end sub in the myDiv_onClick subroutine, but before the closing
</SCRIPT> tag:

sub myBold_onClick
 msgbox “BOLD!”
end sub

Now, whenever the user clicks on the bold line of text, the message box “BOLD!” will appear.
This is what you logically would expect to happen. However, although this event is indeed
triggered when a user clicks on the bold line, another event is fired. Because the line of bold
text and thus the tag are embedded within a DIV tag, event bubbling also triggers the event
for the DIV. Therefore, clicking on the line of bold text will reveal two message boxes: the
“BOLD!” message box and the “myBold” message box.

Using VBScript as an Alternative Language

13

Obviously you can see a subtle problem with event bubbling. Although in most cases you will
want events to bubble upward through the hierarchy chain, there will be some occasions when
this is not desirable. In this case, you need to prevent event bubbling. To prevent events from
triggering parent object events, you can simply use the expression:

window.event.cancelBubble = true

This will cancel the event bubbling process as soon as this line is interpreted. So, if we wanted
to change Listing 13.8 so that only the message box “BOLD!” appeared, we could simply in-
sert the cancelBubble line into the myBold_onClick event handler:

sub myBold_onClick
 msgbox “BOLD!”
 window.event.cancelBubble = true
end sub

window event

event cancelBubble

event

window event

Although not as common as canceling bubbling events, it is possible to disable default events
for HTML elements. For instance, the anchor element (<A HREF>) allows you to create hot
spots or hypertext links on your page that cause the browser to jump to another location in
your site or on the Web. If, however, you wanted to change the action of this element to dis-
play a message box and not jump to a page, you would essentially disable the default action for
that element.

You can disable default actions for elements in Dynamic HTML by simply setting the return
value of an event handler’s function to false. In languages such as JScript where you can re-
turn values from a function via the return keyword, this is a simple addition. In other lan-
guages such as VBScript, the return keyword does not exist. Therefore to return a false value
in VBScript, you can use the following line:

window.event.returnValue=false

Listing 13.9 demonstrates how to cancel a default event for an HTML element by using the
returnValue property.

Scripting

returnValue

<HTML>
<BODY>

<SCRIPT LANGUAGE=”VBScript”>
sub myDiv_onClick
 msgbox window.event.srcElement.id
end sub

sub myBold_onClick
 msgbox “BOLD!”
 window.event.cancelBubble=true
end sub

sub myRef_onClick
 msgbox “Whoa! Can’t let you go there!”
 window.event.cancelBubble=true
 window.event.returnValue=false
end sub
</SCRIPT>

<DIV ID=myDiv LANGUAGE=”VBScript”>
<B ID=myBold>This is Bold Text

<I ID=myItalic>This is Italic Text</I>

This is a link to Microsoft
</DIV>
</BODY>
</HTML>

event

http://www.microsoft.com/

ie/ie40

There are a number of valid events that can be handled by Dynamic HTML and VBScript.
The list has grown substantially since previous versions of HTML. Table 13.1 lists all of these
events as well as their appropriate actions.

Using VBScript as an Alternative Language

13

Event Name Applies To Action

onabort IMG This event is triggered when a
user interrupts the loading of an
image.

onafterupdate APPLET, BODY, BUTTON, This event fires after data-bound
CAPTION, DIV, EMBED, information has been updated.
IMG, INPUT, MAP,
MARQUEE, OBJECT,
SELECT, TABLE, TD,
TEXTAREA, TR

onbeforeunload FRAMESET, window Before the page is unloaded, this
event is triggered.

onbeforeupdate APPLET, BODY, BUTTON, Triggered before databound
CAPTION, DIV, EMBED, HR, information is passed to the
IMG, INPUT, MAP, OBJECT, provider.
SELECT, TABLE, TD,
TEXTAREA, TR

onblur A, APPLET, Whenever an object loses focus,
AREA, BUTTON, this event is triggered.
DIV, EMBED, HR,
IMG, INPUT,
MARQUEE,
OBJECT, SELECT,
SPAN, TABLE, TD,
TEXTAREA, TR,
window

onbounce MARQUEE When the text within a scrolling
MARQUEE reaches the side, this
event is fired.

onchange INPUT, SELECT, This event fires when the
TEXTAREA contents of an entry field are

committed by pressing Enter or
losing focus.

continues

Scripting

onclick A, ADDRESS, APPLET, If a user clicks with the left
AREA, B, BIG, mouse button on any clickable
BLOCKQUOTE, BODY, item or presses the Enter key to
BUTTON, CAPTION, select that item, this event is
CENTER, CITE, CODE, fired.
DD, DFN, DIR, DIV, DL,
DT, EM, EMBED,
FIELDSET, FONT, H1, H2,
H3, H4, H5, H6, HR, I, IMG,
INPUT, KBD, LABEL,
LEGEND, LI, LISTING,
MAP, MARQUEE, MENU,
OBJECT, OL, OPTION, P,
PLAINTEXT, PRE, S, SAMP,
SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB,
SUP, TABLE, TBODY, TD,
TEXTAREA, TFOOT, TH,
THEAD, TR, TT, U, UL,
VAR, XMP, FORM,
document

ondataavailable APPLET, IMG, MAP, OBJECT As data arrives to data source
objects, this event is triggered so
that data can be delivered
asynchronously.

ondatasetchanged APPLET, IMG, MAP, OBJECT Whenever data source objects
change their information because
of filtering or other processes,
this event is fired.

ondatasetcomplete APPLET, IMG, MAP, OBJECT Once all data has become
available in a data source object,
this event is triggered.

ondblclick Same as onclick event Fired whenever a user double-
clicks on a listed, valid object.

ondragstart Same as onclick event When a user begins the operation
of dragging an element, this
event is triggered.

Event Name Applies To Action

Using VBScript as an Alternative Language

13

onerror window Whenever an error occurs on a
page, it is trappable by the
onerror event. Your event
handler can capture the incoming
message, URL, and line number.

onerrorupdate A, APPLET, MAP, OBJECT, After data has been transferred
SELECT, TEXTAREA down to a data source object,

this event is triggered in the event
of an error.

onfilterchange BODY, BUTTON, CAPTION, Once a multimedia transition
DIV, HR, IMG, INPUT, filter has completed, this event
MARQUEE, OBJECT, SPAN, will fire.
TABLE, TD, TEXTAREA, TR

onfinish MARQUEE If a Marquee has been established
with looping parameters, this
event is fired once the looping
has completed.

onfocus Same as onblur event When an object receives focus,
this event is fired.

onhelp Same as onclick event If the user presses the help key
(F1) or clicks the browser’s Help
button, this event is triggered.

onkeydown A, ACRONYM, ADDRESS, This event is triggered whenever
APPLET, AREA, B, BIG, the user presses and holds a key
BLOCKQUOTE, BODY, on the keyboard for one of the
BUTTON, CAPTION, listed objects. The keycode of
CENTER, CITE, CODE, DD, the key pressed down is returned.
DEL, DFN, DIR, DIV, DT,
EM, FIELDSET, FONT,
FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INPUT,
KBD, LABEL, LEGEND, LI,
LISTING, MAP, MARQUEE,
MENU, OBJECT, OL, P,
PLAINTEXT, PRE, Q, S,

Event Name Applies To Action

continues

Scripting

SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG,
SUB, SUP, TABLE, TBODY,
TD, TEXTAREA, TFOOT, TH,
THEAD, TR, TT, U, UL, VAR,
XMP, document

onkeypress Same as onkeydown event Whenever a user presses down
and releases a key on the key-
board, this event is fired and the
keycode of the key pressed it
returned.

onkeyup Same as onkeydown event Opposite to onkeydown, this event
is fired only when the user
releases a key. The keycode of
the key released is returned.

onload APPLET, BODY, EMBED, Fires immediately after a valid,
FRAMESET, IMG, LINK, listed object has successfully
SCRIPT, STYLE, window loaded.

onmousedown Same as onclick event This event is fired when a user
presses down and holds the
mouse button.

onmousemove Same as onclick event As the user moves the mouse, this
event is fired.

onmouseout Same as onclick event After the user moves the mouse
off an object, this event is
triggered.

onmouseover Same as onclick event The opposite of onmouseout,
onmouseover is triggered only
when the user first moves the
mouse pointer over an object. It
does not fire while the mouse is
moved over the object, unless
it is moved off the object and
then back into the object.

onmouseup Same as onclick event The opposite of onmousedown, this
event is fired when the user
releases the mouse button.

Event Name Applies To Action

Using VBScript as an Alternative Language

13

onreadystatechange APPLET, EMBED, FRAME, If the readyState property for
FRAMESET, IFRAME, IMG, an object changes, this event is
LINK, OBJECT, SCRIPT, fired. Valid readyState’s include:
STYLE, document complete, interactive, loading,

uninitialized.

onreset FORM When the user clicks the “Reset”
button on a form, this event is
triggered.

onresize APPLET, BUTTON, Whenever a valid, listed object
CAPTION, DIV, EMBED, changes size, this event is fired.
FRAMESET, HR, IMG,
MARQUEE, SELECT,
TABLE, TD, TR,
TEXTAREA, window

onrowenter APPLET, BODY, BUTTON, Indicates that new data is
CAPTION, DIV, EMBED, available which has changed
HR, IMG, MAP, MARQUEE, the current row’s information.
OBJECT, SELECT, TABLE,
TD, TEXTAREA, TR

onrowexit Same as onrowenter event Just before a data source object
changes its row information, this
event is fired.

onscroll BODY, DIV, FIELDSET, Whenever the scrollbar’s position
IMG, MARQUEE, SPAN, changes, this event fires.
TEXTAREA, window

onselect INPUT, TEXTAREA As a user drags the mouse across
text in INPUT or TEXTAREA tags to
select text, this event is triggered.

onselectstart A, ACRONYM, ADDRESS, Whenever a user drags the mouse
AREA, B, BIG, across multiple elements on a
BLOCKQUOTE, BODY, Web page to select those
BUTTON, CAPTION, elements, this event is triggered.
CENTER, CITE, CODE, DD,
DEL, DFN, DIR, DIV, DL,
DT, EM, FONT, FORM, H1,
H2, H3, H4, H5, H6, HR, I,
IMG, INPUT, KBD, LABEL,

Event Name Applies To Action

continues

Scripting

LI, LISTING, MAP,
MARQUEE, MENU,
OBJECT, OL, OPTION, P,
PLAINTEXT, PRE, Q, S,
SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG,
SUB, SUP, TABLE, TBODY,
TD, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL,
VAR, XMP

onstart MARQUEE When using the looping param-
eters of the MARQUEE tag, this
event is fired at the beginning of
each loop.

onsubmit FORM After a user clicks the “Submit”
button on a form, this event fires.
This event can return true or
false. If false is returned, then
the submission process is can-
celed and the data is not sent to
the server.

onunload BODY, FRAMESET, window Whenever a page is unloaded to
present another page, this event
is fired.

In this chapter you were introduced to Dynamic HTML programming with VBScript. You
had the opportunity to learn how to implement typical object-oriented programming and how
to use some of the capabilities offered only in VBScript. You also saw how it differs slightly in
use and function from other developer languages such as JavaScript. This chapter has helped
you learn how to implement the functionality of Dynamic HTML within a VBScript environ-
ment. With this knowledge, you can create some truly dynamic sites of your own.

Event Name Applies To Action

■

■

■

■

What Is a Document Object Model?

14

by Trevor Lohrbeer

■

■

■

■

■

■

The Document Object Model

The term Document Object Model (DOM) has become a buzzword used to describe the fea-
tures of Dynamic HTML (DHTML). But what exactly is a DOM, and where did it come
from? Although a DOM has been a part of Web design for some time, it has only recently been
given a name. The desire to make HTML more dynamic has fueled a systematic rethinking of
the definition and implementation of the DOMs in browsers. These broader, more complete
DOMs implemented in Communicator 4.0 and Internet Explorer 4.0 (IE4) are the engines
behind DHTML.

A DOM is a way of describing an HTML document to a scripting language by representing
HTML page elements as objects in the scripting language. An HTML page element can be any
piece of HTML on the page, including hidden tags (for example, META) and implied tags (for
example, HEAD). The objects representing these HTML page elements enable them to be ac-
cessed by a scripting language. When they are accessible, the attributes of the page elements
can be retrieved, modified, added, and deleted; events triggered on these elements can be
reacted to; and the page elements themselves can be added to or deleted from the document
structure. A DOM also provides models for representing and manipulating style sheets, for
generating and reacting to user- and system-generated events, and for accessing document meta-
and user-agent information.

DOMs have existed since the first days of scripting on the Web, when Netscape introduced
JavaScript into Navigator 2.0. Although primitive compared with the DOMs of today, the
original DOM allowed for the representation of form elements, frames, links, and user-agent
information in JavaScript. As scripting developed as a technology, simple form validation wasn’t
enough. The addition of the Image object to the Navigator 3.0 DOM started the evolution
toward DHTML, with image rollovers appearing all over the Web. Today, with the develop-
ment of a formal DOM specification, you have the capability to make your Web pages more
dynamic than you may have imagined.

The DOMs currently implemented in Communicator 4.0 and IE4 allow for a greater level of
interactivity on the client side than ever before seen on the Web. Communicator 4.0 extends
the Navigator 3.0 DOM with new objects for layers, events, and screen resolution; a new event
model; and a new style sheet object model. IE4 features a full DOM with every HTML page
element reflected into scripting. It adds support for document navigation and modification, a
new event model, and a new style sheet object model. In addition, it now supports instanta-
neous page updating.

Although both Communicator 4.0 and IE4 bring new levels of interactivity to the Web with
new and improved DOMs, the DOM implementations each uses are not fully compatible with
each other. Working to help rectify this situation, the World Wide Web Consortium’s DOM
Working Group is creating a recommendation for a standard to which both Netscape and
Microsoft have promised to adhere. When fully implemented in both browsers, the level of
interactivity a fully defined DOM promises will become widespread.

What Is a Document Object Model?

14

A DOM introduces a whole new level of interactivity to a Web page by allowing the Web
designer to manipulate the individual HTML elements through scripting. By scripting elements
to move, change size and color, and disappear and reappear, the Web designer can create dy-
namic elements such as tickers, scrolling news, and interactive menus without Java applets or
Shockwave plug-ins. Complex animations that used to require Shockwave or a GIF animation
can now be done with a few lines of code, thereby greatly reducing bandwidth. And by making
the client side more dynamic, the amount of processing needed on the server is reduced pro-
portionally.

HTML page elements are represented in a scripting language through objects. The Object Model
determines how a page element is reflected into the scripting language and where in the object
hierarchy of the scripting language it is reflected. Specifically, the Object Model defines the
following:

■ How page elements are exposed

■ How page elements are navigated

■ How page elements are modified

■ How user-agent and meta information are exposed

For page elements to be accessible in a scripting language, they must be exposed in some way.
The object-oriented approach (the approach used by JavaScript and VBScript) is to create an
object in the scripting language for each page element that is to be exposed. The object repre-
sents the page element in the scripting language with the attributes of the element reflected as
the properties of the object. Methods can be added to the object, allowing for the manipula-
tion of the page element. Figure 14.1 shows how an tag is exposed as an object in JavaScript.

How an tag is
exposed as an object in
JavaScript.

The Document Object Model

Not all object models reflect all page elements and their attributes, though. Which page ele-
ments and their respective attributes are reflected in the scripting language is determined by
the object model being implemented. For most object models, only a subset of the page ele-
ments is reflected as objects (the exceptions being the IE4 and W3C object models). Likewise,
even if a page element is reflected, often only a portion of the element’s attributes are reflected
as object properties. Figure 14.2 shows that some of the attributes of the <INPUT> tag are not
reflected into JavaScript in Netscape 2.0.

Some attributes of the
<INPUT> tag are
undefined in
JavaScript.

In addition to specifying whether a page element is reflected in the scripting language, the Object
Model also defines how it is reflected. Where the page element is reflected in the object hierar-
chy and whether the element’s attributes are reflected as read/write or read-only are important
parts of the Object Model.

Objects exist within a scripting language in an object hierarchy. The object hierarchy logically
organizes objects, determining how they are accessed by a script and scoping them into their
proper contexts. Because the Object Model defines where objects exist within the object hier-
archy, it also defines how scripts access those objects. Figure 14.3 shows the object hierarchy of
IE4. The IE4 Object Model defines that the links collection exists as a child of the document
object, which in turn exists as a child of the window object. To access a link in JavaScript in IE4,
you would need to use the notation window.document.links[index].

After an object has been exposed in the object hierarchy, the Object Model defines how the
properties of that object are reflected. Whether a page element’s attributes are reflected as read/
write or read-only determines the level of interaction available with that element. Attributes
that are reflected as read-only can be used only for informational purposes, whereas read/write
properties can affect how the element is rendered in the browser window.

What Is a Document Object Model?

14

Because of the nature of HTML, all page elements within a document, except the root HTML
element, are contained by other page elements. Page elements inherit attributes from their parent
elements, which inherit attributes from their parent elements. This hierarchical document struc-
ture determines how the document is rendered in the browser window.

Figure 14.4 shows a sample HTML page and its document structure. The I element in the
middle of a Shakespeare quote is contained by the P element, which in turn is contained by the
BLOCKQUOTE element, the BODY element, and the HTML element. The P element inherits the mar-
gins of the BLOCKQUOTE element, and both elements inherit their background color from the
BODY element.

The IE4 object
hierarchy.

A sample HTML page
and its document
structure.

Because the document structure determines the inheritance of page element attributes, it is
important to be able to navigate among the objects representing parent and child page elements.
This capability to navigate the document structure allows the script to modify not only

The Document Object Model

individual page elements, but elements that are visually and logically related. The Object Model
defines how the document structure is represented in a scripting language and the methods by
which it is navigated.

The techniques used to reflect the document structure into a scripting language vary. In Navi-
gator 3.0 and Internet Explorer 3.0, only certain elements of the document structure (such as
frames) are reflected directly into the object hierarchy. Navigation among frames is done by
querying the object hierarchy directly through the frames array. IE4 reflects all page elements
into its scripting languages and uses the parentElement property and the contains() method
to navigate between a page element’s object and its parent and child, respectively.

Exposing page elements and navigating among them provide a way for the scripting language
to gather information about the document. But without a way to manipulate those elements,
DHTML remains relatively static.

As discussed in the section “Exposing Page Elements,” the Object Model defines how page
elements are exposed to the scripting language. By exposing certain page element attributes as
read/write, these attributes can be modified and the rendering of their page elements changed
dynamically through scripting. This, however, is only one way in which page elements can be
manipulated through scripting.

By providing a series of properties and methods for page element objects and the capability to
create new objects, the Object Model defines ways to change not only individual page element
characteristics, but the document structure itself. The Object Model defines techniques both
for adding and deleting attributes to page elements and for adding and deleting page elements
from the document structure itself. Because these techniques differ greatly between IE4 and
Communicator 4.0, further in-depth discussion will wait until Chapter 15, “Document Ob-
ject Model Comparison.”

In addition to exposing the HTML page elements as objects in the scripting language, the Object
Model also describes how relevant information not explicitly part of the HTML of a docu-
ment is reflected into the scripting language. This information falls into two main categories:
user-agent information and meta information.

User-agent information includes relevant information about the browser and its environment,
including the browser name and version, screen resolution, color depth, and browsing history.
Meta information includes information about the document that is not directly represented in
the document, including the URL, any cookies sent with the document, and the date it was
last modified.

What Is a Document Object Model?

14

User-agent and meta information are represented in the scripting language by a series of ob-
jects. In IE4 and Communicator 4.0, these objects are navigator, window, document, location,
history, and screen. These objects contain properties that represent user-agent and meta in-
formation to the scripting language. They also provide methods for window and document
management, such as opening new windows and loading new documents.

Style sheets have become an important part of Web design because they provide fine control
over the presentation of everything from individual page elements to the entire page. Because
style sheets are not strictly part of HTML, they are not represented by the Object Model. In-
stead, the Style Sheet Object Model defines how style sheets are exposed and manipulated in a
scripting language.

Style sheets can be exposed in two different ways: At the individual element level, styles apply-
ing to a page element can be reflected in that page element’s object; and with multiple related
page elements, the styles can be reflected in an object that represents the entire group of ele-
ments. Both methods of exposing style sheets are useful in different scenarios.

At the individual element level, each page element has a style associated with it. This style can
be explicitly defined through a style sheet or the STYLE attribute or can be implied through
default settings or inheritance from a parent element. An individual element’s style can be ex-
posed as an independent style object, a child style object of the page element’s object, or a set
of properties of the page element’s object. Often, styles for an individual page element are
exposed in more than one of these ways.

When the style for a page element is exposed as an independent style object, the style proper-
ties become the properties of a new object that represents the style for that page element. This
object, although often named the same as the page element’s object, contains only style prop-
erties and exists at a different place in the object hierarchy. See Figure 14.5 for an example of
how Communicator 4.0 places such objects under the ids collection.

The style of a page
element is reflected in
the ids collection in
Communicator 4.0.

The Document Object Model

Another method of exposing the style for an individual page element is as a child object of the
page element’s object. This object is exactly like the independent style object, except that it
exists at a different place in the object hierarchy—namely, as a child of the page element’s object.
This approach is taken by IE4, which creates a style object as a child object of every page el-
ement object. Figure 14.6 shows the same piece of HTML as in Figure 14.5, but in IE4 it is
reflected as a style object under the page element object.

The style of a page
element is reflected as a
style object under the
page element’s object
in IE4.

In cases in which a style property is the same as one of the page element’s attributes, the style
property might be reflected as a property of the page element’s object directly. This helps to
maintain backward compatibility with older HTML in which the style was incorporated as
attributes of the HTML tag. Figure 14.7 shows how a border specified as a style in the
tag is reflected in the image object for that tag in Communicator 4.0.

A border specified as a
style in the tag is
reflected into the image
object for that tag in
Communicator 4.0.

Although exposing styles at the individual element level has its advantages, it lacks flexibility.
Styles rarely apply to only one page element; they usually apply to entire groups of page ele-
ments. By defining how styles can be exposed at the group element level as well, the Style Sheet
Object Model increases the functionality of style sheet manipulation.

One technique for exposing styles at the group element level is to expose a single object for
each group of elements. For instance, one object is created for each class and tag existing in a
document, and because style sheets can specify combinations of a class and a tag, one object is
created for each combination of class and tag. Each object represents all the styles that apply to
that group, whether default styles or styles specified by rules in a style sheet.

What Is a Document Object Model?

14

Communicator 4.0 takes this approach by providing the tags and classes collections. The
tags collection contains a style object for each tag in a document, whereas the classes collec-
tion contains a style object for each class in the document as well as for each combination of
tag and class. Figure 14.8 demonstrates how the styles of different tags and classes can be ac-
cessed in Communicator 4.0.

The classes and tags
collections reflect the
styles of all the classes
and tags in a
document.

By manipulating the styles of a document, the rendering of individual page elements or of an
entire Web page can be dynamically changed. The Style Sheet Object Model defines how these
manipulations occur within a scripting language and includes how styles on individual elements
and groups of elements are modified as well as how entire style sheets are associated and disas-
sociated with an HTML document.

The styles of individual elements and groups of elements are modified by changing the prop-
erties of the style object that represents that element or group of elements. Although the
properties of style objects are rarely read-only, whether the rendering of the page element is
updated to reflect the change in style is subject to how the browser has implemented page up-
dating.

Depending on the style sheet object model implemented, methods can exist for associating and
disassociating a style sheet with an HTML document. This allows for the script to attach style
sheets to a document that were not specified in the original HTML and to detach style sheets
that were originally attached. With this functionality, developers can provide the user the op-
tion to dynamically change the look and feel of a document through a choice of available style
sheets.

The Event Model is an important part of the DOM, defining how a user’s actions activate the
scripts in a document. It determines not only which events are generated, but how they are
delivered to an event handler and what information is available to that event handler to process
the event. The Event Model enables the DOM to create Web pages that are not only dynamic
but interactive.

The Document Object Model

Events can be generated in two ways: by the user and by the system. User-generated events occur
when the user performs an action with the mouse or keyboard within a certain context, such as
clicking a mouse button while the cursor is positioned over a link. System-generated events oc-
cur when the state of the system changes, such as when an error occurs or when a page finishes
loading. The context of both user- and system-generated events determines the target of the
event.

The Event Model defines under which contexts an event can be generated from an action and
what the target under that context is. For user-generated events, the Event Model defines a
certain subset of possible events that can be generated for any page element. If an action falls
within the subset of valid events for a page element, an event is generated and the target page
element is said to have generated the event. The A element, for instance, can generate click,
dblClick, mouseOver, and mouseOut events, among others.

For system-generated events, the event is triggered by a change in the state of the system.
System-generated events often do not have a target element but are captured by event handlers
defined by a global script on a page. The Event Model defines when system-generated events
occur and which ones have a target element. For instance, the load and unload events target
the BODY element, whereas the error and scroll events have no specific target.

The process by which an event is delivered to the code that reacts to the event is called event
delivery. Event delivery occurs in different ways depending upon the type of event and the event
model being implemented. Traditionally, all events have target page elements that specify the
code for the event handler as an attribute of the page element. For instance, the following code
uses the onMouseOver attribute to specify the code for handling a mouseOver event on the link:

<A HREF=”home.html”
 onMouseOver=”window.status=’Return To The Home Page’;”>Home

Internet Explorer 3.0 introduced the idea of binding an event handler to a page element by
using a special name for the function that handles the event. By using the NAME attribute and
naming the event handler name_onEvent, Listing 14.1 produces the same effect as the preced-
ing example but uses VBScript to handle the event and stores the script farther down the page.

What Is a Document Object Model?

14

By binding to the event from a script external to the page element, you can use languages other
than JavaScript to handle events and can group all the event handlers together.

Home

...rest of HTML code...

<SCRIPT LANGUAGE=”VBScript”>
sub homeLink_onMouseOver
 window.status = “Return To The Home Page”
end sub
</SCRIPT>

Although having events delivered to the target page element is no doubt useful, advanced event-
handling techniques require events to be handled by page elements other than the target
element. Instead, events travel through the document structure being handled by the page
elements most relevant to the event. You can write event handlers to be generic and reusable,
which reduces the amount of scripting necessary when creating new pages and adding new
elements to pages.

The Event Model enables advanced event delivery by defining how events travel along the
document structure, when page elements intercept events, and how they release events to con-
tinue traveling the document structure. Communicator 4.0 and IE4 each implement different
techniques for enabling advanced event delivery. The details of these techniques are discussed
in Chapters 16 and 17.

The Event Model defines an event object that exposes relevant information about the event.
Information such as the type of event, the event’s target, the location of any mouse clicks, and
any keys that were pressed is stored in the properties of the event object. Event handlers access
this information to determine how to correctly react to the event.

Although not technically part of the DOM, a browser’s implementation of page updating de-
termines how useful the DOM is in creating dynamic Web pages. As you have seen, the DOM
makes page elements, style sheets, and events accessible to the scripting language. But without
regular page updates, the changes made by scripts to these objects are never seen.

When a page element is manipulated in some way, the results of that manipulation must be
rendered in the browser. What sort of page updating is implemented by a browser determines

The Document Object Model

when and how often the results of scripts are rendered in the browser window. In older brows-
ers, a page is rendered once during load time and never again. Scripting that affects how an
HTML page is rendered had to appear earlier on the page than the HTML it affected.

With the newer browsers, page updating occurs a lot more often. Communicator 4.0 not only
renders the page during load time, but also updates the page whenever the position, clipping,
or visibility of a layer or absolutely positioned page element is changed. IE4 goes one step fur-
ther and updates the page whenever anything that affects the layout or display of the page is
changed. These new page updating schemes finally allow truly dynamic HTML pages to be
created using a DOM.

DOMs have evolved into the driving force behind DHTML in IE4 and Communicator 4.0. A
DOM defines how page elements are exposed, navigated, and manipulated within a scripting
language. It also defines how additional information such as user-agent and meta information
is exposed. By defining a style sheet object model to expose, navigate, and manipulate style
sheets, a DOM provides an interface not only to HTML but to cascading style sheets. A DOM
also defines an event model, which determines events that are generated in response to a user’s
actions and how those events are delivered to the proper event handlers.

By allowing page elements and style sheets to be exposed, navigated, and manipulated by the
scripting language, a DOM defines the interaction between the page elements and the scripts of
a document. With the addition of an event model, the DOM also defines the interaction be-
tween a document and the user. When they are combined, the DOM enables you to design Web
pages that are both dynamic and interactive. And with advanced DOMs implemented in both
Communicator 4.0 and IE4, designing dynamic Web pages is now easier than ever.

Document Object Model Comparison

15

by Trevor Lohrbeer

■

■

■

■

The Document Object Model

A Document Object Model (DOM) defines how an HTML document is exposed to a script-
ing language. It allows a document to interact and respond to a user dynamically through script-
ing. Although both Communicator 4.0 and Internet Explorer 4.0 (IE4) have developed new
DOMs that are more powerful and complete than the DOMs of the past, these DOMs are not
fully compatible with each other. The incompatibilities that exist between the Communicator
4.0 and IE4 DOMs greatly reduce the cross-browser functionality of Dynamic HTML
(DHTML). However, obtaining a deeper understanding of how each browser has implemented
its DOM and what commonality exists between the two DOMs can help you develop robust
dynamic cross-browser scripts.

The first Communicator 4.0 beta was released in December 1996. At that time, the idea of a
formal DOM specification was still in its infancy. The Communicator 4.0 DOM was devel-
oped as a natural extension to the Navigator 3.0 DOM to enable HTML documents to
become more dynamic. As Communicator 4.0 progressed through its beta cycle, the idea of a
DOM solidified. Although the Communicator 4.0 DOM was updated, many new features of
a DOM could not be incorporated into the final release.

By the time the first IE4 Platform Preview was released in May 1997, general requirements for
a DOM had been published by the World Wide Web Consortium’s DOM Working Group
(W3C DOM-WG) and work on developing a recommendation for a standard DOM for the
Web had begun. Due to its longer development cycle, IE4 was able to incorporate many of the
newer ideas of what a DOM should consist of.

Although Netscape could have extended its development cycle to implement more features and
Microsoft could have expanded their DOM to include the features in the Communicator 4.0
DOM, each company chose not to. The result is two separate DOMs that provide powerful
new features for each browser alone, but little compatibility for advanced cross-browser
DHTML.

Due to the separate, incompatible DOMs in Communicator 4.0 and IE4, cross-browser scripts
developed to take advantage of the new features of DHTML will have to make compromises.
They won’t be able to take advantage of many of the advanced features each browser provides.
And extra code will need to be written to accommodate the different approaches for achieving
the same effect in each browser. This extra code will make the scripts longer, slower, and more
complex.

Looking toward the future, the W3C will recommend a formal DOM specification sometime
in 1998. Both Microsoft and Netscape have stated that they will fully support this specifica-
tion in future versions of their browsers. In fact, Microsoft has already taken many steps to
incorporating the features of the preliminary specification into IE4. However, until a common
DOM is supported in both browsers, extra coding and avoidance of advanced features will be
necessary in the development of cross-browser DHTML pages.

Document Object Model Comparison

15

This chapter is a companion chapter to Chapter 14, “What Is a Document Object Model?”
Whereas Chapter 14 discusses the theory behind a DOM, this chapter discusses the imple-
mentation of the DOM in each browser and how these implementations can be reconciled.
Each section of this chapter contains the following three subsections:

■ The Communicator 4.0 Approach—Describes the Communicator 4.0 implementa-
tion of the DOM feature

■ The Internet Explorer 4.0 Approach—Describes the IE4 implementation of the
DOM feature

■ Making Them Work Together—Describes the compatibility of the DOM feature in
the Communicator 4.0 and IE4 DOMs and techniques for reconciling the two
DOMs to develop cross-browser code

The Object Model defines how the scripting language accesses page elements and their attributes
as well as user agent and document meta information. By defining how page elements are
exposed, navigated, and manipulated, the Object Model determines how scripts can change
the characteristics of any element on a Web page.

The Object Model determines how page elements are exposed to a scripting language. A page
element can be any piece of HTML on the page, including hidden tags (for example, META)
and implied tags (for example, HEAD). Both Communicator 4.0 and IE4 expose page elements
into their scripting languages, but which page elements are exposed and where they are exposed
into the object hierarchy differ between the two browsers.

Communicator 4.0 exposes only a limited subset of the page elements in a document. Elements
previously exposed in Navigator 3.0 in the forms, anchors, links, applets, embeds, images and
frames arrays continue to be exposed in those arrays. Forms and images also continue to be
reflected by name underneath the document object.

Layers and absolutely positioned page elements are exposed in the layers array, and also by
name or ID under the document object. For layers, an additional document object is reflected
under each layer object, and all page elements contained within a layer are reflected in their
respective arrays under this document object instead of the main document object.

Figure 15.1 and Listing 15.1 show how the DIV element is exposed as both
document.layers[‘layerID’] and document.layerID, while the IMG element is exposed as both
document.images[‘name’] and document.name. The FONT element is not exposed in Communi-
cator 4.0.

The Document Object Model

<DIV ID=banner STYLE=”position: absolute; left: 72; top: 9;”>

 Exposing Page Elements in Communicator 4.0

</DIV>

<P>The <TT>DIV</TT> element is reflected as both
<TT>document.layers[‘banner’]</TT> and <TT>document.banner</TT> in
Communicator 4.0. Its reflected attributes include:</P>

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“id: “ + document.banner.id + “
”);
 document.writeln(“left: “ + document.layers[‘banner’].left +
 “
”);
 document.writeln(“top: “ + document.layers[‘banner’].top +
 “
”);
</SCRIPT>
</BLOCKQUOTE>

<P>The <TT>IMG</TT> element is reflected as both
<TT>document.images[‘arrow’]</TT> and <TT>document.arrow</TT> in
Communicator 4.0. Its reflected attributes include:</P>

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“name: “ + document.images[‘arrow’].name +
 “
”);

Exposing the DIV and
IMG elements in
Communicator 4.0.

Document Object Model Comparison

15

 document.writeln(“src: “ + document.images[‘arrow’].src +
 “
”);
 document.writeln(“width: “ + document.arrow.width + “
”);
 document.writeln(“height: “ + document.arrow.height + “
”);
</SCRIPT>
</BLOCKQUOTE>

<P>The <TT>FONT</TT> element is not reflected into JavaScript in
Communicator 4.0.</P>

Figure 15.2 and Listing 15.2 demonstrate how, by placing an IMG element within the DIV po-
sitioned page element, it is exposed at a different place in the object hierarchy. Instead of being
exposed as document.name, the IMG element is now exposed as document.layerID.document.name
and as document.layerID.document.images[‘name’]. All elements contained within layer page
elements in Communicator 4.0 are exposed in the layer’s document object, not the main docu-
ment object.

Exposing the IMG
element under the DIV
element’s document
object in Communi-
cator 4.0.

<DIV ID=banner STYLE=”position: absolute; left: 32; top: 9;”>

 Exposing Page Elements in Communicator 4.0

</DIV>

continues

The Document Object Model

<P>The <TT>DIV</TT> element is reflected as both
<TT>document.layers[‘banner’]</TT> and <TT>document.banner</TT> in
Communicator 4.0.</P>

<P>The <TT>IMG</TT> element, when contained within the <TT>DIV</TT>
element is reflected as <TT>document.banner.document.images[‘arrow’]</TT>
and <TT>document.banner.document.arrow</TT>. It can also be accessed
using the <TT>document.layers[‘banner’]</TT> notation for the
<TT>DIV</TT> parent layer. Its reflected attributes include:</P>

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“name: “);
 document.writeln(document.banner.document.images[‘arrow’].name);
 document.writeln(“
”);
 document.writeln(“src: “);
 document.writeln(document.layers[‘banner’].document.images[‘arrow’].src);
 document.writeln(“
”);
 document.writeln(“width: “);
 document.writeln(document.banner.document.arrow.width);
 document.writeln(“
”);
 document.writeln(“height: “);
 document.writeln(document.layers[‘banner’].document.arrow.height);
 document.writeln(“
”);
</SCRIPT>
</BLOCKQUOTE>

IE4 exposes all valid page elements into the all collection under the document object. All known
attributes for each page element are reflected as properties of that page element’s object. Un-
recognized elements are not reflected into the scripting languages in IE4; however, unknown
attributes can be accessed using the getAttribute(), setAttribute(), and removeAttribute()
methods.

Each page element object has a set of common properties and methods that it shares with all
other page elements. Common properties owned by every page element object are detailed in
Table 15.1, and Table 15.2 details the common methods owned by every element object. The
parentElement property is discussed in more detail in the section “Navigating Page Elements,”
and the insertAdjacentHTML() and insertAdjacentText() methods are discussed in the sec-
tion “Manipulating Page Elements.”

Property Value

document References the document object within whose hierarchy the
element exists

id Reflects the element’s ID attribute

Document Object Model Comparison

15

offsetHeight Contains the height of the element measured in the offsetParent
element’s coordinate system

offsetWidth Contains the width of the element measured in the offsetParent
element’s coordinate system

offsetLeft Contains the left offset of the element’s position on the page
relative to the offsetParent element

offsetTop Contains the top offset of the element’s position on the page
relative to the offsetParent element

offsetParent References the parent element whose coordinate system is used to
determine offsetTop and offsetLeft

sourceIndex Contains the index into the all collection of the element object

style References the style object containing the style properties of the
element’s in-line styles

tagName Reflects the tag of the page element

parentElement References the parent element one level higher in the document
structure

Method Action

getAttribute(name, Returns the value of the attribute whose name
[caseSensitive]) matches name. caseSensitive is a boolean value

determining whether the match is case sensitive.

setAttribute(name, value, Sets the value of the attribute whose name matches
[caseSensitive]) name to the string value. caseSensitive is a boolean

value determining whether the match is case sensitive.

removeAttribute(name, Removes the attribute whose name matches name
[caseSensitive]) from the element. caseSensitive is a boolean value

determining whether the match is case sensitive.

insertAdjacentHTML Inserts HTML before or after either the opening or
(where, text) closing tag of an element. where is a string specifying

where to insert the text, and text is the HTML to
insert. text must be valid HTML and is parsed into
the document structure.

insertAdjacentText Inserts text before or after either the opening or
(where, text) closing tag of an element. where is a string specifying

where to insert the text, and text is the text to insert.

Property Value

The Document Object Model

Page elements are also exposed into special collections under the document object. In IE4 page
elements are exposed into the frames, links, anchors, images, forms, applets, embeds, plugins,
scripts, and styleSheets collections. In addition, each frame object in the frames collection
contains a document object that contains each of the special collections and the all collection.
Page elements contained within a frame are exposed in the collections under the frame’s docu-
ment object rather than the main document object.

IE4 does not have a special layers collection for a positioned page element. Instead, all posi-
tioned page elements are accessed from the all collection like other page elements.

Figure 15.3 and Listing 15.3 show how the same elements in Figure 15.1 are exposed in IE4.
The DIV element is exposed into the document.all collection and is referenced using the nota-
tion document.all[‘banner’] or document.all.banner. The IMG element is exposed by name
directly under the document object, in the document.images collection and in the document.all
collection. In IE4, the FONT element is exposed under the all collection. Because the FONT ele-
ment has no NAME or ID attribute, it is referenced using its position in the source document.

all

sourceIndex

all

Exposing the DIV, IMG,
and FONT elements in
IE4.

Document Object Model Comparison

15

<HTML>
<HEAD>
 <TITLE>Exposing Page Elements in IE4</TITLE>
</HEAD>

<BODY BGCOLOR=white>
 <BLOCKQUOTE>

 <DIV ID=banner STYLE=”position: absolute; left: 72; top: 15;”>

 Exposing Page Elements in IE4

 </DIV>

 <P>The <TT>DIV</TT> element is reflected as both
 <TT>document.all[‘banner’]</TT> and <TT>document.all.banner</TT> in
 IE4. Its reflected attributes include:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“tagName: “ + document.all[‘banner’].tagName +
 “
”);
 document.writeln(“id: “ + document.all.banner.id + “
”);
 </SCRIPT>
 </BLOCKQUOTE>

 <P>The <TT>IMG</TT> element is reflected as <TT>document.arrow</TT>,
 <TT>document.all.arrow</TT>, <TT>document.all[‘arrow’]</TT> and
 <TT>document.images[‘arrow’]</TT> in IE4. Its reflected attributes
 include:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“tagName: “ + document.all[‘arrow’].tagName +
 “
”);
 document.writeln(“name: “ + document.images[‘arrow’].name +
 “
”);
 document.writeln(“src: “ + document.all.arrow.src + “
”);
 </SCRIPT>
 </BLOCKQUOTE>

 <P>The <TT>FONT</TT> element is reflected as <TT>document.all[7]</TT>
 in IE4. Its reflected attributes include:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“tagName: “ + document.all[7].tagName + “
”);
 document.writeln(“size: “ + document.all[7].size + “
”);
 document.writeln(“face: “ + document.all[7].face + “
”);
 </SCRIPT>
 </BLOCKQUOTE>

 </BLOCKQUOTE>
</BODY>
</HTML>

The Document Object Model

Because Communicator 4.0 does not expose all page elements, scripts designed for IE4 might
never work in Communicator 4.0. However, by scripting only page elements exposed in
Communicator 4.0 and programmatically correcting for the differences between the two brows-
ers’ object hierarchies, you can write cross-browser scripts.

Many of the element arrays existing under the document object are present in both browsers’
object model, so elements such as forms, images, anchors, links, frames, embeds, and applets
are easily scripted for cross-browser compatibility. Arrays for scripts, filters, and style sheets
exist only in IE4 and so cannot be scripted to be cross-browser. Likewise, the layers array can
only be used in Communicator 4.0, although some of the elements in the layers array can be
accessed in both browsers.

Positioned page elements in Communicator 4.0 are primarily reflected in the layers array but,
when named, are also reflected directly under the document object. In IE4, positioned page
elements are reflected under the all collection. By programmatically reflecting the page ele-
ment objects in IE4 to the document object, cross-browser scripts can be written using the same
notation to access positioned page element objects in both browsers.

Listing 15.4 contains a generic function called reflectElements() that does just this. It per-
forms a browser detect and, if the browser is IE4, reflects all named page elements from the all
collection to the document object. The DIV element accessed elsewhere in the script is then ref-
erenced using the same notation for both IE4 and Communicator 4.0.

reflectElements()

<DIV ID=banner STYLE=”position: absolute; left: 72; top: 15;”>

 Exposing Page Elements Cross-Browser

</DIV>

<SCRIPT>
// reflectElements:
//
// Reflects elements from the document.all collection up one
// level to underneath the document object.
//
function reflectElements()
{
 for (var i=0; i<document.all.length; i++)
 {
 // If an element has an id and does not already exist
 // under the document object, reflect the element object
 // underneath the document object.

Document Object Model Comparison

15

 if (document.all[i].id != “” &&
 !eval(“document.” + document.all[i].id))
 {
 eval(“document.” + document.all[i].id +
 “ = document.all[“ + i + “];”);
 }
 }
}

// Detect if browser is IE4 and if so, reflect page elements up
// to document object.
//
if (navigator.appName.indexOf(“Internet Explorer”) != -1 &&
 navigator.appVersion.charAt(0) == ‘4’)
 reflectElements();
</SCRIPT>

<P>The <TT>DIV</TT> element is normally reflected as
<TT>document.banner</TT> in Communicator 4.0 and
<TT>document.all[‘banner’]</TT> in IE4. Using this script to
manually reflect all named page elements beneath the document
object allows both browsers to access the <TT>DIV</TT> element using
<TT>document.banner</TT>.</P>

<P>The attributes of the <TT>DIV</TT> element that are reflected in both
browsers include:</P>

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“id: “ + document.banner.id + “
”);
</SCRIPT>
</BLOCKQUOTE>

<P>The <TT>IMG</TT> element is normally reflected as
<TT>document.arrow</TT> and <TT>document.images[‘arrow’]</TT> in both
Communicator 4.0 and IE4.</P>

<P>The attributes of the <TT>IMG</TT> element that are reflected in both
browsers include:</P>

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“name: “ + document.arrow.name + “
”);
 document.writeln(“src: “ + document.arrow.src + “
”);
 document.writeln(“width: “ + document.images[‘arrow’].width +
 “
”);
 document.writeln(“height: “ + document.images[‘arrow’].height +
 “
”);
</SCRIPT>
</BLOCKQUOTE>

The Document Object Model

Although convenient for correcting the object hierarchy differences for positioned page ele-
ments while maintaining readable code, this approach is inefficient. An alternate approach is
to write statements within the language differently. Listing 15.5 demonstrates another method
of correcting for the differences in the object hierarchies of the two browsers.

eval()

<DIV ID=banner STYLE=”position: absolute; left: 72; top: 15;”>

 Exposing Page Elements Cross-Browser

</DIV>

<SCRIPT>
 // Detect if browser is IE4 and if so, assign objectRoot to contain
 // ‘document.all’ instead of ‘document’
 //
 objectRoot = “document”;
 if (navigator.appName.indexOf(“Internet Explorer”) != -1 &&
 navigator.appVersion.charAt(0) == ‘4’)
 objectRoot = “document.all”;
</SCRIPT>

<P>The <TT>DIV</TT> element is normally reflected as
<TT>document.banner</TT> in Communicator 4.0 and
<TT>document.all.banner</TT> in IE4. By assigning
<TT>objectRoot</TT> to contain the differences in the object hierarchy,
the <TT>eval()</TT> function can be used to dynamically access the
<TT>DIV</TT> element using the correct notation for each browser.</P>

<P>The attributes of the <TT>DIV</TT> element that are reflected in both
browsers include:</P>

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“id: “ + eval(objectRoot + “.banner.id”));
 document.writeln(“
”);
</SCRIPT>
</BLOCKQUOTE>

<P>The <TT>IMG</TT> element is dynamically accessed as
<TT>document.arrow</TT> in Communicator 4.0 and
<TT>document.all.arrow</TT> in IE4 using the <TT>objectRoot</TT>
variable and the <TT>eval()</TT> function. </P>

<P>The attributes of the <TT>IMG</TT> element that are reflected in both
browsers include:</P>

Document Object Model Comparison

15

<BLOCKQUOTE>
<SCRIPT>
 document.writeln(“name: “ + eval(objectRoot + “.arrow.name”));
 document.writeln(“
”);
 document.writeln(“src: “ + eval(objectRoot + “.arrow.src”));
 document.writeln(“
”);
</SCRIPT>
</BLOCKQUOTE>

In the beginning of the script a browser detect is performed, and the objectRoot variable as-
signed specifying how the object hierarchy is altered. Whenever a positioned page element needs
to be accessed, objectRoot is used in conjunction with the eval() function to dynamically ref-
erence the object. This allows the DIV element to be accessed in both browsers without the
preliminary processing required to correct the object hierarchy through manual reflection. The
disadvantage of this method is that the code becomes harder to read.

Page elements within a document exist in a hierarchy known as the document structure. Every
page element in a document, except the HTML element, has a parent element and may or
may not have child elements. The document structure determines attribute inheritance and is
important in event delivery. By defining methods for navigating the document structure, the
Object Model allows an element to determine its parent element and any child elements it may
contain. Both Communicator 4.0 and IE4 provide some level of page element navigation, but
to varying degrees.

Navigation of page elements in Communicator 4.0 is limited. Because all page elements are
not reflected into scripting, information on the document structure as a whole is not available.
Instead, structural information is available only for frames, layers, and positioned page elements
by reflecting it directly into the object hierarchy.

For layers and positioned page elements, the parentLayer property of the layer object contains
a reference to the parent layer object. The layers array of a layer’s document object contains the
layer objects of any child layers. Similarly, for frames, the parent property of a frame object
contains a reference to the parent frame object, and the frames array of a frame’s document object
contains the frame objects of any child frames. Using this information, nested frames and lay-
ers in a document can be navigated in script.

In Listing 15.6, several nested layers have been created using absolutely and relatively posi-
tioned page elements and the <LAYER> tag. JavaScript code then queries the layer structure by
accessing the parentLayer property to obtain a reference to the parent layer. Child layers are
enumerated by looping through the layers array under the layerA1 document object. Figure
15.4 shows the results of this page when displayed in the browser.

The Document Object Model

<DIV ID=layerA STYLE=”position: absolute; left: 300; top: 50;
 background-color: red;”>
 <P>Layer A</P>

 <BLOCKQUOTE ID=layerA1 STYLE=”position: absolute; left: 20; top: 30;
 background-color: yellow”>
 <P>Layer A1</P>

 <P ID=layerA1a STYLE=”position: relative; left: 20; top: -24;
 background-color: lightGreen”>
 Layer A1a</P>

 <LAYER ID=layerA1b LEFT=20 TOP=60 STYLE=”background-color: orange;”>
 <P>Layer A1b</P>
 </LAYER>
 </BLOCKQUOTE>
</DIV>

<BLOCKQUOTE>
<P><U>Layer A1</U></P>
<P>Parent Layer:

 <SCRIPT>
document.writeln(document.layers[0].document.layers[‘layerA1’].
➥parentLayer.name);
 </SCRIPT>
</P>

<P>Child Layers:

Navigating the layer
structure using nested
layers.

Document Object Model Comparison

15

 <SCRIPT>
 function printChildLayers(rootDocument)
 {
 for (var i=0; i<rootDocument.layers.length; i++)
 {
 document.writeln(rootDocument.layers[i].name);
 document.writeln(“
”);
 }
 }

 printChildLayers(document.layers[0].document.layers[‘layerA1’].document);
 </SCRIPT>
</P>
</BLOCKQUOTE>

IE4 allows for complete navigation of the document structure through the inclusion of the
parentElement property, the contains()method and the children collection in most page ele-
ment objects. The parentElement property contains a reference to the object of an element’s
parent page element, and the contains()method is used to determine if a page element is con-
tained within another element. The children collection contains references to the objects of
the child elements contained within the current element.

Using the parentElement and the contains() methods in conjunction, Figure 15.5 and Listing
15.7 demonstrate how the entire structure of a document can be dynamically displayed through
scripting. By looping through page elements with a higher index in the all collection, the
enumerateChildElements() function displays the tags for all elements contained by the page
element passed to it as a parameter. The result is an enumeration of the same elements con-
tained in the children collection of the page element object. The parentLayer property is used
to navigate up the document structure to determine how much to indent the tag displayed.

<HTML>
<HEAD>
 <TITLE>Navigating Page Elements in IE4</TITLE>
</HEAD>

<BODY BGCOLOR=white>

<P>

 Navigating Page Elements in IE4

</P>

<P>The following is the document structure of this Web page:

continues

The Document Object Model

 <BLOCKQUOTE>
 <PRE><SCRIPT>
 function enumerateChildElements(pageElement)
 {
 var i = pageElement.sourceIndex + 1;

 // Display the root element
 document.writeln(pageElement.tagName);

 // Display elements sequentially while they
 // are still contained by pageElement.
 //
 while (i < document.all.length &&
 pageElement.contains(document.all[i]))
 {
 // Indent the element three spaces for each
 // parent between the current element and
 // root element
 //
 parentElement = document.all[i].parentElement;
 while (parentElement != pageElement && parentElement != null)
 {
 parentElement = parentElement.parentElement;
 document.write(“ “);
 }

 // Display the tag name and move to the next element
 document.writeln(“ “ + document.all[i].tagName);
 i++;
 }
 }

 enumerateChildElements(document.all[0]);
 </SCRIPT></PRE>
 </BLOCKQUOTE>
</P>

</BODY>
</HTML>

In addition to supporting the parentElement property, the contains() method and the chil-
dren collection for document structure navigation, IE4 supports navigation of frames through
the frames array and parent property.

Because Communicator 4.0 does not support the parentElement property, the contains()
method or the children collection, and IE4 does not support the layers array, the only page
element navigation available cross-browser is frame navigation.

Navigation of frame objects is performed in the same way as navigation of layer objects in
Communicator 4.0. The parent frame object is referenced through the parent property, and
child frames are referenced by looping through the frames array of the frame’s document object.
For more information, see Listing 15.6, which demonstrates navigation between layer objects.

Document Object Model Comparison

15

Page elements must be exposed to the scripting language to be manipulated. The Object Model,
by defining which page elements are exposed, determines which elements can be manipulated.
By determining which attributes are exposed and how they are exposed, the Object Model also
determines how the page elements can be manipulated.

The Object Model can also define methods of adding and deleting attributes to a page ele-
ment, content within a page element, and entire page elements to and from the document struc-
ture. These methods of manipulation exist separately from the determination of which page
elements are exposed.

Communicator 4.0 reflects only a subset of the page elements in a document. These elements
can be manipulated through scripting by retrieving and modifying the properties of the object
representing each page element. Which attributes are reflected and whether they are reflected
as read/write or read-only is determined by the HTML tag of a page element.

Communicator 4.0 has limited support for advanced page element modification. There is no
method for adding or deleting page elements or their attributes. Content of a document can be
changed only if it is contained within a positioned page element or layer and if the page con-
taining the page element or layer has finished loading.

Listing 15.8 demonstrates how the contents of a layer can be rewritten using JavaScript. Click-
ing the link opens the document object of the banner layer, writes to it, and closes it. Once closed,
the content of the layer is updated in the browser window.

A document structure
dynamically generated
using the contains()
method and the
parentElement

property.

The Document Object Model

<DIV ID=banner STYLE=”position: absolute; left: 72; top: 9;”>

 Manipulating Page Elements in Communicator 4.0

</DIV>

<P ALIGN=center>

 Click Here To Change Banner

</P>

<SCRIPT>
function changeBanner()
{
 document.banner.document.writeln(“”);
 document.banner.document.writeln(“Re-Writing The Content of Layers”);
 document.banner.document.writeln(“in Communicator 4.0”);
 document.banner.document.writeln(“”);
 document.banner.document.close();
}
</SCRIPT>

IE4 reflects all valid page elements and all attributes within a document. Every page element in
a document can be modified through scripting by retrieving and modifying the properties of
its object. Which properties are accessible as read/write and which properties are read-only is
determined by the type of page element.

IE4 provides support for adding, removing, and retrieving page element attributes through the
setAttribute(), getAttribute(), and removeAttribute() methods belonging to every page
element object. Although similar to accessing attributes directly through the properties of the
page element object, these methods provide access to unknown page element attributes that
are not normally reflected as properties of an element object.

Page content can be modified in IE4 using the insertAdjacentHTML()and insertAdjacentText()
methods that exist in every page element object. In addition, many page element objects have
innerHTML, outerHTML, innerText, and outerText properties that allow for the modification of
both the content of and the elements contained within a page element.

The insertAdjacentHTML() and insertAdjacentText() methods are used to insert content into
a document before or after the beginning or ending tag of a page element. The syntax of these
methods follows:

document.all.pageElement.insertAdjacentHTML(where, text);
document.all.pageElement.insertAdjacentText(where, text);

Document Object Model Comparison

15

The where parameter is a string specifying where the text should be inserted relative to the page
element’s tags. Its possible values are BeforeBegin, AfterBegin, BeforeEnd, and AfterEnd. The
text parameter is a string to insert into the document. If the insertAdjacentHTML() method is
used, the text is parsed as HTML, and any new elements are added to the document structure.
If the insertAdjacentText() method is used, no parsing is performed, and the text is inserted
as is into the document.

To modify the contents of an element, the innerHTML, innerText, outerHTML, and outerText
properties are used. These properties reflect the contents of an element and can be assigned
new values to change those contents. The innerHTML and innerText properties affect the text
contained within an element, and the outerHTML and outerText properties include the element
in the change. Likewise, the innerHTML and outerHTML properties are parsed, and any new HTML
is added to the document structure. The innerText and outerText simply replace the text of
the element with no parsing.

Listing 15.9 demonstrates the use of the innerHTML, innerText, outerHTML, and outerText prop-
erties. Four FONT elements initially contain the text “Generic Content That Will Be Replaced”.
When the link is clicked, the changeContent() function replaces this text using a different text
property for each FONT element. Both the internal document structure and the rendering of the
page in the browser are instantly updated. The resulting page is shown in Figure 15.6.

Replacing text with the
innerHTML, innerText,
outerHTML, and
outerText properties.

The Document Object Model

<P ALIGN=center>

 Click Here To Change Content

</P>

<P>
 Generic Content That Will Be Replaced
</P>

<P>
 Generic Content That Will Be Replaced
</P>

<P>
 Generic Content That Will Be Replaced
</P>

<P>
 Generic Content That Will Be Replaced
</P>

<SCRIPT>
function changeContent()
{
 beginText = “Content Replaced By The <TT>”;
 endText = “</TT> Property”;

 document.all.first.innerHTML = beginText + “innerHTML” + endText;
 document.all.second.innerText = beginText + “innerText” + endText;
 document.all.third.outerHTML = beginText + “outerHTML” + endText;
 document.all.fourth.outerText = beginText + “outerText” + endText;
}
</SCRIPT>

As discussed in the section “Exposing Page Elements,” objects are exposed at a different level
in the object hierarchy between IE4 and Communicator 4.0. When this difference has been
corrected for programmatically, accessing a page element’s attributes is the same between both
browsers. Because Communicator 4.0 does not expose all elements or attributes, cross-browser
scripts are limited to modifying the elements exposed in it.

Page elements exposed in the forms, images, anchors, links, frames, embeds, or applets arrays
existing under the document object can be accessed in both browsers using the same notation.
However, which properties are exposed in both browsers depends upon the type of page ele-
ment being accessed.

Advanced page element manipulation—such as adding and deleting page elements, page ele-
ment attributes, and element content—is not compatible between Communicator 4.0 and IE4.

Document Object Model Comparison

15

The Object Model defines how user agent information about the browser and meta informa-
tion about the document is reflected into the scripting languages of the browser. In Navigator
3.0 and Internet Explorer 3.0 these objects are window, document, navigator, history, and
location. Both Communicator 4.0 and IE4 have updated these objects and added a new screen
object.

Communicator 4.0 has updated the window, document, and navigator objects to provide even
more information about the document and the browser. In addition, a new screen object has
been added that exposes the characteristics of the user’s screen to JavaScript. Details about both
the updated objects and the new screen object are available in Chapter 9, “Using JavaScript
with Dynamic HTML.”

IE4 has updated the window, document, navigator, and location objects to provide functional-
ity almost equivalent to the corresponding Navigator 3.0 objects. The window and document
objects have also been updated with several new properties and methods that extend beyond
the Navigator 3.0 functionality. A new screen object allows access to the resolution and color
depth of the user’s screen, while a new external object provides access to document object
models that are external to the current DOM.

Although both Communicator 4.0 and IE4 expose the same objects for user agent and meta
information, the properties those objects contain differ slightly between the two browsers. The
user agent and meta information objects in Communicator 4.0 and IE4 implement most of
the methods and properties of the Navigator 3.0 objects; however, some functions and prop-
erties of the history and navigator objects have not been implemented in IE4.

IE4 does not implement the mimeTypes and plugins arrays of the navigator object or the cur-
rent, next, and previous properties of the history object. IE4 also does not implement the
javaEnabled() and the taintEnabled() methods of the navigator object, although it does imple-
ment a javaEnabled property that provides the same functionality as javaEnabled().

Because both Communicator 4.0 and IE4 have added new properties and methods to the user
agent and meta information objects that do not exist in the other browser, cross-browser scripts
should use only the methods and properties available to the Navigator 3.0 objects. The excep-
tion to this rule is the new screen object, which supports the width, height, and colorDepth
properties in both Communicator 4.0 and IE4.

The Document Object Model

The Style Sheet Object Model defines how style sheets and their corresponding style rules are
exposed and manipulated. The method by which the style sheet has been attached to the docu-
ment determines which type of style sheet it is. Different types of style sheets are exposed and
manipulated in different ways depending upon the browser. The four types of style sheets are
as follows:

■ Defined style sheets that are defined within a document by the STYLE element. They
usually are displayed in the head of a document.

■ Linked style sheets that exist external to the document and are attached to the docu-
ment using the LINK element.

■ Imported style sheets that exist external to the document and are attached to the
document using the @import statement from within another style sheet.

■ Inline style sheets that define styles for an individual page element using the STYLE
attribute.

Style sheets can be exposed in three different ways. First, at the individual element level, styles
of individual page elements are exposed into style objects reflecting the style properties for that
element. Second, the styles for an entire group of elements are exposed at the group element
level into a single style object representing that group. Finally, style sheets and their associated
style rules can be exposed at the style sheet level into styleSheet objects representing each
instance of a linked, imported, or defined style sheet.

The Communicator 4.0 Style Sheet Object Model exposes the cumulative style of all style sheets
attached to a document. Individual style sheets and style rules are not exposed; instead, the
composite styles for each class, tag, and ID are exposed into style objects representing that class,
tag, or ID. The composite style is the result of applying each applicable style rule to the prop-
erties of the style object. Style rules later in the source code override the default properties or
properties set by earlier style rules. The resultant style object determines how its associated page
elements are displayed.

Style objects in Communicator 4.0 are stored in three arrays, depending on which set of page
elements they are associated with. The ids array contains the style objects of all page elements
with the ID attribute, and the tags array contains the style objects of all tags in a document.
Both exist under the document object and can be referenced using the notations
document.ids.elementID for the ids array and document.tags.tagName for the tags array.

The classes array represents the styles applying to classes in a document and contains a sepa-
rate child array for each class. This child array contains a style object both for the class in general

Document Object Model Comparison

15

and for each tag that might be associated with that class. This allows rules specifying both a
class and a tag such as the following to be represented as a style in JavaScript:

LI.important { font-weight: 900; }

The notation for referencing a style object for a particular tag in the classes array is
document.classes.className.tagName. To reference the style object for the class in general, use
the notation document.classes.className.all.

Figure 15.7 and Listing 15.10 demonstrate the use of the ids, tags, and classes arrays in ac-
cessing style objects in Communicator 4.0.

Using the ids, tags,
and classes arrays to
access style objects in
Communicator 4.0.

<HTML>
<HEAD>
 <TITLE>Exposing Style Sheets in Communicator 4.0</TITLE>

 <STYLE>
 BODY { background-color: white; font-size: 10pt; }
 FONT { font-family: arial, helvetica, sans-serif; }
 FONT.pageTitle { font-size: 18pt; }
 .layer { background-color: yellow; }
 #arrow { padding-right: 10px; }
 #banner { position: absolute; left: 72; top: 8; }
 </STYLE>
</HEAD>

continues

The Document Object Model

<BODY>
 <BLOCKQUOTE>

 <DIV ID=banner CLASS=layer STYLE=”color: blue;”>

 Exposing Style Sheets in Communicator 4.0

 </DIV>

 <P>Each page element with the <TT>ID</TT> attribute reflects a
 style object into the <TT>ids</TT> array that represents the
 styles applied to that page element. The following style has
 been applied to the <TT>arrow</TT> element:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“align: “);
 document.writeln(document.ids.arrow.paddingRight);
 document.writeln(“
”);
 </SCRIPT>
 </BLOCKQUOTE>

 <P>Each tag reflects a style object into the <TT>tags</TT> array
 that represents the styles applied to that tag. The following
 style has been applied to the <TT>FONT</TT> tag:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“font-family: “);
 document.writeln(document.tags.FONT.fontFamily);
 document.writeln(“
”);
 </SCRIPT>
 </BLOCKQUOTE>

 <P>Each class reflects an array of style objects into the
 <TT>classes</TT> array that represents the styles applied to
 all tags of that class as well as the class in general. The
 following style has been applied to the <TT>layer</TT> class:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“backgroundColor: “);
 document.writeln(document.classes.layer.all.backgroundColor);
 document.writeln(“
”);
 </SCRIPT>
 </BLOCKQUOTE>

 <P>Similarly, the following style has been applied only to elements
 whose class is <TT>pageTitle</TT> and whose tag is <TT>FONT</TT>:</P>

 <BLOCKQUOTE>
 <SCRIPT>
 document.writeln(“fontSize: “);
 document.writeln(document.classes.pageTitle.FONT.fontSize);

Document Object Model Comparison

15

 document.writeln(“
”);
 </SCRIPT>
 </BLOCKQUOTE>

 </BLOCKQUOTE>
</BODY>
</HTML>

The IE4 Style Sheet Object Model exposes inline styles attached to individual page elements,
style rules applying to groups of elements, and style sheets as a whole. Inline styles are styles
defined by the STYLE attribute of a page element. They are exposed through the style object
that exists as a property under most page element objects. The properties of the style object
reflect the style properties defined in the STYLE attribute for a page element. Figure 15.8 and
Listing 15.11 demonstrate the use of a page element’s style object to expose style properties.

style

style rules

styleSheet

Exposing styles through
the style object in IE4.

The Document Object Model

<HTML>
<HEAD>
 <TITLE>Exposing Style Sheets in IE4</TITLE>

 <STYLE>
 DT { padding-top: 12; }
 FONT { font-family: arial, helvetica, sans-serif; }
 .layer { position: absolute; }
 #banner { background-color: yellow; }
 </STYLE>
</HEAD>

<BODY ID=body STYLE=”background-color: white; font-size: 12pt;”>
 <BLOCKQUOTE>

 <P>

 <DIV ID=banner CLASS=layer STYLE=”color: blue; left: 72; top: 15;”>

 Exposing Style Sheets in IE4

 </DIV>

 Each page element object contains a <TT>style</TT> object
 that reflects the inline styles applied to that element object.
 The following are the style properties reflected into style
 objects for some of the elements on this page:</P>

 <BLOCKQUOTE><DL>
 <SCRIPT>
 document.writeln(“<DT>BODY</DT>”);
 document.writeln(“<DD>background-color: “);
 document.writeln(document.all.body.style.backgroundColor);
 document.writeln(“</DD>”);
 document.writeln(“<DD>font-size: “);
 document.writeln(document.all.body.style.fontSize);
 document.writeln(“</DD>”);

 document.writeln(“<DT>DIV</DT>”);
 document.writeln(“<DD>color: “);
 document.writeln(document.all.banner.style.color);
 document.writeln(“</DD>”);
 document.writeln(“<DD>left: “);
 document.writeln(document.all.banner.style.left);
 document.writeln(“</DD>”);
 document.writeln(“<DD>top: “);
 document.writeln(document.all.banner.style.top);
 document.writeln(“</DD>”);

 document.writeln(“<DT>IMG</DT>”);
 document.writeln(“<DD>border: “);

Document Object Model Comparison

15

 document.writeln(document.all.arrow.style.border);
 document.writeln(“</DD>”);

 </SCRIPT>
 </DL></BLOCKQUOTE>

 </BLOCKQUOTE>
</BODY>
</HTML>

Linked style sheets are style sheets defined through the LINK element, and imported style sheets are
style sheets attached to a document using the @import statement. Linked style sheets, imported
style sheets, and style sheets defined through the STYLE element are exposed as styleSheet objects
into the document.styleSheets collection. In addition, imported style sheets are exposed into
the imports collection existing under the styleSheet object associated with the STYLE element
that imported the style sheet. The properties of styleSheet objects are listed in Table 15.3.
Figure 15.9 and Listing 15.12 demonstrate how to access these properties from styleSheet
objects in the styleSheets collection.

styleSheet

Property Value

id Contains the value of the ID attribute of the STYLE or LINK
element that attached the style sheet

disabled Contains a boolean value specifying whether the style sheet is
affecting the styles of the document

href Contains the URL of the source file for style sheets attached
from an external file

owningElement References the STYLE or LINK element object used to attach the
style sheet

parentStyleSheet References the styleSheet object associated with the STYLE
element that imported an imported style sheet

title Contains the value of the TITLE attribute of the STYLE or LINK
element that attached the style sheet

type Contains the value of the TYPE attribute of the STYLE or LINK
element that attached the style sheet

readOnly Contains a boolean value specifying whether the style sheet can
be modified

The Document Object Model

<HTML>
<HEAD>
 <TITLE>Exposing Style Sheets in IE4</TITLE>

 <LINK ID=linked REL=STYLESHEET TYPE=”text/css” HREF=”linkedStyle.css”>

 <STYLE ID=defined TITLE=”The Defined Style Sheet”>
 @import url(importedStyle.css);

 H1 { color: darkBlue; margin: 0px; }
 .layer { position: absolute; }
 #banner { background-color: yellow; }
 </STYLE>
</HEAD>

<BODY>
 <BLOCKQUOTE>

 <P>

 <DIV ID=banner CLASS=layer STYLE=”color: blue; left: 72; top: 15;”>
 <H1>
 Exposing Style Sheets in IE4
 </H1>
 </DIV>

Exposing style sheets in
IE4.

Document Object Model Comparison

15

 All imported, linked, and defined style sheets are exposed as
 styleSheet objects into the <TT>styleSheets</TT> array. The
 following are the properties of each of the stylesheet objects:

 <BLOCKQUOTE><DL>
 <SCRIPT>
 document.writeln(“<DT CLASS=first>LINK</DT>”);
 document.writeln(“<DD>id: “);
 document.writeln(document.styleSheets.linked.id);
 document.writeln(“</DD>”);
 document.writeln(“<DD>href: “);
 document.writeln(document.styleSheets.linked.href);
 document.writeln(“</DD>”);
 document.writeln(“<DD>readOnly: “);
 document.writeln(document.styleSheets.linked.readOnly);
 document.writeln(“</DD>”);

 document.writeln(“<DT>STYLE</DT>”);
 document.writeln(“<DD>title: “);
 document.writeln(document.styleSheets.defined.title);
 document.writeln(“</DD>”);
 document.writeln(“<DD>owningElement: “);
 document.writeln(document.styleSheets.defined.owningElement.tagName);
 document.writeln(“</DD>”);
 document.writeln(“<DD>readOnly: “);
 document.writeln(document.styleSheets.defined.readOnly);
 document.writeln(“</DD>”);

 document.writeln(“<DT>@import</DT>”);
 document.writeln(“<DD>href: “);
 document.writeln(document.styleSheets.defined.imports[0].href);
 document.writeln(“</DD>”);
 document.writeln(“<DD>parentStyleSheet: “);
 document.writeln(document.styleSheets[1].imports[0].parentStyleSheet.id);
 document.writeln(“</DD>”);
 document.writeln(“<DD>readOnly: “);
 document.writeln(document.styleSheets.defined.imports[0].readOnly);
 document.writeln(“</DD>”);
 </SCRIPT>
 </DL></BLOCKQUOTE>

 </BLOCKQUOTE>
</BODY>
</HTML>

Individual style rules of a style sheet are exposed into the rules collection underneath the
styleSheet object. Each rule in a style sheet is exposed as a separate rule object containing a
style object and the properties selectorText and readOnly. The style object contains the styles
declared by that rule in the style sheet. Its usage is the same as the style object existing under-
neath a page element object for inline style sheets. The selectorText property contains a string
specifying the tag, class, or ID to which the rule applies, while the readOnly property is set to
true for rules that belong to read-only style sheets, such as imported and linked style sheets.

The Document Object Model

rules styleSheet

Communicator 4.0 and IE4 expose style sheets in different ways, with differing degrees of func-
tionality. Whereas Communicator 4.0 exposes the cumulative styles defined by the style rules
for individual elements and groups of elements, IE4 exposes actual style rules and style sheets.
Nowhere does IE4 expose the cumulative style for a group of elements. This difference in func-
tionality allows only styles defined using the inline STYLE attribute, or styles defined by only
one style rule in a style sheet, to be accessed in both browsers.

To complicate the situation more, in Communicator 4.0, individual page elements must have
an unique ID attribute to be reflected into JavaScript. But assuming that inline styles are used
only on page elements with an ID attribute and other styles are defined using a single style rule,
cross-browser code can be written by manually reflecting all style objects in IE4 from
document.all.elementID.style to document.ids.elementID and from document.styleSheets.
styleSheetID.rules.item(tagName) to document.tags.tagName. This allows style objects to be
accessed the same in both browsers. See the section “Exposing Page Elements” for an example
of manually reflecting objects within JavaScript.

Manipulating style sheets can involve changing either the styles that apply to elements or the
style sheets themselves. Modifying styles allows for the appearance of a document to be changed
one aspect at a time, whereas modifying the style sheets themselves allows the style of the entire
document to be changed at once by applying and removing style sheets from the document.

By exposing styles as style objects into the ids, tags, and classes arrays, Communicator 4.0
provides the capability to manipulate the styles of a document. These styles are changed by
modifying the properties of the style object that represent the element or group of elements to
which the styles apply. Although Communicator 4.0 provides the capability to change the style
properties of any page element, these changes may not be rendered in the browser window. See
the section “Page Updates” for more information about when the browser window is updated.

Document Object Model Comparison

15

In IE4, style sheets can be manipulated at the style sheet level, the group element level or the
individual page element level. Styles applied to individual page elements through inline style
sheets are easily changed by modifying the properties of the style object residing underneath
the page element object. Styles of groups of elements are changed by modifying the properties
of the style object residing underneath the rule object contained within the rules collection
for a styleSheet object. The manipulation of entire style sheets is done by changing the prop-
erties of the styleSheet object representing that style sheet and by using the addRule(),
removeRule(), and addImport() methods.

The addRule() and removeRule()methods are methods of the styleSheet object that allow rules
to be added to and deleted from existing style sheets. The addRule() function adds a style rule
to the rules collection of the styleSheet object just as if the rule appeared in the original style
sheet. It follows the this notation:

styleSheet.addRule(selector, style, [index])

styleSheet is the styleSheet object representing the style sheet containing the rules collection
to add the rule to. The selector parameter is a string representing which ID, tag, or class the
rule applies to. It is equivalent to the string before the opening brace in normal style sheet
notation. The style parameter is a string containing the rule declaration and defines which
style properties are being added to the selector and their values. The index parameter is an
optional parameter that specifies at which position within the rules collection the rule should
be added.

The removeRule() function complements the addRule() function by providing a method for
removing rules from the rules collection of a styleSheet object. The notation for the
removeRule() function is

styleSheet.removeRule(index)

styleSheet once again is the styleSheet object representing the style sheet containing the rules
collection to remove the rule from, and index is a numerical index into the rules collection
specifying which rule should be removed.

The addImport() function attaches an imported style sheet to a styleSheet object. This im-
ported style sheet is then added to the imports array of the styleSheet object that imported it
and, if that styleSheet object is active, participates in affecting the styles of page elements. Listing
15.13 shows how the addImport() and addRule() functions can be used with the disabled
property to attach, detach, and modify the style sheets of a document.

<HTML>
<HEAD>
 <TITLE>Manipulating Style Sheets in IE4</TITLE>

continues

The Document Object Model

 <LINK ID=linked REL=STYLESHEET TYPE=”text/css” HREF=”linkedStyle.css”>

 <STYLE ID=defined TITLE=”The Defined Style Sheet”>
 H1 { color: darkBlue; margin: 0px; font-size: 18pt; }
 .layer { position: absolute; }
 #banner { background-color: yellow; }
 </STYLE>
</HEAD>

<BODY>
 <BLOCKQUOTE>

 <P>

 <DIV ID=banner CLASS=layer STYLE=”color: blue; left: 72; top: 15;”>
 <H1>
 Manipulating Style Sheets in IE4
 </H1>
 </DIV>

 Style sheets in IE 4 can be manipulated by adding new rules
 to specific style sheets, importing new style sheets and disabling
 existing style sheets. Click on the links below to manipulate the
 style sheets attached to this document.</P>

 <P ALIGN=center>

 Import the style sheet <TT>importStyle.css</TT>
 </P>

 <P ALIGN=center>

 Disabled the style sheet <TT>linked</TT>
 </P>

 <P ALIGN=center>

 Add the rule

 <TT>BODY { font-weight: 900 }</TT>

 to the defined style sheet
 </P>

 <SCRIPT>
 function attachImport()
 {
 document.styleSheets.defined.addImport(“importedStyle.css”);
 }

 function disableLinked()
 {
 document.styleSheets.linked.disabled = true;
 }

Document Object Model Comparison

15

 function addRule()
 {
 document.styleSheets.defined.addRule(“BODY”, “font-weight: 900”);
 }
 </SCRIPT>

 </BLOCKQUOTE>
</BODY>
</HTML>

Manipulating style sheets in both Communicator 4.0 and IE4 is difficult at best. Because
Communicator 4.0 makes no distinction between which style sheet a style rule originated from,
the mechanisms used in IE4 to attach new style sheets and disable style sheets currently at-
tached will not work in Communicator 4.0. Similarly, although IE4 provides a mechanism to
add and remove style rules to and from a style sheet, it provides no method of determining the
cumulative styles applying to a given element or group of elements.

Both Communicator 4.0 and IE4 are functionally capable of modifying styles applied to IDs,
tags, or classes through defined, imported, and linked style sheets; however, scripts written to
do so must perform a browser detect and use entirely browser-specific code. Scripts that only
need to modify style properties defined using the inline STYLE attribute on page elements with
the ID attribute, or styles defined by only one style rule in a style sheet, can use cross-browser
code but must first correct for the differences in the object hierarchies of Communicator 4.0
and IE4. All other manipulations of style sheets are browser specific and cannot be scripted for
cross-browser functionality.

The Event Model defines which events are generated, which page elements can generate events,
and how events are delivered to the event handler that processes the event. It also defines an
event object that provides information to event handlers about which event occurred, where it
occurred, and other relevant information about the event. By defining the event handling
capabilities of the browser, the Event Model determines the level of interactivity you can pro-
vide a user.

Communicator 4.0 implements an updated event model based on event capturing. Event cap-
turing is a top-down approach, with events being delivered to page elements higher in the
document structure before elements lower in the document structure. Events generated on a
target element are captured first by the window object, then the document object, and then any
layer objects before finally reaching the event handler of the target element. Capturing events
at higher levels allows generic event handlers to be written for all elements on a page.

The Document Object Model

In addition to event capturing, the Communicator 4.0 Event Model implements the new events
dblClick, dragDrop, keyDown, keyUp, keyPress, mouseDown, mouseUp, mouseMove, move, and resize.
A new event object provides information to event handlers processing an event. Detailed in-
formation about this new event object, the new events, and event capturing can be found in
Chapter 17, “The Communicator 4.0 Event Model: Event Capturing.”

IE4 implements an updated event model based on event bubbling. Event bubbling is a bottom-
up approach in which events are generated by a target page element and then bubbled up through
the document structure until they fall off the top. Events are first delivered to the target ele-
ment, which can choose to continue the bubble—in which case, the event is delivered to the
target element’s parent element—or cancel the bubble—in which case, event delivery stops.
By bubbling events to elements higher in the document structure, IE4 allows generic event
handlers to be written for groups of elements contained within another element. The IE4 Event
Model, by allowing every page element to receive events, also greatly increases the level of in-
teraction you can provide the user through scripting.

Several new events have been added to the IE4 Event Model: abort, afterUpdate, beforeUnload,
beforeUpdate, bounce, dataAvailable, dataSetChanged, dataSetComplete, dblClick, dragStart,
errorUpdate, filterChange, finish, help, keyDown, keyPress, keyUp, mouseDown, mouseMove,
mouseUp, readyStateChange, resize, rowEnter, rowExit, scroll, scriptletEvent, select,
selectStart, and start. A new event object provides information to event handlers process-
ing an event. Detailed information about this new event object, the new events, and event
bubbling can be found in the Chapter 16, “The Internet Explorer 4.0 Event Model: Event
Bubbling.”

The Communicator 4.0 and IE4 event models are compatible with respect to the functionality
present in Navigator 3.0. Basic event handling through event handlers bound to the target
element is supported in both IE4 and Communicator 4.0. However, because Communicator
4.0 generates events for only certain types of page elements, cross-browser code is restricted to
handling events for only these types of elements. In addition, event handlers are restricted to
handling the set of common events that exist in both browsers.

Advanced event handling techniques, such as event bubbling and event capturing, provide
differing functionality and are not compatible between browsers. Under special circumstances,
such as when a higher-level object is the sole object that will receive an event, advanced event
handling techniques can be used to produce the same functionality. However, even in these
circumstances, the code base for achieving the same effect remains completely different.

Although the event objects of Communicator 4.0 and IE4 appear to have many of the same
properties, these properties are not always compatible for all events. The only property that
consistently contains the same value for all events in both browsers is type. The x, y, screenX,
and screenY position properties are compatible for mouse events, but for keyboard events, IE4

Document Object Model Comparison

15

reports the mouse position in these properties, and Communicator 4.0 reports the position of
the event’s target element. Similarly, although the altKey, shiftKey, and ctrlKey properties in
IE4 reflect the same information as the modifiers property in Communicator 4.0, the modifi-
ers property is not set during mouse events in Communicator 4.0. And for key events, the
keyCode property in IE4 uses UNICODE encoding, whereas the corresponding property in
Communicator 4.0, which, uses ASCII encoding.

Whether a browser updates the page when a script makes a change to a page element’s prop-
erty determines how effective a DOM can be. A complete DOM with no page updating is the
same as no DOM at all, because the user will never be able to see all the advanced scripting the
DOM allows.

Communicator 4.0 updates the page under three circumstances: when a page is loading, when
a property of a layer object is changed, and when the contents of a layer object are rewritten.
Updating of the page during page loads is determined by the source order; that is, a page
element’s property must be changed earlier in the source code than the start tag for that ele-
ment. When a page has completed loading, changes made to page element objects are made
but are not rendered into the browser.

To update a page after it has finished loading requires layer objects. By changing the position
properties of a layer object, a layer or positioned page element can appear, disappear, and move
around a Web page. But the contents of a layer object are not updated unless they are rewritten
using the document.write() functions. Using the document.write() function, the entire con-
tents of a layer are wiped out and rewritten. When the document.close() function is executed
on the layer object, the rendering of the layer object in the browser is updated.

IE4 implements instantaneous page updating, meaning any change to a property of an ele-
ment object that changes its appearance is instantly rendered in the browser window. Updates
involve only those portions of the window that have changed. Page elements existing in the
document flow that change size or disappear from the page completely cause the document to
reflow—that is, adjust the layout of the page to accommodate the change in size of the ele-
ment. Absolutely positioned page elements do not exist in the document flow and so are only
updated within their clipping area.

Communicator 4.0 and IE4 differ in how and when they update the rendering of a page in the
browser window. IE4’s instantaneous page updating is a superset of the page updating imple-
mented in Communicator 4.0. Therefore, when designing scripts to be cross-browser, the

The Document Object Model

following design principles, which take into account the Communicator 4.0 page updating
methods, should be used:

■ Use positioned page elements. After the page has finished loading, positioned page
elements and layers are the only way to update the page in Communicator 4.0. Use
regular page elements for static elements of a page and positioned page elements for
anything that needs to be dynamic.

■ Change position, not properties. Communicator 4.0 does not update the page when the
properties of an element change after that element has been rendered. Design your
dynamic effects to take advantage of moving elements rather than elements that
change their appearance.

■ Use multiple page elements layered on top of one another. By layering multiple page
elements on top of one another and showing them one at a time, you can create the
illusion of elements changing their properties.

With the release of Communicator 4.0 and IE4, Netscape and Microsoft have created two
powerful new DOMs that empower authors to develop fully dynamic Web pages. However,
the DOM implementations used by each browser are not always compatible with each other,
interfering with the ability to easily script cross-browser DHTML pages.

The IE4 Object Model exposes all page elements, making it much more powerful than the
Communicator 4.0 Object Model. However, for the most part, the Communicator 4.0 Ob-
ject Model is a subset of the IE4 Object Model, allowing you to write cross-browser scripts by
only using the functionality available in Communicator 4.0.

This is not true for scripts that involve attempting to manipulate style sheets in both browsers.
The approaches taken in the Communicator 4.0 Style Sheet Object Model and the IE4 Style
Sheet Object Model differ greatly between each browser. Although each browser implements
powerful features for manipulating certain aspects of style sheets, these aspects overlap very little,
making cross-browser style sheet manipulation very limited.

The Communicator 4.0 and IE4 Event Models are compatible up to the functionality included
in Navigator 3.0. Both browsers implement advanced handling techniques, but these techniques
are almost completely incompatible. And although at first glance the new events and event
object implemented in Communicator 4.0 and IE4 seem similar, little functionality differences
between the two browsers can quickly introduce bugs into cross-browser scripts trying to use
these new features.

Overall, both Communicator 4.0 and IE4 implement new DOMs with many new powerful
features. Unfortunately, these features are not always compatible. So until the DOMs converge
in future versions of each browser, authors developing DHTML sites for use in both browsers
must make compromises.

The Internet Explorer 4.0 Event Model: Event Bubbling

16

by Trevor Lohrbeer

■

■

■

■

The Document Object Model

Events are the engine behind all interactive HTML pages. They drive the scripts that react to
a user’s actions and determine the difference between a Dynamic HTML (DHTML) page that
a user can watch and one the user can interact with. The Event Model is a crucial portion of
the Document Object Model (DOM) because it determines how events are generated, deliv-
ered, and processed in DHTML.

The Internet Explorer 4.0 (IE4) Event Model implements a powerful form of event delivery
called event bubbling. Event bubbling is an event delivery approach that allows parent elements
of a page element the chance to react to an event by passing the event up along the document
hierarchy. It integrates well with the IE4 Object Model by giving elements that are not the
target of an event the capability to process the event.

In addition, the IE4 Event Model introduces several new events and a new event object. The
new events provide precise information about a user’s actions and add support for the new data
binding functionality of IE4. The new event object enhances the capability of event handlers
to react to events by storing detailed information about the characteristics of an event.

Event bubbling is an advanced event delivery mechanism based on a bottom-up approach that
delivers an event first to the target element for an event and then in sequence to each parent
element along the document hierarchy. By giving parent page elements the capability to handle
an event, event bubbling helps to support backward-compatibility with the Internet Explorer
3.0 (IE3) and Netscape Navigator 3.0 object models, promotes cleaner and more portable code
creation, and provides flexibility in creating event handers.

Event bubbling is a bottom-up approach to event delivery, meaning events start at the bottom
of the document hierarchy and travel up along the hierarchy until the HTML element is reached.
The page element that is the focus of the action causing the event to be generated is called the
target element or source element. This element begins the event path, the sequence of page ele-
ments an event is delivered to on its way from the target element to the HTML element.

Event handlers can be attached, or bound, to a page element at any point along the event path.
Event handlers are bound to a specific type of event and can only react to events of that type.
Unless an event’s bubbling is canceled, every event handler along the event path is called when
an event of that type is generated by a child element.

When the event reaches the highest element in the hierarchy, the HTML element, it falls off the
top and the default action is taken for the target element. The default action is the action nor-
mally taken by the browser in reaction to an unhandled event. For instance, the default action
for the link element is to load the document specified by the HREF attribute.

The Internet Explorer 4.0 Event Model: Event Bubbling

16
Traditionally, when a user performed an action that triggered an event on a page element, the
event was processed by the event handler specified for that element. If a page element had no
event handler for that type of event, the event was processed by the browser, and the default
action for that type of event was taken on the page element. Page elements could only react to
events triggered on themselves, not to events triggered on any child elements the page element
might have had.

For Navigator 3.0 and IE3, this was not a problem. The elements exposed in the Navigator 3.0
and IE3 object models did not contain child elements that reacted to the same type of events.
The document object could contain a link element, but it could not bind click, mouseOver, and
mouseOut events, so it did not matter that those events never reached the document object.

In the IE4 Object Model, all page elements are exposed, so the event model of events being
handled only by the page element that triggered the event no longer works. Code previously
written with the assumption that certain child elements do not have the capability to receive
events will break when those elements begin to receive those events.

For instance, the link element often contains additional elements that change the style of the
link. To make a link stand out more, the B element is often used like this:

Home

In older browsers this worked because the B element was not exposed to scripting and could
not receive events. However, with the IE4 DOM, the B element is exposed and can receive
events, including the mouseOver event. If event bubbling was not implemented in IE4, the B
element would receive the event and, having no event handler, pass the event to the browser to
be processed; the link element would never receive the event. Event bubbling enables the event
to be passed along to the parent link element, where it can be processed.

Retaining backward compatibility with previous event models is not the only reason to imple-
ment event bubbling. By enabling page elements other than the target element to receive events,
generic event handlers can be written that handle events for an entire group of page elements.
Event handlers can also be bound higher in the document hierarchy, resulting in cleaner, more
efficient code.

Listing 16.1 shows the HTML source for a menu that uses mouseOver and mouseOut events to
create a rollover effect. The code does not utilize event bubbling and so requires each page el-
ement to bind both events. Listing 16.2 shows the same code using event bubbling. The
mouseOver and mouseOut events are bound to the BODY element and allowed to bubble up from
each link element. The result is code that is cleaner, easier to read, and more easily expanded.
From now on, all new links added to the page will automatically have their mouseOver and
mouseOut events handled.

The Document Object Model

<BODY>

<A HREF=”company.html” onMouseOver=”highlightOption();”
 onMouseOut=”unhighlightOption();”>Company
<A HREF=”products.html” onMouseOver=”highlightOption();”
 onMouseOut=”unhighlightOption();”>Products
<A HREF=”support.html” onMouseOver=”highlightOption();”
 onMouseOut=”unhighlightOption();”>Support
<A HREF=”solutions.html” onMouseOver=”highlightOption();”
 onMouseOut=”unhighlightOption();”>Solutions

</BODY>

<BODY onMouseOver=”highlightOption();” onMouseOut=”unhighlightOption();”>

Company
Products
Support
Solutions

</BODY>

The process of event bubbling involves more than simply passing events up along the docu-
ment hierarchy. Before an event can bubble, it must be generated and delivered to the target
element. If the event bubbles and the event handler for the target element does not cancel the
event bubble, the event then bubbles up along the document hierarchy. When the event reaches
the top of the hierarchy, it falls off the top, and the default action for the target element is
performed.

Event bubbling can be summarized into a series of four steps. The first two steps are taken by
every event, and the second two can each be canceled by setting a property of the event object.
The four steps of event bubbling are as follows:

■ Event generation

■ Event delivery

■ Event bubbling

■ The default action

Events can be generated by either the user or the system. User-generated events occur when
the user performs an action, and system-generated events are generated by objects to indicate

The Internet Explorer 4.0 Event Model: Event Bubbling

16a change in state. Examples of user-generated events include click, keyPress, focus, and resize.
Examples of system-generated events include load, dataAvailable, and error.

User-generated events are divided into low-level and high-level events. Low-level events are events
triggered whenever the user performs a basic action, such as clicking or moving the mouse or
pressing and releasing a key on the keyboard. High-level events are events generated by taking a
series of low-level events in context, such as when a mouseDown event occurs over a piece of
selected text and is followed by a mouseMove event to generate a dragStart event. In general,
low-level user-generated events are triggered on every page element, whereas high-level user-
generated events are triggered only on select page elements.

When an event is triggered, either by an action the user takes or a change in the state of an
object, the event is generated. During the process of generation, the properties of the event
object are set. Which of these properties are set and which values they contain depend on the
type of event; this is discussed in detail in the section “New and Updated Events.”

After an event has been generated, the event is delivered to the target element. This target ele-
ment can be either a page element or a system object to which the event applies. If the target
element has bound an event handler for the type of event being delivered, that event handler is
used to process the event.

Events can be bound to page elements using four different methods:

■ Adding an onEvent attribute to the page element whose value contains a call to the
event handler, like this, for instance:

Home

■ Assigning the function to the onevent property of the page element object, like this,
for instance:

document.forms[0].phone.onblur = “validatePhone();”;

■ Using the FOR and EVENT attributes of the SCRIPT element to bind an event for a
specific page element, like this, for instance:
<SCRIPT FOR=homeLink EVENT=onmouseover>
 window.status = ‘Return to Home’;
</SCRIPT>

■ In VBScript, naming the event handler elementID_onEvent(), like this, for instance:
Function homeLink_onMouseOver
 window.status = ‘Return to Home’;
End Function

After the event handler returns, or if no event handler was bound to the target element, the
event continues along the event bubbling process. If the event is a bubbling event, it is deliv-
ered to the parent object of the target element. If the event is non-bubbling, it proceeds di-
rectly to the default action for the target element.

The Document Object Model

The normal action of events in the IE4 Event Model is to bubble up the document hierarchy.
Typically, when an event has been delivered to the target element, it is passed along to the target’s
parent element. This parent element then executes any event handlers bound to it that match
the event type and, when finished, passes the event to its parent element. Events travel up the
document hierarchy being processed by any matching event handlers bound to page elements
in the event path. When the event handlers for the HTML element have finished, the event falls
off the top of the hierarchy and, if not canceled, the default action occurs.

Figure 16.1 and Listing 16.3 show the path an event takes from a B element inside a paragraph
all the way up to the HTML element. Each element along the way has bound an event handler
that adds its element’s tag to the eventPath variable. By the time the event falls off the top of
the hierarchy, the entire path is displayed.

The event path taken
by a bubbling event.

<HTML onClick=”displayEventSource(this);”>
<HEAD>
 <TITLE>The Event Path</TITLE>

 <SCRIPT>
 function displayEventSource(element)
 {
 if (element == event.srcElement)
 eventPath = “”;

The Internet Explorer 4.0 Event Model: Event Bubbling

16 eventPath += element.tagName + “ --> “;
 document.all.results.innerHTML = eventPath;
 }

 </SCRIPT>
</HEAD>

<BODY onClick=”displayEventSource(this);”>
 <H2>The Event Path</H2>

 <BLOCKQUOTE onClick=”displayEventSource(this);”>
 <P>
 Events bubble up the document hierarchy from a page element
 to its parent element. By clicking on a page element, a
 click event is generated that travels up the document
 hierarchy triggering any <TT>onClick</TT> event handlers
 bound to a page element.
 </P>

 <P onClick=”displayEventSource(this);”>
 <B onClick=”displayEventSource(this);”>
 Click here

 to see the path an event takes from the <TT>B</TT> element
 up the document hierarchy.
 </P>

 <P>Event Path:

 <PRE ID=results>
 </PRE>
 </P>
 </BLOCKQUOTE>

</BODY>
</HTML>

Although this is the typical journey of an event, not all events follow this path, because, first,
not all events bubble and, second, events that do bubble can have their bubble canceled.

An event bubbles because it has meaning not only to its target element but to its target’s parent
element. Some events, however, apply strictly to the target element and have little or no mean-
ing to parent elements. The blur event, for instance, is generated when the focus is switched
from one form element to another. However, just because a form element has lost focus and
triggered a blur event does not mean the form itself has lost focus. Therefore, the blur event
does not bubble. Conversely, if a user clicks on a word in a paragraph, it is true that the user
has clicked on the paragraph as well, so the click event does bubble.

In some cases, events are non-bubbling for backward compatibility reasons. The load event in
Navigator 3.0 can be generated by either an IMG element or the BODY element. If the event were
to bubble in IE4, the BODY element’s onLoad event handler in scripts written for Navigator 3.0
would be executed each time an IMG element fired a load event, subsequently breaking the script.

Although the capability of events to bubble up the document hierarchy can be convenient at
times, other times it can be inconvenient. For example, when writing event handlers that

The Document Object Model

perform a different function depending upon which context they are in, the bubbling of events
is a disadvantage. Listing 16.4 demonstrates the use of the help event to display context-sensitive
help. Unless the help event is stopped from bubbling, when the user requests help in the pass-
word field, both the general help and the password help will be displayed. To produce the desired
effect of context-sensitive help, the event must be prevented from bubbling.

help

<FORM onHelp=”displayHelp(‘general’);”>

<P>Login:
 <INPUT TYPE=text SIZE=20></P>

<P>Password:
 <INPUT TYPE=password SIZE=20 onHelp=”displayHelp(‘password’);”><P>

</FORM>

By setting the cancelBubble property of the event object to true, an event ceases to continue
to travel along the normal event path to the top of the document hierarchy and instead pro-
ceeds directly to the default action. Whether the default action occurs depends upon the value
of the returnValue property of the event object.

Listing 16.5 demonstrates the use of the cancelBubble property in the displayHelp() event
handler used in Listing 16.4. By canceling the bubble for the help event, only the help that
applies to the element that generated the event is displayed.

help

function displayHelp(topic)
{
 if (topic == ‘general’)
 window.status = ‘Enter values into the form.’;

 if (topic == ‘password’)
 window.status = ‘Enter your user password in this field.’;

 event.cancelBubble = true;
 event.returnValue = false;
}

Some page elements have what is called a default action. The default action is the action nor-
mally performed by the browser when an element receives an event of a certain type. For
instance, the default action for a Submit button is to send the information over the Internet
using the method specified in the FORM element. Likewise, the default action of a link element
is to load the page specified by the HREF attribute.

The Internet Explorer 4.0 Event Model: Event Bubbling

16Canceling the default action allows a script the flexibility to redefine the results of a user’s ac-
tions. Although a link normally might take the user to the location specified by the HREF
attribute, by canceling the default action, the user can make the link display a dialog box in-
stead, or disable it entirely.

The default action is canceled by setting the returnValue property of the event object to false.
It can also be canceled by returning false from the last event handler that processes an event
before it falls off the top of the document hierarchy. If the value stored in the returnValue
property conflicts with the value returned by the last event handler, the returnValue property
is used to determine if the default action occurs.

The canceling of the default action is not tied to the canceling of the event bubble. A default
action can be canceled, yet the event can continue to bubble up the document hierarchy. And
likewise, the event bubble can be canceled, yet the default action is still performed.

Listing 16.5 shows how the returnValue property is used to prevent the standard IE4 help
window from opening.

The event object makes information about an event available to event handlers. It contains
properties that store information about the event source, mouse position, and keys pressed.
Properties also exist determining whether the event will continue to bubble and whether it will
activate the default action for an element. All these properties are useful in advanced error
handling.

The event source can be used by generic event handlers to determine which code should be
executed. They specify the elements involved in the scope of the event and which type of event
was generated by the actions taken toward these elements.

type srcElement
The type property stores a string specifying the type of event that occurred. This string is the
name of the event in all lowercase, such as click and mouseover. The source element, some-
times known as the event target, is referenced through the srcElement property that stores a
reference to the page element object that generated the event. Both properties are used when
creating generic event handlers that handle events of more than one type or are triggered by
more than one page element.

fromElement toElement
The fromElement and toElement properties are used during mouseOver and mouseOut events to
specify which element the mouse was moving out of and which element it was moving to. This
information can be used in mouseOver and mouseOut event handlers bound to a page element to
prevent unwanted results from extraneous mouseOver and mouseOut events bubbling up from
child elements.

The Document Object Model

Listing 16.6 demonstrates how the toElement and fromElement properties are used to prevent
extraneous mouseOver and mouseOut events from being executed when the mouse moves from
a paragraph element to one of its child B or TT elements. Within the highlight() function, a
test is made to see if the element from which the mouse moved to cause the mouseOver event is
a child of the element that called the highlight() function, the P element. If the element is not
a child element, the mouseOver event occurred because the mouse moved from an element outside
into the P element and the P element is highlighted; otherwise the highlighting is left alone.
The reverse logic applies to the unhighlight() function and prevents the mouseOut events from
the TT and B elements from removing the paragraph highlighting.

fromElement toElement mouseOver
mouseOut

<HTML>
<HEAD>
 <TITLE>Handling mouseOver and mouseOut Events</TITLE>

 <SCRIPT>
 function highlight(callingElement)
 {
 if (!callingElement.contains(event.fromElement))
 callingElement.style.backgroundColor = “yellow”;
 }

 function unhighlight(callingElement)
 {
 if (!callingElement.contains(event.toElement))
 callingElement.style.backgroundColor = “white”;
 }
 </SCRIPT>
</HEAD>

<BODY BGCOLOR=white>
<P ID=text onMouseOver=”highlight(this);” onMouseOut=”unhighlight(this);”>
 When the cursor moves from normal text within a paragraph to
 bold text, a <TT>mouseOut</TT> event is generated by the
 <TT>P</TT> element and a <TT>mouseOver</TT> event is generated by
 the <TT>B</TT> element. This causes the paragraph highlighting to
 blink. The cursor, however, has not moved out of the boundaries
 of the <TT>P</TT> element, simply onto one of its child elements.
</P>
</BODY>
</HTML>

For most events, the position of the mouse when the event is triggered is stored in a series of
position properties that provide the mouse position relative to a series of different coordinate
systems.

The Internet Explorer 4.0 Event Model: Event Bubbling

16x y clientX clientY
The x, y, clientX, and clientY properties of the event object store the position of the mouse
relative to the upper-left corner of the client area of the browser window. These properties can
be used in event handlers to move positioned page elements on the basis of the mouse posi-
tion, to respond to events generated within absolute areas of the screen, and to track mouse
movement.

Figure 16.2 and Listing 16.7 demonstrate the use of the x and y properties of the event object
to display a context-sensitive menu whenever the mouse button is pressed with the control key
held down. By moving an absolutely positioned DIV element containing the menu to the loca-
tion of the mouseDown event stored in x and y, the menu is displayed wherever the mouse is
clicked. When the mouse button is released, the menu disappears again.

continues

Displaying context-
sensitive menus using
the x and y event
properties.

<HTML>
<HEAD>
 <TITLE>Displaying Context-Sensitive Menus Using Mouse Position</TITLE>
 <STYLE>
 .contextMenu { position: absolute; background-color: #CCCCCC;
 font-family: arial, helvetica, sans-serif;
 font-size: 10pt; margin: 10; border: solid 1 gray; }
 </STYLE>

 <SCRIPT>
 function showDefaultMenu()
 {

The Document Object Model

 if (event.ctrlKey)
 {
 document.all.defaultMenu.style.left = event.x;
 document.all.defaultMenu.style.top = event.y;
 document.all.defaultMenu.style.display = “”;
 }
 }

 function hideDefaultMenu()
 {
 document.all.defaultMenu.style.display = “none”;
 }
 </SCRIPT>
</HEAD>

<BODY onMouseDown=”showDefaultMenu();” onMouseUp=”hideDefaultMenu();”>
<H2>Displaying Context-Sensitive Menus Using Mouse Position</H2>

<DIV ID=defaultMenu CLASS=contextMenu STYLE=”display: none; width: 100;”>
Cut

Copy

Paste

</DIV>

</BODY>
</HTML>

offsetX offsetY screenX screenY
The offsetX, offsetY, screenX, and screenY properties also store the mouse position whenever
an event is generated. However, they each use a different coordinate system. The offsetX and
offsetY properties measure the position of the mouse relative to the upper-left corner of the
parent block level element in the document hierarchy, and the screenX and screenY properties
measure the position of the mouse relative to the upper-left corner of the screen.

Four properties exist within the event object that store information related to the keyboard
status during an event. Though they are primarily used for keyboard events, the shiftKey, altKey,
and ctrlKey properties are set for all mouse and keyboard events.

keyCode
The keyCode property is used to store relevant information about which keys on the keyboard
are pressed during a keyboard event. However, the information the keyCode property stores
depends on the keyboard event being generated. For the keyDown and keyUp events, the keyCode
property stores the key code of the key being pressed. The key code is a value that uniquely
identifies the key with respect to the other keys on the keyboard, for instance, the key code for
the “A” key is 65. Every key, including special keys such as INSERT and ALT, has one and only
one key code.

The Internet Explorer 4.0 Event Model: Event Bubbling

16During a keyPress event, the keyCode contains the character generated by the combination of
pressed keys. The character generated is derived from the character key pressed and any modi-
fier keys held down at the time. The keyCode property stores the generated character using the
two-byte UNICODE encoding.

Listing 16.8 shows how the keyCode property can be used to restrict form input to numbers
only. By binding this function to a text input field for the keyPress event, only keys pressed
whose keyCode is within the range from ‘0’ to ‘9’ are displayed in the field.

keyCode

function inputNumbers()
{
 // Keycode of character ‘0’ is 48, of character ‘9’ is 57.
 if (event.keyCode >= 48 && event.keyCode <= 57)
 return true;
 else
 return false;
}

shiftKey altKey ctrlKey
The shiftKey, altKey, and ctrlKey properties of the event object store the state of the Shift,
Alt, and Control modifier keys during an event. Each property contains a boolean value that is
true if the key was pressed when the event was generated or false if the key was not pressed.
These properties are set for all mouse and keyboard events.

Two properties of the event object control the action an event takes within a script: The
returnValue and cancelBubble properties determine whether an event bubbles up the docu-
ment hierarchy and whether, when it reaches the top, it triggers the default action.

returnValue
The returnValue property determines whether the default action for a page element will take
place in response to the event. If this property is set to false, the default action is canceled; if
it is set to true, the default action for the page element is performed after an event finishes
bubbling. This property overrides the return value of the last event handler to execute before
the event falls off the document hierarchy.

cancelBubble
The cancelBubble property allows the bubbling of an event to be canceled. If you set the
cancelBubble property to true within an event handler, event handlers further up the docu-
ment hierarchy will not receive the event. Instead, the default action, if not canceled, will be
executed by the browser and the event’s life cycle will end.

The Document Object Model

The IE4 Event Model adds a slew of new events and updates many others to provide IE4 with
powerful new tools to respond to the user. In addition to adding and updating several mouse,
keyboard, and system events, IE4 has added eight new data binding events to support its new
data binding functionality.

The mouseDown, mouseUp, and mouseMove events provide low-level information about what the
user is doing with the mouse. The mouseDown event is generated whenever the user presses down
any of the mouse buttons, unless this action occurs immediately following a click event. Simi-
larly, the mouseUp event is generated whenever the user releases a mouse button. mouseMove events
are generated continuously while the mouse is moving over an element. The number of mouseMove
events generated depends on the speed at which the mouse is moved; slow movement of the
mouse will generate more events, and fast movement will generate fewer events.

The click event has been updated to work with the mouseDown and mouseUp events and the new
ACCESSKEY page element attribute. It is generated when the user performs one of the following
actions:

■ Pressing and releasing the left mouse button once over any element.

■ Pressing and releasing any mouse button once over an A element.

■ Pressing the space bar while a radio, checkbox, submit, reset, or button form element
has the focus.

■ Pressing the Enter key while any form element except TEXTAREA has the focus. This
action also changes the focus to the submit button. If the submit button is missing
from the form, the click event is only generated when the Enter key is pressed on a
button form element.

■ Pressing the Esc key while a checkbox, radio, or select form element has the focus.
This action also changes the focus to the reset form element. If the reset button is
missing from the form, no click events are generated.

■ Pressing the key specified by the ACCESSKEY attribute for a checkbox, radio, or button
form element. A click event is also generated when the access key for an A element is
pressed. Access keys for the select form element and all text form elements transfer
focus to that element but do not generate a click event.

The dblClick event is generated when the user performs a double click, as defined by the local
system. During a double click, before the dblClick event is generated, a series of mouseUp,
mouseDown, and click events are generated. The sequence for these events during a double click
is as follows:

mouseDown --> mouseUp --> click --> mouseUp ----> dblClick

The Internet Explorer 4.0 Event Model: Event Bubbling

16Notice that the second pressing down of the mouse button does not generate an event. Mouse-
down actions performed immediately after a click event do not generate a mouseDown event.
The dblClick event is only generated for the left mouse button.

The mouseOver and mouseOut events have been updated to provide detailed information about
the event to the event object. For these events, the fromElement property of the event object
stores a reference to the element that the mouse was previously over, and the toElement prop-
erty stores a reference to the element the mouse moved to.

All mouse events record the x and y position of the mouse in the position properties of the
event object. Likewise, the state of the Shift, Control, and Alt keys is recorded for all mouse
events. For mouseDown and mouseUp events, the button property stores which button was pressed.

The keyUp and keyDown events provide low-level information about the movement of the keys
on the keyboard. The keyDown event is generated whenever a user presses any key on the key-
board, and the keyUp event is generated when the key is released. Every key on the keyboard—
including special keys like CAPS LOCK, BACKSPACE, and SHIFT—trigger keyUp and keyDown events.
However, not all keys generate a keyPress event.

The keyPress event occurs when a series of keyUp and keyDown events generate a character. The
character represents the result of any modifier keys being pressed in conjunction with a char-
acter key. Special keys like BACKSPACE, TAB, and CTRL do not generate keyPress events. The only
exception is the ESC key, which generates a keyPress event with a keyCode of 27.

The help event is a new event generated when the user presses the help key, as defined by the
system (F1 on Windows-based machines). It is generated immediately after the keyDown event
for the help key, before the keyUp event occurs. The default action of the help event is to open
a help window.

All key events store the position of the mouse during the event in the position attributes of the
event object. The altKey, shiftKey, and ctrlKey properties store the status of the modifying
keys for all events except keyUp. For the keyUp and keyDown events, the keyCode property stores
which key on the keyboard was pressed, and for the keyPress event, this property stores the
character code for the resulting key combination pressed.

New to IE4 are two selection events that fire when the user selects text with the mouse and
drags it to be pasted elsewhere. The selectStart event is generated when the user first begins
making a selection by pressing down the left mouse button over a piece of text and dragging
the mouse, or selecting text with the keyboard. When text has been selected, the dragStart
event is generated as the user attempts to drag the selection elsewhere.

The Document Object Model

The load event has been updated to fire on several new page elements, and the unload event
remains the same as in IE3. A new beforeUnload event has been added, allowing a script to
confirm with the user before unloading a page. If a string is returned as the return value for an
onBeforeUnload event handler, a dialog box is displayed with the string giving the user the option
to remain on the page.

Figure 16.3 and Listing 16.9 demonstrate the use of the beforeUnload event to ensure that a
user understands that leaving the Web page cancels an order. If the user clicks the Cancel but-
ton on the dialog displayed, he or she remains on the order page; if the OK button is clicked,
the page continues to unload.

beforeUnload

onBeforeUnload

Using the
beforeUnload event to
confirm leaving an
online order form.

The Internet Explorer 4.0 Event Model: Event Bubbling

16
function confirmExit()
{
 if (!orderSubmitted)
 {
 message = “”;
 message += “You have not yet completed your order. Leaving “;
 message += “this page without pressing the order button will “;
 message += “result in an incomplete order which WILL NOT be “;
 message += “processed.”;

 return message;
 }
 else
 return null;
}

IE4 introduces two new events for handling errors, both called error. The first error event can
be bound only to the window object and works the same as the error event in Navigator 3.0,
being generated whenever an error in a script occurs. The second error event is generated
whenever an error occurs loading one of several different page elements. For the IMG element,
this second error event can be suppressed by setting the onerror property of the image’s page
element object to null.

The load, unload, and beforeUnload events use only the type property of the event object. The
error event uses both the type and srcElement properties. None of these events are bubbling
events.

IE4 introduces the events scroll and resize to enable scripts to react when a user attempts to
use a scrollbar or resize a window. The scroll event is triggered continuously while the scrollbar
on an element or the browser window is moving. If the movement is sudden, such as when the
spacebar is used to scroll the active window or when a user adds a line to a TEXTAREA element,
only one scroll event is generated. The scroll event is a non-bubbling event, and its default
action cannot be canceled.

The resize event is generated whenever a sized element changes its size. For the IMG element,
this occurs when the source image is replaced or the width and height properties of the IMG
element are changed. For the window object, the resize event is generated when the user changes
the size of the window.

To provide compatibility with the Navigator 3.0 Event Model, the abort and reset events have
been added to the IE4 Event Model. The abort event is generated when the user aborts the
load of an image by either clicking a link or pressing the stop button while the reset event is
generated when the reset button on a form is pressed. In addition to including the reset event,
IE4 continues to support the submit event for forms.

The Document Object Model

The blur and focus events have been expanded in IE4 beyond forms. The blur event is now
triggered when a page element loses the focus when the user tabs to another element, clicks on
the background of the page, or switches to another application. Likewise, the focus event is
triggered on certain page elements when they receive the focus by being tabbed to or the win-
dow containing the element receives focus again. Neither the blur nor focus events bubble,
nor can their default actions be canceled.

The filterChange, readyStateChange, scriptletEvent, start, finish, and bounce events all are
triggered in response to a change in the state of a page element object. The filterChange event
is generated when a filter attached to a page element via the filter style property changes state
or finishes its transition. This event can be used to sequence a series of page element transi-
tions.

The readyStateChange event is generated when a page element changes its readyState. The
readyState of a page element measures how ready an element is to participate in a page. For
IMG elements, readyState can take on the values of uninitialized, loading, or complete. For
objects referenced with the APPLET, EMBED, or OBJECT elements, the readyState can also have
the value of interactive.

The scriptletEvent event is generated by scriptlets to pass custom events to the page contain-
ing the scriptlet. Event handlers written to handle the scriptletEvent event take two param-
eters, eventName and eventObject. The first parameter, eventName, is a string assigned by the
scriptlet, usually containing the name of the custom event. The second parameter, eventObject,
is a reference to an object within the scriptlet, and can be anything from the page element within
the scriplet that generated the event to a custom event object created by the scriptlet.

Finally, the start, finish, and bounce events are triggered only on the MARQUEE element and do
not bubble. The start event is generated whenever a loop begins, and the finish event is gen-
erated once when all looping ends. The bounce event is generated whenever the marquee changes
direction for elements where the BEHAVIOR attribute is set to alternate.

IE4 implements eight new data binding events to support its new data binding functionality.
The first three—the dataSetChange, dataSetComplete, and dataAvailable events—are triggered
by the data source to indicate the availability of data. The dataSetChange event is generated
when the data first becomes available from the data source and any time the data set changes,
such as when filters are applied. When all the data is available from the data source, the
dataSetComplete event is generated. For data sources that receive data asynchronously, the
dataAvailable event is generated whenever new data arrives. None of these three events can be
canceled.

The Internet Explorer 4.0 Event Model: Event Bubbling

16The rowExit and rowEnter events are generated directly before and after the current row for a
data source is changed. The rowExit event is triggered to indicate that the data source is about
to change the current row, and the rowEnter event is generated when the current row has changed.
If the default action for the rowExit event is canceled, the data set does not change, and the
rowEnter event is not generated.

When making changes to data bound to form elements, the beforeUpdate, afterUpdate, and
errorUpdate events are used to indicate when an update to the data source occurs and if it was
successful. The beforeUpdate event is generated by the form element whose data is being changed.
It occurs immediately after the change has been committed to the form element by the ele-
ment losing focus and immediately before the changed data set is updated with the data source.
The afterUpdate event is generated when the data has been updated. If the default action for
the beforeUpdate event is canceled, no update is made to the data source, and the errorUpdate
event is generated instead.

All the data binding events bubble and are only triggered when both a data provider and a data
consumer exist within a document. For more information about data binding and the events
related to it, see Part V, “Data Awareness.”

Based on the advanced event delivery technique of event bubbling, the IE4 Event Model pro-
vides powerful new tools for developing interactive DHTML pages. Event bubbling is a tech-
nique in which events generated by a specific page element are passed up along the document
hierarchy to be processed by applicable event handlers bound to parent elements. This tech-
nique allows generic event handlers to be written for documents and promotes cleaner and easier-
to-read code.

By including a new and expanded set of events and a new event object, the IE4 Event Model
provides the Web designer with additional resources to dynamically respond to a user’s actions.
The new event object provides detailed information about the event to event handlers, and the
new events enable scripts to react to low-level user-generated events for finer control over the
user experience.

Together, the new events, new event objects, and advanced event delivery mechanism provide
the Web designer with everything he or she needs to develop Web pages that truly interact
with the user.

The Document Object Model

The Communicator 4.0 Event Model: Event Capturing

17

by Trevor Lohrbeer

■

■

■ event

■

The Document Object Model

The Communicator 4.0 Event Model is one of the truly enabling aspects of the Communica-
tor 4.0 Document Object Model (DOM). By using the new event delivery system, new events,
and new event object, Web pages can be designed that react more effectively to users’ actions
and deliver an interactive experience to the user.

One of the most powerful aspects of the new event model, the event capturing mechanism,
allows events to be delivered to objects other than the target object. By first delivering events to
the browser window, then to each object successively lower in the object hierarchy, event cap-
turing enables event handlers to be written that react to the page as a whole rather than sepa-
rate parts each with its own event handlers.

Enhancing event handling capabilities even more, the Communicator 4.0 Event Model imple-
ments a new event object and several new and updated events. The new event object provides
detailed information about the event to event handlers, while the new and updated events ex-
tend the ability of a document to react to user actions.

Event capturing is an advanced event delivery mechanism based on a top-down approach that
allows objects higher in the document hierarchy to capture events before they reach their in-
tended target. By capturing events, generic event handlers can be written that process events
for groups of elements, allowing code to be written that is cleaner and more portable.

Event capturing is a top-down approach to event delivery, meaning events start at the top of
the object hierarchy and are passed to elements lower in the hierarchy until the event target is
reached. The event target is the page element or system object that caused the event to occur.
The sequence of objects an event passes on its way to the event target is called the event path.

In event capturing, before an object can begin to capture an event, it must bind an event han-
dler for that type of event. Binding is the process of specifying which event handler should handle
events of a certain type for an object. Once an object has bound an event handler for an event
type, it can begin to capture events of that type. Events targeted to objects lower in the docu-
ment structure than an object capturing events are first handled by the capturing object’s event
handler. The event handler can then choose whether to pass the event further down the object
hierarchy to another object within the page or directly to the default action. An object that no
longer needs to handle events of a certain type can release those events. Released events are no
longer captured by the object and proceed normally to the event target’s event handler.

Event capturing provides greater flexibility in the event handling capabilities of a script. By
capturing events at a higher level in the object hierarchy, you can create event handlers that
handle events for a group of page elements, redefine the meaning of events within a document,
or provide multiple event handlers for an event.

The Communicator 4.0 Event Model: Event Capturing

17

The HTML source for a menu that uses mouseOver and mouseOut events to create a rollover
effect is shown in Listing 17.1. The code does not utilize event capturing, so each page element
is required to bind and handle both events. Listing 17.2 shows the same code with the mouseOver
and mouseOut events captured by the surrounding layer object. The layer object captures and
processes the events for all link objects within the layer, allowing new links added to the menu
to have their mouseOver and mouseOut automatically handled. By capturing events at a higher
level, the code is not only significantly cleaner, but easily expandable.

<LAYER ID=mainMenu>
 <A HREF=”company.html” onMouseOver=”highlightOption(event);”
 onMouseOut=”unhighlightOption(event);”>

 <A HREF=”products.html” onMouseOver=”highlightOption(event);”
 onMouseOut=”unhighlightOption(event);”>

 <A HREF=”support.html” onMouseOver=”highlightOption(event);”
 onMouseOut=”unhighlightOption(event);”>

</LAYER>

<LAYER ID=mainMenu>

</LAYER>

<SCRIPT>
 document.mainMenu.captureEvents(Event.MOUSEOVER | Event.MOUSEOUT);
 document.mainMenu.onmouseover = highlightOption;
 document.mainMenu.onmouseout = unhighlightOption;
</SCRIPT>

Event capturing works by implementing a series of distinct steps that can be taken to prepare
objects to receive events, to allow event handlers to pass events along to other event handlers,
and to release events from being captured once event handlers are no longer needed to handle
the event. Event capturing, by performing these tasks using object methods, provides a great
deal of flexibility in the capturing, routing, handling, and releasing of events.

The Document Object Model

Event capturing has five distinct techniques that are used together to create advanced event
handling. The first two techniques are required for event capturing to work properly, whereas
the last three are optional, depending on the needs of the event handlers being written. The
five techniques used in event capturing are

■ Binding events

■ Capturing events

■ Routing events

■ Handling events

■ Releasing events

Event binding is the process of specifying an event handler to handle a particular type of event
for a page element or system object. Unless a page element or system object has bound an event
handler for an event type, it cannot process events of that type. In Communicator 4.0, there
are two ways to bind events to page elements and one way to bind events to system objects.

To bind an event to either a page element or a system object, a reference to the event handler
function is assigned to the onevent property of the object. For instance, the following code
binds the function validatePhone() to the blur event of the phone form element:

document.forms[0].phone.onblur = validatePhone;

Event handlers bound in this fashion are required to take either the event object as their sole
parameter or no parameters at all. Unlike traditional binding where a JavaScript string speci-
fies which event handler to call, it is not possible to assign a string containing JavaScript code
to the onevent property of the page element or system object.

The second way to bind an event to a page element is to add an onEvent attribute to the ele-
ment tag. The value of the onEvent attribute is a string containing JavaScript code that calls the
event handler. For instance, the following code binds the function highlight() to the mouseOver
event of the homeLink link element:

Home

The onEvent attribute acts like a miniature function and can contain any valid JavaScript code.
Any return values from event handlers called must be passed along to the browser using the
return statement. Unlike assigning the event handler to an onevent property, event handlers
bound using an onEvent attribute can take as many parameters as needed. However, except in
certain circumstances with the BODY element and the window and document objects, system ob-
jects cannot bind event handlers using this method.

Normally, events are delivered to the event handler bound to the event target. The event han-
dler processes the event and returns a value of true or false that determines whether the

The Communicator 4.0 Event Model: Event Capturing

17

default action for the event target is taken. However, for more advanced event handling, events
need to be delivered to objects other than the event target. The Communicator 4.0 Event Model
achieves this by capturing events as they fall down the object hierarchy toward the event target.

Events are captured with the captureEvents() method. The captureEvents() method is a com-
mon method of the window and document objects and any layer objects within a document. It
activates the event handler for the object and begins interception of all events whose event tar-
get lies further down the object hierarchy. The syntax for using the captureEvents() method is

object.captureEvents(eventTypes);

The object is the window object or document object, or a layer object within the document.
The eventTypes parameter is a list of the types of events that the object is capturing. Each event
type is specified using the name of the event type in all uppercase scoped to the Event core
object. Multiple event types can be specified in the same captureEvents() statement by per-
forming a bitwise OR operation between each event type. For example, to capture the mouseDown
and mouseUp events on the window object, the following notation would be used:

window.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP);

Event event Event

event Event

After events have been captured, they are no longer delivered immediately to their target ele-
ment. Instead, the event is passed down the object hierarchy until it reaches an object that is
capturing events of the event type. The event is passed to the event handler bound to that object,
at which point the event handler processes the event and performs one of four actions:

■ Return false

Returning false from the event handler cancels the default action and stops the event
from continuing down the object hierarchy.

■ Return true

Returning true from the event handler causes the default action to execute immedi-
ately. The event does not continue down the object hierarchy.

■ Call routeEvent()

Calling routeEvent() from within the event handler executes the event handler of the
next object down in the object hierarchy that is capturing events of that type.

The Document Object Model

■ Call handleEvent()

Calling handleEvent() from within the event handler bypasses the object hierarchy
and sends the event directly to the event handler of the object calling handleEvent().

By immediately returning either true or false within the event handler, the event stops trav-
eling down the object hierarchy and immediately proceeds to execute the default action or end
its life cycle. In order for the event to continue down the object hierarchy, the routeEvent()
method must be called. The routeEvent()method passes the event to the next event handler in
the event path. This process of passing the event to each successive event handler in the event
path is called routing.

The routeEvent() method is called, usually at the end of an event handler, to pass the event to
any event handlers bound to objects capturing the event further down the event path. If no
other objects are capturing the event, the event handler bound to the event target is called.

Listing 17.3 demonstrates how the routeEvent() method is used at the end of the window ob-
ject and document object event handlers to pass the event to the next event handler. The result-
ing path shown in Figure 17.1 illustrates how the event is first passed to the event handler for
the window object, then to the document object’s event handler and finally to the event handler
of the target element. The event paths for both the link and layer elements are shown.

Capturing an event
with the window and
document objects.

<HTML>
<HEAD>
 <TITLE>Routing Events With routeEvent()</TITLE>

The Communicator 4.0 Event Model: Event Capturing

17

 <STYLE>
 #banner { font-family: arial, helvetica, sans-serif;
 font-size: 18pt; }
 </STYLE>

 <SCRIPT>
 eventText = “”;
 capturingObject = “”;

 function displayEvent(event)
 {
 eventText += capturingObject + “ --> “;

 if (event.target.constructor == Layer)
 resultLayer = document.layerResults;
 else
 resultLayer = document.linkResults;

 resultLayer.document.writeln(“<P><TT>”);
 resultLayer.document.writeln(eventText);
 resultLayer.document.writeln(“</TT></P>”);
 resultLayer.document.close();
 }

 function handleWindow(event)
 {
 eventText = “”;
 capturingObject = “window”;
 displayEvent(event);
 return routeEvent(event);
 }

 function handleDocument(event)
 {
 capturingObject = “document”;
 displayEvent(event);
 return routeEvent(event);
 }

 function handleLayer(event)
 {
 capturingObject = “layer”;
 displayEvent(event);
 }

 function handleLink(event)
 {
 capturingObject = “link”;
 displayEvent(event);
 }

 function initialize()
 {
 window.captureEvents(Event.MOUSEOVER);
 window.onmouseover = handleWindow;
 document.captureEvents(Event.MOUSEOVER);
 document.onmouseover = handleDocument;
 }

continues

The Document Object Model

 </SCRIPT>

</HEAD>

<BODY onLoad=”initialize();”>

<LAYER ID=banner onMouseOver=”handleLayer(event);”>

 Routing Events With <TT>routeEvent()</TT>
</LAYER>

<BLOCKQUOTE>
<P>By passing the mouse over the title banner, a <TT>mouseOver<TT>
event is generated which is captured by the window and document
objects before being passed to the layer object. If the mouse is
passed over the arrow link, the <TT>mouseOver</TT> event is also
captured by the window and document objects before reaching the
link object.</P>

<P>The following is the event path for a <TT>mouseOver</TT> event
directed at the image link element:</P>

<LAYER ID=linkResults></LAYER>

<P>And the following is the event path for a <TT>mouseOver</TT> event
directed at the banner layer:</P>

<LAYER ID=layerResults></LAYER>
</BLOCKQUOTE>

</BODY>
</HTML>

Routing events to the next event handler in the object hierarchy is useful when an object higher
up in the hierarchy must perform a general action for each event, yet still allow the event han-
dler for a target element to perform its action. A typical application of this would be to imple-
ment a rollover effect on menu items by capturing the mouseOver and mouseOut events on a
containing layer, then routing the event to each menu item’s event handler to change the win-
dow status bar appropriately.

Although routeEvent() appears to simply pass the event down the object hierarchy, subtleties
exist with how routeEvent() works that require special techniques when doing advanced event
routing.

The routeEvent() method passes the event down the object hierarchy to a second event han-
dler not by ending the first event handler and calling the second one, but by calling the second
event handler within the first one. This means that once the second event handler ends, and

The Communicator 4.0 Event Model: Event Capturing

17

execution begins again within the first event handler. This has two implications for designing
event handlers.

First, because the execution continues in the first event handler, code can be written after the
routeEvent() method that will be executed after the event finishes traveling down the rest of
the object hierarchy. This allows event handlers higher in the object hierarchy to react to the
actions taken by event handlers lower in the hierarchy.

Figure 17.2 and Listing 17.4 use this technique to simulate event bubbling using the event
capturing mechanism of Communicator 4.0. By calling routeEvent() in the beginning of the
event handler, the event is first passed all the way down to the target element’s event handler.
Once routeEvent() returns, the cancelBubble variable is checked to determine whether the
bubble has been canceled. If the bubble has not been canceled, the code for handling the event
is executed; otherwise, this code is skipped. Finally, the event handler returns with the return
value passed to it from further down in the object hierarchy.

continues

Simulating event
bubbling using event
capturing.

<HTML>
<HEAD>
 <TITLE>Simulating Event Bubbling With Event Capturing</TITLE>

 <STYLE>
 #banner { font-family: arial, helvetica, sans-serif;
 font-size: 18pt; }
 </STYLE>

The Document Object Model

 <SCRIPT>
 eventText = “”;
 capturingObject = “”;

 function displayEvent(event)
 {
 eventText += capturingObject + “ --> “;

 if (event.target.constructor == Layer)
 resultLayer = document.layerResults;
 else
 resultLayer = document.linkResults;

 resultLayer.document.writeln(“<P><TT>”);
 resultLayer.document.writeln(eventText);
 resultLayer.document.writeln(“</TT></P>”);
 resultLayer.document.close();
 }

 function handleWindow(event)
 {
 // Initialize event
 cancelBubble = false;
 eventText = “”;

 // Send event down event hierarchy
 var returnValue = routeEvent(event);

 // If bubble hasn’t been cancelled,
 // execute window event handler code
 if (!cancelBubble)
 {
 capturingObject = “window”;
 displayEvent(event);
 }

 // Return return value for default action
 return returnValue;
 }

 function handleDocument(event)
 {
 // Send event down event hierarchy
 var returnValue = routeEvent(event);

 // If bubble hasn’t been cancelled,
 // execute window event handler code
 if (!cancelBubble)
 {
 capturingObject = “document”;
 displayEvent(event);
 }

 // Return return value for default action
 return returnValue;
 }

The Communicator 4.0 Event Model: Event Capturing

17

 function handleLayer(event)
 {
 capturingObject = “layer”;
 displayEvent(event);
 }

 function handleLink(event)
 {
 capturingObject = “link”;
 displayEvent(event);
 cancelBubble = true;
 }

 function initialize()
 {
 window.captureEvents(Event.MOUSEOVER);
 window.onmouseover = handleWindow;
 document.captureEvents(Event.MOUSEOVER);
 document.onmouseover = handleDocument;
 }
 </SCRIPT>

</HEAD>

<BODY onLoad=”initialize();”>

<LAYER ID=banner onMouseOver=”handleLayer(event);”>

 Routing Events With <TT>routeEvent()</TT>
</LAYER>

<BLOCKQUOTE>
<P>By passing the mouse over the title banner, a <TT>mouseOver<TT>
event is generated which is captured by the window and document
objects before being passed to the layer object. If the mouse is
passed over the arrow link, the <TT>mouseOver</TT> event is also
captured by the window and document objects before reaching the
link object.</P>

<P>The following is the event path for a <TT>mouseOver</TT> event
directed at the image link element:</P>

<LAYER ID=linkResults></LAYER>

<P>And the following is the event path for a <TT>mouseOver</TT> event
directed at the banner layer:</P>

<LAYER ID=layerResults></LAYER>
</BLOCKQUOTE>

</BODY>
</HTML>

The Document Object Model

The second implication for designing event handlers is that the return values of event handlers
further down the object hierarchy must be passed back up the hierarchy for the default action
to be cancelled by one of these event handlers. This is because the default action is determined
not by the return value of the event handler of the target element, but by the return value of
the event handler that called the first routeEvent(). Typically return values are passed back up
the hierarchy by calling routeEvent() within the return statement. For example:

return routeEvent(event);

Another subtlety of routing events is that routeEvent(), when there are no more objects
capturing the event type further down in the object hierarchy, passes the event to the event
handler bound to the target element. If this event handler then calls routeEvent(), an infinite
recursion is created where the target element’s event handler continually passes the event to
itself.

An event handler
bound to the target
element that uses
routeEvent() causes
infinite recursion to
occur.

Figure 17.3 illustrates this recursion using the code from Listing 17.3 with the following two
lines added to enable capturing of events for the layer object:

document.banner.captureEvents(Event.MOUSEOVER);
document.banner.onmouseover = handleLayer;

By testing the layerHandled variable before executing the event handler, Listing 17.5 shows
how the handleLayer() function can be updated to prevent the recursion shown in Figure 17.3.
The layerHandled variable is set to true once the event handling code for the layer object has
been executed once, ensuring that if the handleLayer() function is called again by the
routeEvent() method, the event handler code will not execute a second time.

The Communicator 4.0 Event Model: Event Capturing

17

routeEvent()

function handleLayer(event)
{
 if (layerHandled)
 return true;

 capturingObject = “layer”;
 displayEvent(event);

 layerHandled = true;
 var returnValue = routeEvent(event);
 layerHandled = false;

 return returnValue;
}

Instead of being passed down the object hierarchy, events can be sent directly to the event handler
of a specific page element or system object. The page element or system object an event is sent
to does not have to reside further down the object hierarchy, allowing for a great deal of flex-
ibility by bypassing the normal event path.

The handleEvent() method is a common method of every object that can bind event handlers,
except layer objects. By calling this method within an event handler, the event is passed to the
event handler bound to the calling object. For instance, the following notation passes the event
to the event handler bound to the window object:

window.handleEvent(event);

Listing 17.6 demonstrates the use of the handleEvent() method to imitate the IE 4.0 function-
ality of the Enter and Escape keys within a form. Whenever a keyUp event is generated, it is
captured by the window object. The window_onKeyUp event handler then passes the event directly
to the event handler bound to either the submit or reset button, depending on which key was
pressed. If neither of these keys was pressed, the event is routed to any event handlers further
down the object hierarchy.

handleEvent()

function submit_onKeyUp(event)
{
 document.forms.order.submitButton.focus();
 document.forms.order.submitButton.click();
}

function reset_onKeyUp(event)
{
 document.forms.order.resetButton.focus();
 document.forms.order.resetButton.click();

continues

The Document Object Model

}

function window_onKeyUp(event)
{
 // The ENTER key is 13, which submits the form and
 // the ESC key is 27, which resets the form. Otherwise,
 // the event is routed to other event handlers.
 if (event.which == 13)
 document.forms.order.submitButton.handleEvent(event);
 else if (event.which == 27)
 document.forms.order.resetButton.handleEvent(event);
 else
 return routeEvent(event);
}

function initialize()
{
 document.forms.order.submitButton.onkeyup = submit_onKeyUp;
 document.forms.order.resetButton.onkeyup = reset_onKeyUp;

 window.captureEvents(Event.KEYUP);
 window.onkeyup = window_onKeyUp;
}

Similar to routeEvent(), advanced event handling techniques can be developed using the subtle-
ties of the handleEvent() method. Because the handleEvent() method returns to the calling
event handler, additional code can be executed after the call to handleEvent(). This code can
react to the actions taken by the event handler called by handleEvent() or go on to route the
event by calling routeEvent().

Many times an event handler does not need to be reacting to an event the entire time a user is
viewing a page. The event is captured at some point after the page loads and is later released
before the page unloads. The releaseEvents() method is used in these circumstances to stop
the capturing of an event for an object. The notation for the releaseEvents() method is

object.releaseEvents(eventTypes);

The object parameter is the window, document, or layer object that previously was capturing
events. The eventTypes parameter is a list of the types of events the object is releasing. Each
event is specified in the same manner as when capturing events, by using the name of the event
in all uppercase scoped to the Event core object. Multiple event types can be released in the
same releaseEvents() statement by performing a bitwise OR operation between each event type.
Only those events released with the releaseEvents() method stop being captured by the ob-
ject; other events previously captured with the captureEvents() method remain captured.

The Communicator 4.0 Event Model: Event Capturing

17

event
The Communicator 4.0 Event Model defines an event object that stores the characteristics of
an event for access by event handlers. The event object exists only during an event, storing the
event source and position, which keys were pressed and any additional information relevant to
the type of event. Event handlers receive the event object as their sole parameter and use the
information contained within its properties to process the event. By using the event source,
event position, keyboard, and additional properties available in the event object, advanced event
handlers can be written that react to an event based on the full context of the event.

The event source properties of the event object provide information to event handlers regard-
ing the type of event and the event target. Using this information, event handlers can be writ-
ten that react to multiple types of events, or that react differently depending on which type of
object the event occurred.

type
The type property records a string specifying the type of event generated. This string is the
name of the event in all lowercase, such as click and keydown.

target
The target property stores a reference to the page element or system object that is the target of
the event. It can be used to write generic event handlers that react differently to different event
targets, or to route an event differently depending on the event target. Listing 17.7 shows how
the recursion problem discussed in the section “Routing Events” can be corrected by routing
the event only when the event target is not a layer object.

function handleLayer(event)
{
 capturingObject = “layer”;
 displayEvent(event);

 if (event.target.constructor != Layer)
 return routeEvent(event);
 else
 return true;
}

The event position properties record information about the location of an event with respect
to several different coordinate systems. For most events, the values stored in the event position
properties reflect the position of the mouse; however, when form elements are the target of an

The Document Object Model

event, some events store the position of the upper-left corner of the form element in these prop-
erties.

x y layerX layerY
The x, y, layerX, and layerY properties of the event object store the position of the event rela-
tive to the upper-left edge of the layer or window within which the event occurred. Because the
upper-left edge disappears off the top of the browser viewing area as the page scrolls, the values
of the x and y properties continue to increase as the page is scrolled down or to the right. The
values of these properties correspond to the left and top properties for absolutely positioned
elements within the same layer.

Listing 17.8 and Figure 17.4 show how the x and y properties of the event object can be used
to create a context-sensitive menu that is displayed whenever a mouse button is clicked while
the Control key is held down. Whenever the mouseDown event is generated in the client win-
dow, the showDefaultMenu() function is called to reposition an absolutely positioned DIV ele-
ment containing the menu using the x and y properties. The menu remains until a mouseUp
event is generated, when the hideDefaultMenu() function is called to hide the DIV element.

Creating a context-
sensitive menu, using
the x and y event
properties that appear
when a mouse button is
clicked while the
control key is held
down.

<HTML>
<HEAD>
 <TITLE>Displaying Context-Sensitive Menus Using Mouse Position</TITLE>
 <STYLE TYPE=”text/css”>
 .contextMenu { background-color: #CCCCCC; font-size: 9pt;
 font-family: ms sans serif, helvetica, sans-serif;

The Communicator 4.0 Event Model: Event Capturing

17

 line-height: 1.5em; padding: 10px;
 border-style: solid; border-width: 1;
 border-color: white; }
 </STYLE>

 <SCRIPT>
 function showDefaultMenu(event)
 {
 if (event.modifiers & Event.CONTROL_MASK)
 {
 document.defaultMenu.left = event.x;
 document.defaultMenu.top = event.y;
 document.defaultMenu.visibility = “show”;
 }
 }

 function hideDefaultMenu(event)
 {
 document.defaultMenu.visibility = “hide”;
 }

 document.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP);
 document.onmousedown = showDefaultMenu;
 document.onmouseup = hideDefaultMenu;
 </SCRIPT>
</HEAD>

<BODY>
<H2>Displaying Context-Sensitive Menus Using Mouse Position</H2>

<DIV ID=defaultMenu CLASS=contextMenu
 STYLE=”position: absolute; visibility: hide; width: 100; “>
 Cut

 Copy

 Paste
</DIV>

</BODY>
</HTML>

pageX pageY
The pageX and pageY properties of the event object store the position of the event relative to
the upper-left edge of the client window. Similar to the layerX and layerY properties, the value
of the pageX and pageY properties continue to increase as the page is scrolled. However, the
pageX and pageY properties always reflect the position of the event relative to the window, re-
gardless of which layer or window the event was generated in.

screenX screenY
The screenX and screenY properties of the event object store the position of the event relative
to the upper-left edge of the user’s screen. However, unlike the other position properties, the
values of the screenX and screenY properties never exceed the width and height of the screen,
regardless of scrolling within the browser window.

The Document Object Model

The event object records the status of the keys on the keyboard in the keyboard properties.
These properties reflect which key generated a certain event and any significant keys that might
have been pressed at the time of the event that would change how the key was interpreted.

which
The which property of the event object stores relevant information about which keys or mouse
buttons were pressed during an event. For keyboard events, the which property contains the
ASCII value of the key which generated the event. This value takes into account any modifier
keys that were pressed during the event, returning the value 97 for an event generated by press-
ing A, while returning the value 65 for an event generated by pressed Shift+A. Keys that gener-
ate an event, but which have no ASCII character value return a value of 0 in the which property.

For mouse events using the which property, it contains a number representing which mouse
button was clicked during the event. The left mouse button is represented by the value 1, whereas
the right mouse button is represented by the value 3. For mouse events in which no mouse
button was clicked, the which property stores the value 0.

Listing 17.9 shows how the which property can be used to restrict form input to numbers only.
The inputNumbers() function checks whether the ASCII value of the key pressed is within the
range of ASCII values used for numerical digits and returns true if it is, false otherwise. This
determines whether the form element that has bound this function to the keyPress event per-
forms the default action of displaying the result of the keypress.

which

function inputNumbers(event)
{
 // The ASCII value for ‘0’ is 48 and for
 // ‘9’ is 57.
 if (event.which >= 48 && event.which <= 57)
 return true;
 else
 return false;
}

modifiers
The modifiers property of the event object stores the state of any modifier keys that were pressed
during an event. Modifier keys are keys that do not generate a character or perform an action on
their own, but rather modify how other keys on the keyboard are interpreted by programs. On
most Windows-based machines the modifier keys are Shift, Control and Alt, while on Mac
OS-based machines the modifier keys are Shift, Control, Option (also known as Alt), and Com-
mand.

The Communicator 4.0 Event Model: Event Capturing

17

To determine which modifier keys were pressed, masks must be applied to the modifiers property
using the bitwise AND operation. For instance, the following notation returns true if the Shift
key was pressed and false if it was not:

(event.modifiers & Event.SHIFT_MASK)

The four masks that are currently defined for modifier keys are SHIFT_MASK, CONTROL_MASK,
ALT_MASK, and META_MASK.

Listing 17.10 shows how the modifiers property can be used to create a series of boolean prop-
erties in the event object that correspond to the properties of the IE 4.0 event object. Event
handlers calling the setModifiers() function can then use cross-browser code when they need
to determine which modifier keys were pressed during an event.

modifiers

function setModifiers(event)
{
 event.altKey = false;
 event.shiftKey = false;
 event.ctrlKey = false;
 event.metaKey = false;

 if (event.modifiers & Event.ALT_MASK)
 event.altKey = true;
 if (event.modifiers & Event.SHIFT_MASK)
 event.shiftKey = true;
 if (event.modifiers & Event.CONTROL_MASK)
 event.ctrlKey = true;
 if (event.modifiers & Event.META_MASK)
 event.metaKey = true;
}

The event object contains a data property for storing additional information about an event.
Currently, the data property is only set when a dragDrop event occurs during which the URLs
of the dropped objects are stored in an array referenced by the data property. However, to
maintain forward-compatibility with future versions of Communicator, this property should
not be set in event handlers because it is very likely this property will be used for other events
in the future.

The Communicator 4.0 Event Model provides a series of new events that provide a finer
granularity to detecting actions taken by the user. It also updates several events existing in the
Navigator 3.0 Event Model to take advantage of the new event object and event capturing.

The Document Object Model

The mouse events provide detailed information about actions taken with the mouse. The
mouseDown, mouseUp, and mouseMove events provide low-level information about what the user
is specifically doing with the mouse, while the click, dblClick, mouseOver, and mouseOut events
provide high-level information about the user’s actions with the mouse.

mouseDown mouseUp mouseMove
The mouseDown, mouseUp, and mouseMove events provide low-level information about the state
of the mouse. The mouseDown event fires whenever one of the mouse buttons is pressed while
the mouseUp event fires when the button is released. The mouseMove event is generated continu-
ously while the mouse moves over an element. The number of mouseMove events generated
depends on the speed at which the mouse is moved; slow movement of the mouse will generate
more events while fast movement will generate fewer events.

The position of the mouse during mouseDown, mouseUp, and mouseMove events is stored in the
event position properties of the event object. For the mouseDown and mouseUp events, the mouse
button involved is recorded in the which property and any modifier keys that were being held
down during the event are stored in the modifiers property. The mouseMove event stores a value
of 0 in both the which and modifiers properties, regardless of which keys or buttons are held
down while the mouse is moving.

The mouseDown and mouseUp events are generated for both the left and the right mouse buttons.
They are not generated, however, within text, password, select, or textarea form elements. Unlike
other events though, they are generated on image page elements. The mouseMove event is gen-
erated only for objects that capture the event using the captureEvents() method. All three events
store a reference to the event target within the target event property.

click
The click event is generated to indicate that the user has selected an object. It is generated
when the user clicks the left mouse button or when the spacebar or Enter keys are pressed while
a link element or a radio, checkbox, submit, reset, or button form element has the focus. It
does not occur over text or images not contained within a link element, or within the bound-
aries of the block defined by the FORM element. However, it is generated on the window object
when the mouse is clicked on empty space not contained within a FORM element.

When not generated on a form or link element, the event position properties of the event object
during a click event record the position of the cursor. The which property stores a value of 1
while the modifiers property stores a value of 0. Within form elements, the click event stores
the value 0 in all the position properties and a value of 1 in the which property. For click events
generated by the mouse within a form element, the modifying keys pressed during the click are
recorded in the modifiers property. The modifiers property is not set for click events gener-
ated using the keyboard.

The Communicator 4.0 Event Model: Event Capturing

17

Likewise, for click events generated on a link element using the mouse, the event position
properties contain the position of the mouse. For click events generated using the keyboard,
the event position properties contain the absolute position of the link on the page.

For all click events generated with the mouse, mouseDown and mouseUp events are generated
before the click event. The sequence of these events is:

mouseDown --> mouseUp --> click

The mouseDown and mouseUp events are not generated before click events generated with the
keyboard.

dblClick
The dblClick is generated when the user performs a double-click with the mouse, as defined
by the local system. It is only generated for the left mouse button and is generated everywhere
except in form elements that do not generate a click event. However, to be generated on a
link object, the preceding click events must return false to prevent the page specified in the
HREF attribute from being loaded before the dblClick event is generated.

For the dblClick event, the event position properties always contain the position of the mouse.
The which property contains a value of 1 indicating that the left mouse button generated the
double-click, while any modifier keys that were held down during the double-click are recorded
in the modifiers property.

The dblClick event is composed of a series of low-level events that are generated each time a
dblClick event occurs. The sequence of these events during a dblClick event is:

mouseDown --> mouseUp --> mouseDown --> click --> mouseUp --> dblClick --> click

However, because the dblClick event can be generated in locations where the click event is
not generated, for instance, over text or images, the click events in the above sequence may
not be generated. For dblClick events occurring in locations where the click event does not
fire, the sequence of events is:

mouseDown --> mouseUp --> mouseDown --> mouseUp --> dblClick

mouseOver mouseOut
The mouseOver and mouseOut events are fired whenever the mouse passes over a link, area, layer,
image, or form element. When a mouseOver or mouseOut occurs, the event position properties
store the position of the mouse where it crossed over or out of the element. The modifiers and
which properties both contain the value 0 during these events.

The Document Object Model

mouseOver mouseOut

mouseOver mouseOut

mouseOver mouseOut

The keyboard events provide detailed information about actions taken with the keyboard. The
keyDown and keyUp events provide low-level information about the state of keys on the key-
board, while the keyPress event is triggered each time a user presses and releases a key.

keyDown keyUp
The keyDown and keyUp events provide low-level information about the state of the keys on the
keyboard. The keyDown event is generated whenever a key is initially pressed, while the keyDown
event is generated once the key is released. For both the keyDown and keyUp events the which
property of the event object contains the ASCII value of the key involved, while the modifiers
property contains the modifying keys that were held down during the event.

Within a form element, the event position properties store the position of the upper-left cor-
ner of the form element, while the target property stores a reference to the form element that
generated the event. When the keyDown or keyUp events are generated outside a form, the event
position properties store the position of the mouse and the target property contains a refer-
ence to the page element that was underneath the mouse cursor.

The keyDown and keyUp events are not generated the same everywhere. Within forms, the keyDown
and keyUp events are only generated in text, password, and textarea form elements. Within these
form elements, the keyDown event is not generated for Shift, Ctrl, or special keys of any kind
except Backspace and Enter. Outside a form element, the keyDown event is generated for all
special keys except Esc, F1, F2, F3, F6, F10, Alt, and Tab. Similarly, the keyUp event is gener-
ated both within and outside form elements for every key except Alt, F1, and F10.

When special keys generate keyDown and keyUp events, the modifiers and which properties are
set differently than for other keys. All special keys except Esc, Tab, Enter, and Backspace store
a value of 0 in the which property. Similarly, all special keys, except modifier keys store a value
of 0 in the modifiers property. For the modifying key to be stored in the modifiers property
during a keyUp event, the key must remain down throughout the entire event; for this reason,
keyUp events involving the release of a single modifier key store a value of 0 in the modifiers
property.

The Communicator 4.0 Event Model: Event Capturing

17

keyPress
The keyPress event is generated when a sequence of keyDown and keyUp events occurs anywhere
on a page or within a text, password, or textarea form element. Multiple keyPress events occur
when the key is held down after the initial keyDown event. During a keyPress event, the which
property stores the ASCII value of the key pressed, while the modifiers property stores any
modifier keys that were held down.

For keyPress events occurring outside a form element, the event position properties store the
position of the mouse while the target property stores a reference to the page element under-
neath the mouse cursor. Within a form, the keyPress event stores the absolute position of the
form element in the event position properties and a reference to the form element object in the
target property. This is the same functionality as with the keyDown and keyUp events.

Likewise, the restrictions on which keys generate keyDown and keyUp events apply to the keyPress
event as well. Within a form element, the keyPress event is not generated for Shift, Ctrl, or
special keys of any kind except Backspace and Enter, while outside a form element, the keyPress
event is generated for all special keys except Esc, F1, F2, F3, F6, F10, Alt, and Tab. The which
property stores a value only for the Enter and Backspace special keys; however, the modifiers
property is set normally.

The window events provide information about what actions are taken with the window. The
move and resize events are generated when the user moves or resizes the window using the
native operating system while the dragDrop event is generated when the user performs a drag-
and-drop operation onto the browser window. The load event is generated by the browser to
indicate certain items have finished loading.

move
The move event is generated continuously while the user moves the window about the screen.
It is also generated during minimize and restore operations, most maximize operations, and
whenever a toolbar is collapsed, hidden, shown, or expanded. During the move event, the x/y,
layerX/layerY, and screenX/screenY properties contain the position of the window, while the
pageX/pageY properties contain the value 0. A reference to the window object being moved is
stored in the target property of the event object.

resize
The resize event is generated once after the user has finished resizing a window or frame, or
whenever the size of the window or frame changes. During the resize event, the x/y and layerX/
layerY properties of the event object contain the new width and height of the window. The
target property contains a reference to the window or frame object which is being resized.

The Document Object Model

dragDrop
The dragDrop event is generated whenever a file or URL is dragged into the browser window
and dropped. During the dragDrop event, the target property contains a reference to the win-
dow object and the screenX and screenY properties contain the location of where the object was
dropped. Any modifier keys that were held down during the dragDrop event are recorded in
the modifiers property. The default action of the dragDrop event is to load the file specified by
the object dropped. Drag-and-drop operations can be disabled in a browser by capturing this
event and returning false from the onDragDrop event handler.

load
The load event is generated when the browser finishes loading a document or an image. Al-
though it is generated under the same circumstances as Navigator 3.0, when the load event is
generated on a window object in Communicator 4.0, the x/y and layerX/layerY properties of
the event object store the inner width and height of the window. The unload event remains the
same as in Navigator 3.0 and does not use the event object.

The new Communicator 4.0 Event Model implements an advanced event delivery based on
event capturing. Event capturing allows elements higher in the object hierarchy to capture events
before they are delivered to the event target. By using the techniques provided by event captur-
ing, code is cleaner and more efficient. In addition, more advanced event handlers can be cre-
ated that react to the page as a whole rather than as separate elements each with its own custom
event handler.

By adding a new event object, Communicator 4.0 provides event handlers with more infor-
mation to process an event. This new information about an event allows for finer control over
how an event handler reacts to an event. By also adding new events, the scope of user actions
that can be reacted to in a document is greatly increased.

Although event capturing provides a greater level of control over how events are delivered to
event handlers, the Communicator 4.0 Event Model suffers drawbacks with its lack of consis-
tency in implementing the properties of its event object and the generation of events within a
page. It is this inconsistency that makes using the advanced capabilities of the Communicator
4.0 Event Model difficult. However, after its quirks are mastered, the Communicator 4.0 Event
Model is a powerful tool for creating interactive dynamic Web pages.

■

■

■

■

Presenting Your Data with Dynamic HTML

18

by Craig Eddy

■

■

■

■

■

■

■

Data Awareness

This chapter begins the trek into what I consider to be the coolest feature provided by Dy-
namic HTML: data binding. With data binding, your Web pages can be bound to a data source,
can retrieve data from that data source at load time, and can manipulate the data on the client
side without making a round-trip to the server.

For your site’s visitors, this means that they’ll be able to access and manipulate data much more
quickly. For your network engineers, it means less of a load on your network and on the Web
server itself. For the Web page designer, data binding provides a way to make your pages more
informative and user specific. Everyone wins!

Part V, “Data Awareness,” consists of four chapters:

■ Chapter 18, “Presenting Your Data with Dynamic HTML,” discusses the basics of
setting up and utilizing data binding.

■ Chapter 19, “Client-side Data Manipulation,” provides techniques for allowing the
users of your site to manipulate the data provided by your data-bound Web pages.

■ Chapter 20, “Updating the Data,” examines how you can allow your users to have a
live connection to the data source by utilizing Microsoft’s Remote Data Services.

■ Finally, Chapter 21, “Summing Up—A Practical Application,” provides a working
example of a baseball trading card database implemented entirely with DHTML Web
pages.

Data binding is made possible by two enhancements to Internet Explorer 4.0 (IE4): data source
objects (DSOs) and HTML extensions. The DSOs provide the connection to the physical data
source. The HTML extensions are a series of additional HTML elements that allow you to
connect the Web document’s elements to the DSO. This chapter explores both of these addi-
tions to the Internet Explorer browser.

DSOs provide the base upon which data-bound DHTML pages are written. The DSO, writ-
ten as either an ActiveX component or a Java applet, supplies the data to the template provided
by the HTML in the Web page. The browser can then merge the data with the template to
produce the HTML page. This way, the data is completely removed from the HTML itself
and will not even display if you use the View Source feature of the browser.

Presenting Your Data with Dynamic HTML

18

DSOs render their data asynchronously to the page itself. Similar to interlaced GIF files, this
means that the page will be displayed and updated as data is pulled from the data source. This
is particularly useful in situations in which there are large amounts of data. Unlike server-based
solutions, where you must wait for all the necessary data to be retrieved from the data source,
the DHTML data binding provides almost immediate response to the browser.

DSOs define the following features:

■ The transport mechanism (HTTP, for example)

■ The data specification mechanism, such as SQL

■ Supported data manipulations functions such as sorting, filtering, and record pointer
manipulation

■ Support for updating the data

■ An object model for scripting.

In this section I introduce you to three currently available DSOs: the Tabular Data Control,
the JDBC Data Provider, and the Microsoft Remote Data Services. The Tabular Data Con-
trol is automatically installed when you install IE4. The other DSOs must be downloaded from
Microsoft’s Web site.

The Tabular Data Control (TDC) is so named because it reads data from a tabular data file,
not because it’s limited to displaying its data in an HTML table. The TDC does not provide
data update capabilities but does provide sorting and filtering.

The data source for the TDC is a delimited text file that resides on the same host as the page
containing the TDC instance (this is a security feature of the TDC). If the first line of the file
contains field names, you can utilize this information when creating the HTML template.
Otherwise, the field names default to Column1, Column2, and so on. Also, you can specify the
field’s data type in order to assist the TDC in sorting and filtering the data. On date fields, you
can also specify what order the year, month, and day display in the date data.

We see a lot more of the TDC in the section “Creating the Data File for the Tabular Data
Control.”

The Java Database Connector (JDBC) Data Provider is a Java applet that you can download
from Microsoft’s Web site (http://www.microsoft.com/gallery/files/datasrc/JDBCapplet/
JDBC.htm). This applet allows you to connect your data-bound Web page to any ODBC-
compliant data source.

To use the JDBC Data Provider to access the data, the client must have the ODBC data source
specified in the applet’s properties defined on its system. In an intranet or local situation, this

Data Awareness

is probably not much of a restriction, but for general Internet usage, this DSO leaves some-
thing to be desired.

Like the TDC, the JDBC Data Provider that you download from the Microsoft Web site does
not give you the capability to update data. The Java source code, however, can also be down-
loaded from the Web site, and you can enhance the applet to provide such capability.

We won’t spend any time using this DSO, but if you’re a Java programmer interested in cre-
ating your own DSO, this is a great place to start.

The Remote Data Services (RDS, formerly known as the Advanced Data Connector) provide
you with a data-bound connection to remote database systems. I’ll introduce the RDS in this
section, but we won’t put them to heavy use until we get to Chapters 19 and 20. Additional
information can be found on Microsoft’s Web site at http://www.microsoft.com/msdn/sdk/
inetsdk/help/rds/default.htm.

Unlike the other DSOs mentioned here, the RDS include the capability to update the data in
those databases. However, this DSO requires both a server-side component and the client-side
DSO.

Using the RDS provides all of the advantages of data source objects, plus the following:

■ You can create Web-based, three-tiered applications using data-bound HTML
elements on the client tier; the Web server and, optionally, ActiveX business objects as
the middle tier; and the DBMS as the third tier.

■ You can utilize Microsoft ODBC and OLE DB technologies to provide a consistent
interface to the back-end data source, regardless of its format.

■ The ODBC data source is set up on the Web server machine, not the client’s ma-
chine. This makes your application easier to set up and maintain.

■ You can use Secured Socket Layer technology to provide secured access to your
database. This is an optional feature.

On the client side of the RDS is the AdvancedDataControl object. This is the RDS equivalent
of the TDC. It provides the data binding to the elements on your Web page as well as the
communication to the middle-tier Web server. It has all of the properties necessary to connect
to the default middle-tier RDS business object, the AdvancedDataFactory object.

On the middle tier, the AdvancedDataFactory object is provided as a default business object.
This object is where the actual work of reading and writing to the specified ODBC data source
takes place. You can replace the AdvancedDataFactory object with a business object of your own
creation. This allows you to encapsulate business logic and data validation into a server-side
object.

The DBMS resides on the third tier. This can be any ODBC-compliant database to which the
Web server machine has access.

Presenting Your Data with Dynamic HTML

18

As with most Microsoft technologies, DSOs are built using an open specification. This means
that, if you wish, you can write your own DSO.

Because DSOs are simply COM objects or Java applets, you can write your DSO in a myriad
of development environments, including Visual Basic. You simply implement the required
interfaces so that Internet Explorer and other DSO-enabled applications can recognize your
object as a DSO data provider.

DataSourceListener

The first method you must implement is defined (in type library–speak) as follows:

HRESULT msDataSourceObject([in] BSTR qualifier ,
 [out,retval] IUnknown **ppUnk);

This method receives a string as the qualifier parameter and returns an interface pointer to
one of the supported data interfaces. The qualifier parameter is used when the DSO supports
access to multiple data sets. The value in this parameter specifies which set of data to access.
However, IE4 will always invoke this method with msDataSourceObject(0) because it only
supports DSOs that provide a single set of data.

In addition to the msDataSource function, your DSO should provide a method of notifying
the data consumers that the underlying data has changed. This is accomplished by the data
consumer registering itself through the following method:

HRESULT addDataSourceListener([in] DataSourceListener *pEvent);

The DataSourceListener interface (which is implemented by a data consumer) is defined as
follows:

[local,
 object,
 version(1.0)
 uuid(7c0ffab2-cd84-11d0-949a-00a0c91110ed)
]
interface DataSourceListener : IUnknown
{
 HRESULT dataMemberChanged([in] BSTR qualifier);
 HRESULT dataMemberAdded([in] BSTR qualifier);
 HRESULT dataMemberRemoved([in] BSTR qualifier);
}

Data Awareness

For example, when data changes, your DSO should call the dataMemberChanged method of the
DataSourceListener to notify the data consumer of the modification to the data. The
qualifier parameter is the same qualifier we saw with msDataSourceObject.

For more information on creating a DSO, visit Microsoft’s Web site at http://www.microsoft.
com/msdn/sdk/inetsdk/help/inet3081.htm.

In a Web page, DSOs are inserted using the <OBJECT> tag. The values of the DSO properties
can be specified using PARAM attributes. You must give each DSO a unique ID attribute in order
for bound HTML elements to specify the DSO to which it is bound.

For example, to add the TDC to a Web page, use the following HTML:

<object id=”quotelist”
 classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
 border=”0" width=”0" height=”0">
 <param name=”DataURL” value=”quotes.txt”>
 <param name=”UseHeader” value=”True”>
</object>

To insert the Remote Data Service’s AdvancedDataControl, use something similar to the fol-
lowing:

<OBJECT CLASSID=”clsid:9381D8F2-0288-11D0-9501-00AA00B911A5"
 ID=”AdvancedDataControl”
 CODEBASE=”HTTP://MyServer/MSADC/msadc11.cab#version=1,1,0000,0">
 <PARAM NAME=”Bindings” VALUE=”ControlNames;”>
 <PARAM NAME=”Connect” VALUE=”DSN=DSNName; UID=usr;PWD=pw;”>
 <PARAM NAME=”Server” VALUE=”http://awebsrvr”>
 <PARAM NAME=”SQL” VALUE=”QueryText”>
</OBJECT>

Note the reference to the CODEBASE attribute. One of the first steps toward using the RDS is to
install the server-side components. This installation process includes installing the CAB file
for the client-side AdvancedDataControl. Using the CODEBASE attribute informs the Web browser
of the location of an installable version of the object. This way, you won’t have to install the
AdvancedDataControl on every PC that might connect to your RDS pages; the browser will do
that work for you!

To create a simple mechanism by which Web page authors could bind elements on their Web
pages to a data source, Microsoft has proposed several HTML extensions. These extensions
consists of four new HTML attributes: DATASRC, DATAFLD, DATAFORMATAS, and DATAPAGESIZE. (This
section serves as a reference for each of these attributes. In the section “Tabular Data Source
Properties and Methods,” we’ll look at specific examples of using the attributes.)

Presenting Your Data with Dynamic HTML

18

DATASRC
The DATASRC attribute specifies the ID of the DSO instance on the page. DSOs are added to a
page using the <OBJECT> tag, which provides an ID attribute. The ID specified in the DATASRC
attribute must match the ID of a valid data source object.

The format for the DATASRC attribute is as follows, where IDref is the ID of the DSO:

DATASRC=”#IDref”

The DATASRC attribute is also an inherited attribute. This means that if you have data-bound
elements contained within the element where the DATASRC attribute is specified, they will in-
herit the DATASRC value. This is how you build data-bound tables, as you’ll see in the section
“Creating a Data-Bound Table.”

The DATASRC attribute can be used with any of the following HTML tags: TABLE, DIV, SPAN,
SELECT, TEXTAREA, MARQUEE, INPUT, OBJECT, PARAM, IMG, A, FRAME, IFRAME, BUTTON, and LABEL.

DATAFLD
The DATAFLD attribute specifies the name of the column to which the HTML element should
be bound. This attribute is used in conjunction with the DATASRC attribute to qualify the refer-
ence to the data. The format for the attribute is as follows, where fieldname is the name of the
column to which the current element is to be bound:

DATAFLD=fieldname

The DATAFLD attribute can be used with the DIV, SPAN, SELECT, TEXTAREA, MARQUEE, INPUT,
OBJECT, PARAM, IMG, A, FRAME, IFRAME, BUTTON, and LABEL elements.

DATAFORMATAS
The DATAFORMATAS attribute instructs the browser as to what format to expect the bound data
to be returned. The valid values and their meanings follow:

text Data will be provided in textual format.

html Data will be provided as HTML, which might be parsed prior to display.

none Data is supplied in raw format, as in the case of numeric data.

The default value, if the DATAFORMATAS attribute is not supplied, is text.

The DATAFORMATAS attribute can be used with the DIV, SPAN, MARQUEE, BUTTON, and LABEL HTML
elements.

DATAPAGESIZE
When using a <TABLE> element to display the bound data, you can specify the number of rows
to be displayed by specifying a value for the DATAPAGESIZE attribute. This allows you to do
recordset paging and display data one page at a time. To move to a different page, you would

Data Awareness

use the nextPage and previousPage methods of the DHTML TABLE object. (We examine how
this is done in Chapter 19.)

Like all ActiveX objects, the Tabular Data Source object provides the script writer with many
properties and methods that affect its behavior and the data that it returns to the bound con-
trols. This section serves as a reference to those properties and methods. (We’ll put the infor-
mation found in this section to use in both this chapter and in Chapter 19, where you’ll see
more in-depth examples of using the TDC to its fullest capabilities.)

As shown earlier in “Utilizing a Data Source Object,” the class ID for the TDC is 333C7BC4-
460F-11D0-BC04-0080C7055A83.

AppendData
AppendData is a boolean property that affects how data from the data source is added to any
existing data that is cached in the TDC. The default value for this property is False. This means
that whenever the value of DataURL is changed and the Reset method is invoked, the new data
will replace the existing cached data.

If AppendData is set to True and the DataURL value is changed, the new data will be appended to
the cached data whenever Reset is invoked. The TDC assumes that the new data is in the exact
same format as the existing data and will ignore the header line in the data source’s text file. If
the data of a column is different in the new data source file, its data is converted to string data
(thus affecting the sort order of the column).

Setting AppendData to True can be useful in sequential searching operations, in which the client
does not want to lose the results of the previous searches.

CharSet
The CharSet property specifies the character set that was used in creating the data file. The
property takes a string describing the character set used. The default value is latin1.

Typically, the value of this property is set at design time and not modified. Changing the value
of this property within script code will not affect the data currently cached by the TDC. How-
ever, if the DataURL property is modified and Reset invoked, the data will be interpreted based
on the current setting of the CharSet property.

DataURL
The DataURL property specifies the location of the data file that will be used to populate the
TDC’s recordset. The value of this property is specified in standard URL format and can in-
clude http:, ftp:, and file: protocols. There is no default value, and this property is the TDC’s
only required property.

Presenting Your Data with Dynamic HTML

18

This property is typically set at design time but can be modified by script code. Data from the
new data source will either overwrite or be appended to existing cached data, depending on the
setting of the AppendData property, when the Reset method is invoked.

Examples include the following:

DataURL=”elements.txt”

DataURL=ftp://myserver.com/data/elements.txt

DataURL=file://\\fileserver\data\elements.txt

In the section “Creating the Data File for the Tabular Data Control,” you’ll learn how to for-
mat the data file.

EscapeChar
This property is used to specify an escape character. An escape character is a character that will
be used in the data file to signify that the character following the escape character is part of the
data, not a field delimiter. This is useful if your data contains the same characters that are used
to delimit either the fields or the records in the data file.

For example, a common means of delimiting records is to use commas and double-quotes, as
in the following:

“Eddy, Craig”,”Sr. Developer”,”Pipestream Technologies, Inc.”

The double quote is used as part of the field delimiter, so if you needed to place a double quote
within the data itself, you would have to use an escape character. For example, if EscapeChar
were set to \ in the following code, Column1 would evaluate to The name of the work is
“Dynamic HTML Unleashed” (note the double quotes in the data):

“The name of the work is \”Dynamic HTML Unleashed\””,”SAMS.Net”

FieldDelim
The FieldDelim property specifies the character or characters that separate the fields in the data
file. The default value is a comma (,).

You can set the FieldDelim property to a nonprintable character. The syntax used to do so
depends upon the context in which the property is set. If you’re setting the property in the
initial object tag for the TDC, use the following format:

<PARAM NAME=”FieldDelim” VALUE=”	”>

If you’re setting it using VBScript, you can use the following, where object is the ID of a TDC:

object.FieldDelim = Chr(9)

Data Awareness

Filter
The Filter property is a string property that defines the criteria to be used to filter the data
cached in the TDC’s recordset. The default value for this property is an empty string, which
means that no filter is applied to the recordset.

You can provide initial filtering of the data by setting the Filter property in the object tag.
You can also set the property in script code and invoke the Reset method to cause the new
filter to take effect. Because data is fetched from the data source only once, this is a very effi-
cient method of modifying what data is displayed.

The syntax of the Filter property allows you to combine comparison operators and logical
operators such as AND (&) and OR (|), as in the following code:

(Column1 > 10) & (Column2 = 0)

The syntax of the property is defined as follows:

Complex ::== Simple
 ::== Simple ‘&’ Simple [‘&’ Simple ...]
 ::== Simple ‘|’ Simple [‘|’ Simple ...]
Simple ::== ‘(‘ Complex ‘)’
 ::== Atom Relop Atom
Relop ::== ‘=’ | ‘>’ | ‘>=’ | ‘<‘ | ‘<=’ | ‘<>’
Atom ::== Characters up to a (,), >, <, =, & or |

Note that AND and OR have equal precedence when evaluated and therefore must be sur-
rounded by parentheses if both are combined in a single criteria.

We’ll delve more into the Filter property in Chapter 19, when we discuss manipulating the
data returned by the TDC.

Language
This property specifies the language used to create the data file. This includes how numeric
formats will be interpreted, as in the case of the decimal separator for floating point numbers.
The property is a string expression whose values are the HTML standard language codes as
defined in the ISO 369 document. The default value is eng-us.

RowDelim
The RowDelim property specifies the character or characters that mark the end of a record. The
default is the newline character. Typically, there is no reason to deviate from this value, but if
your data file must use some other character or set of characters to mark the end of a record,
this property is available.

Sort SortColumn
These properties, though named differently, are in fact the same property. For simplicity, I
will refer only to the Sort property in these chapters.

Presenting Your Data with Dynamic HTML

18

Using the Sort property, you can specify the order in which the data is returned from the TDC.
You can specify multiple fields as well as the sort order to be used. Separate field names with a
semicolon (;). Use a minus sign in front of the field name to specify descending sort order. For
example, the following code specifies that data should be sorted by Column1 in ascending order
and Column2 in descending order:

<PARAM NAME=”Sort” VALUE=”Column1; -Column2">

You can provide initial filtering of the data by setting the Sort property in the object tag. You
can also set the property in script code and invoke the Reset method to cause the new sort
order to take effect.

TextQualifier
The TextQualifier property specifies a single optional character that can be used to surround
the fields in the data file. The default value is the double quote (“) character.

If the data file uses the comma as the field separator and the value of a data field also contains
a comma, you should surround the field value with the TextQualifier character to eliminate
the possibility that the fields might be read incorrectly. The property can also be useful if your
data contains newline characters, which are typically used to mark the end of a record.

UseHeader
The UseHeader property is a boolean property that specifies whether the first line of the data
file contains field name and optional data type information. The default value is False. (We’ll
learn more about the header line in the upcoming section “Creating the Data File for the Tabular
Data Control.”)

Recordset
The Recordset property returns the underlying ActiveX Data Object (ADO) recordset that
the TDC provides. You can use the properties and methods defined by the recordset object as
long as they are supported by the TDC. For example, the AddNew and Update methods are not
supported because the TDC does not support updating of the data file. (As we’ll see in the
upcoming section “Using Data-Bound HTML Elements,” the only ADO methods of real value
when using the TDC are the recordset navigation methods.)

Reset
The Reset method has two uses: First, it can cause the TDC to sort and/or filter the data based
on the current settings of the Sort and Filter properties; and second, if any value is set in the
DataURL field or the underlying data has changed, invoking this method will cause the data to
be fetched again. Even if the value of the DataURL does not change when it is set, the data will
still be fetched again simply by setting the property. This is a way you can implement a refresh
button on your TDC pages.

Data Awareness

Now that you’ve probably read all you care to about the technology behind DSOs and how to
use them, it’s about time to do some real work. In this section I describe ways to format the
data file that is used by the TDC. The eventual goal of this part of the book is to build a base-
ball trading card database application (in Chapter 20, “Updating the Data”), so here we’ll build
a data file containing information about some of my baseball cards.

The data file is a simple text file that resides in a location reachable via a URL. Locations can
include a Web server (using the http: protocol), an FTP server (using the ftp: protocol), or
the machine’s file system (using the file: protocol). One of the original security features of the
TDC required the host name in the URL to match the host name of the page containing the
TDC, but by the time you read this, that restriction may have been relaxed or replaced with a
more complicated security scheme. (For the purposes of this chapter, we’ll just be creating a
local text file and placing it in the same folder as the HTML page containing the TDC.)

The first question that must be answered when creating the data file is, “How will fields and
records be delimited?” The answer to this question will determine what value, if any, to place
in the TDC’s FieldDelim, RowDelim, and TextQualifier properties. For our purposes, we’ll delimit
the fields using commas and double quotes, and each record will appear on its own line. Not
only does this make the most sense given the data we’ll be placing in the data file, but these
values also correspond to the defaults for the TDC properties. We won’t have to worry about
any of these properties when we create our tabular data source pages.

The second question we must answer is, “Will we use a header line?” The answer to this ques-
tion, unless there’s no way to avoid it, should be a resounding “Yes!” By providing a header
line, you can not only specify intelligent field names, but you can also inform the TDC what
data types are present in the file. This allows the TDC to intelligently sort data. Without knowing
that a field is numeric, for example, the field will sort as a character field, meaning the 10 will
sort before 2 when the sort order is ascending. Obviously, this would be a mistake for numeric
data.

The format of the header line is as follows, where fieldname is the name to use for the field and
type is an optional value that specifies the data type of the field:

fieldname:type, fieldname:type, ...

Possible values for type are as follows:

String Textual data (default)

Date Calendar dates

Boolean Logical data (True/False, Yes/No, 0/not 0)

Int Integers

Float Floating point numbers

Presenting Your Data with Dynamic HTML

18

For the Date data type, you can also specify how the date data is interpreted by the TDC by
placing the letters D (day), M (month), and Y (year) in the required order following the Date type
and a space, as in the following:

birthday:Date MDY

The final, and most important, question is, “What data fields will be present in our data file?”
The answer to this question determines which fields will be available to the TDC and the data-
bound HTML page.

For our baseball trading cards, we’ll have fields for year, issuer, card set name, card number,
description, condition (also known as grade), and card value. The year field will be integer
as opposed to a date, because we don’t care about day and month. The card number field will
also be an integer to allow proper sorting and filtering. The card value field will be a float
because it represents a currency value.

Our header line, then, will look like this:

year:Int, issuer, setname, cardnumber:Int, description, grade, value:float

Following the header line, we’ll enter one line for each card in our collection. Any data con-
taining commas should be surrounded by double quotes. Listing 18.1 provides the data for a
file we’ll name cards.txt for use with our data-bound HTML pages. This file is also available
on the Sams.net Dynamic HTML Guru Web site at http://www.htmlguru.com. There’s not an
overwhelming amount of data, but there is enough to make use of the features of the TDC
throughout the remainder of this chapter.

CARDS.TXT

year:Int, issuer, setname, cardnumber:Int, description, grade, value:float
1977,Topps,1977 Topps,450,Pete Rose,NR MT,18.00
1977,Topps,1977 Topps,287,Reds Team (Sparky Anderson),NR MT,2.00
1976,Topps,1976 Topps,240,Pete Rose,EX,15.00
1975,Topps,1975 Topps,70,Mike Schmidt,EX,35.00
1976,Topps,1976 Topps,616,Buck Martinez,EX,0.75
1977,Topps,1977 Topps,1,”Batting Leaders (George Brett, Bill Madlock)”,EX,1.40
1976,Topps,1976 Topps,66,”Father & Son (Buddy Bell, Gus Bell)”,MT,1.00
1975,Topps,1975 Topps,421,”Mets Team (Yogi Berra)”,EX,1.45
1975,Topps,1975 Topps,560,Tony Perez,EX,1.25

Thus far in this chapter we’ve seen how to utilize the HTML extensions and the TDC to build
a data-bound HTML page. We’ve also created a small but useful data file that we can use to
populate our HTML page. All that’s left is to actually build a data-bound HTML page. We’ll
do so using Notepad.

Data Awareness

Our first example will be to use what’s known as current record binding. With current record
binding, the HTML elements on a page are bound to the current record in the TDC’s recordset
object.

Only a single record is displayed at a time, so you must provide some means of navigating the
recordset. There are no navigational methods of the TDC object itself, but the recordset object
does provide MoveFirst, MoveLast, MoveNext, and MovePrevious methods. Simply placing Next
and Previous buttons is sufficient to demonstrate the power of current record binding.

Listing 18.2 provides the HTML for our data-bound page. Save this file in the same folder as
the CARDS.TXT file. This file is also found on the Sams.net Dynamic HTML Guru Web site at
http://www.htmlguru.com.

<html>
<head><title>Baseball Card Collection</title></head>

<body>

<h1 align=”center”>Baseball Card Collection</h1>

<p>
<object id=”cards” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
width=”77" height=”49">
 <param name=”DataURL” value=”cards.txt”>
 <param name=”UseHeader” value=”1">
 <param name=”Sort” value=”year; cardnumber”>
</object>
</p>
<div align=”center”><center>

<table border=”0" cellpadding=”0" height=”195" cellspacing=”0" width=”524">
 <tr>
 <td align=”right” valign=”top”>Year:</td>
 <td width=”10" align=”right”></td>
 <td valign=”top”><input type=”text” size=”20" datafld=”year”
 datasrc=”#cards”></td>
 </tr>
 <tr>
 <td align=”right” valign=”top”>Issuer:</td>
 <td width=”10" align=”right”></td>
 <td valign=”top”><input type=”text” size=”20" datafld=”issuer”
 datasrc=”#cards”></td>
 </tr>
 <tr>
 <td align=”right” valign=”top”>Set Name:</td>
 <td width=”10" align=”right”></td>
 <td valign=”top”><input type=”text” size=”20" datafld=”setname”
 datasrc=”#cards”></td>
 </tr>
 <tr>
 <td align=”right” valign=”top”>Card Number:</td>

Presenting Your Data with Dynamic HTML

18

 <td width=”10" align=”right”></td>
 <td valign=”top”><input type=”text” size=”20" datafld=”cardnumber”
 datasrc=”#cards”></td>
 </tr>
 <tr>
 <td align=”right” valign=”top”>Description:</td>
 <td width=”10" align=”right”></td>
 <td valign=”top”><input type=”text” size=”36" datafld=”description”
 datasrc=”#cards”></td>
 </tr>
 <tr>
 <td align=”right” valign=”top”>Value:</td>
 <td width=”10" align=”right”></td>
 <td valign=”top”><input type=”text” size=”20" datafld=”value”
 datasrc=”#cards”></td>
 </tr>
</table>
</center></div>

<p> </p>
<div align=”center”><center>

<table border=”0">
 <tr>
 <td><input type=”button” value=”Previous” onclick=”previousrecord()”></td>
 <td><input type=”button” value=”Next” onclick=”nextrecord()”></td>
 </tr>
</table>
</center></div>

<script language=”VBScript”>

sub previousrecord()
 if (cards.recordset.AbsolutePosition > 1) then
 cards.recordset.movePrevious
 else
 MsgBox “Already at first element”
 end if
end sub

sub nextrecord()
 if (cards.recordset.AbsolutePosition <> cards.recordset.RecordCount) then
 cards.recordset.moveNext
 else
 MsgBox “Already at last element”
 end if
end sub

sub refresh()
 cards.DataURL=”cards.txt”
 cards.Reset
 cards.recordset.movefirst
end sub

</script>
</body></html>

Data Awareness

Now open this page with IE4. You’ll see the page shown in Figure 18.1. Use the Next and
Previous buttons to walk through all of the records. Click the Refresh button to reload the
data. Cool, huh?

An example of using
data-bound HTML
elements.

Here’s how this page works. Of course, the <OBJECT> tag contains the TDC. We’ve named it
cards, specified cards.txt as its data source (using the DataURL property), and told it to sort by
the year and cardnumber fields.

Next we specify a borderless table to contain our bound controls. The table has three columns,
using the middle column for spacing. The left column is used for field labels.

The right column is where the data-bound text boxes are placed. The text boxes are specified
with the <INPUT> tag, as in the following:

<input type=”text” size=”20" datafld=”value” datasrc=”#cards”>

As you can see, we’ve specified both the DATAFLD and DATASRC properties. This binds the text
box to the specific field in the TDC’s recordset.

Next we come to the three buttons: Previous, Next, and Refresh. These buttons, when clicked,
invoke VBScript subroutines, which are defined in the <SCRIPT> tag found after the buttons.

The previousrecord and nextrecord procedures use the properties and methods of the TDC’s
recordset object to navigate the data. If you’ve reached the beginning or the end of the recordset,
you’ll get a message box informing you that you’ve done so.

The refresh routine causes the TDC to fetch the data from the text file. This is done by set-
ting its DataURL property and then invoking the Reset method. The record pointer is then set

Presenting Your Data with Dynamic HTML

18

back to the beginning of the recordset using the recordset’s MoveFirst method. You can test
this button by loading the page, modifying the data file, and clicking the Refresh button to
view the modified data.

You can also verify that data is not fetched with each movement of the record pointer by changing
the data file and navigating to the modified record without having clicked the Refresh button.
Indeed, the TDC only fetches data when it’s supposed to.

Next we’ll look at creating a data-bound table. Using data-bound tables requires far fewer HTML
elements than does current record binding. The table definition serves as a template for how
the data will be displayed in the table.

Listing 18.3 shows the HTML for a data-bound table.

<html>
<head>
<title>Baseball Cards</title></head>

<body bgcolor=”#FFFFFF”>
<OBJECT ID=”cards” ondatasetcomplete=”dataloaded()”
 CLASSID=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83">
 <PARAM NAME=”DataURL” VALUE=”cards.txt”>
 <PARAM NAME=”UseHeader” VALUE=”1">
 <PARAM NAME=”Sort” VALUE=”year; cardnumber”>
</OBJECT>

<table border=”1" datasrc=”#cards” align=”center”>
 <THEAD><tr>
 <td align=”left”>Year</td>
 <td align=”left”>Card Number</td>
 <td align=”left”>Issuer</td>
 <td align=”left”>Description</td>
 <td align=”left”>Value</td>
 </tr></THEAD>
 <tr>
 <td><div datafld=”year”</DIV></td>
 <td><div datafld=”cardnumber”</DIV></td>
 <td><div datafld=”issuer”</DIV></td>
 <td><div datafld=”description”</DIV></td>
 <td><div datafld=”value” dataformatas=”none”</DIV></td>
 </tr>
</table>
<P>
<H2 align=center ID=TotalText>Total Value: </H2>

<SCRIPT language=”VBScript”>

sub dataloaded()

continues

Data Awareness

while not(cards.recordset.eof)
 total = total + cards.recordset(“value”)
 cards.recordset.movenext
wend
document.all.totaltext.innertext = “Total Value: “ & total

end sub

</SCRIPT>
</body></html>

The <OBJECT> tag is identical for either current record binding or data-bound tables. In Listing
18.3, however, I’ve added a bonus: the ondatasetcomplete event. This event fires whenever
the TDC has completed fetching the data from the data file. In this case, we’re going to call the
dataloaded procedure that appears at the bottom of the page in the <SCRIPT> tag. This proce-
dure steps through the recordset one record at a time and calculates the total value of the card
collection. Then, using dynamic content, it updates the innertext tag to display the total value.

With data-bound tables, the DATASRC attribute is specified only in the <TABLE> tag. Then, all
references to the DATAFLD attribute will inherit the DATASRC value to use as the data source. Each
row containing a DATAFLD attribute will be repeated for each record in the data file.

If we had specified a DATAPAGESIZE attribute in the <TABLE> tag, only that number of rows would
appear in the table. This feature, called table paging, will be discussed further in Chapter 19.

Figure 18.2 shows how the page looks in IE4.

An example of using a
data-bound table.

Presenting Your Data with Dynamic HTML

18

This chapter provides you with all the details necessary to create data-bound HTML pages.
DSOs are ActiveX objects or Java applets that you can embed in your HTML pages to connect
to a data source. The TDC is a simple DSO that can read a text file and provide the contents
of that file in the form of a recordset object. Using the TDC, we created two HTML pages.
The first is an HTML page that uses current record binding, displaying a single record at a
time and providing recordset navigation buttons. The second utilizes a data-bound table that
displayed all of the records on a single page and also used the TDC’s recordset to tally up the
total value of the baseball card collection.

In Chapter 19, we’ll continue this discussion using the TDC. You’ll learn how to use table
paging, how to sort the data, and how to filter the data on-the-fly.

Data Awareness

Client-side Data Manipulation

19

by Craig Eddy

■

■

■

■

Data Awareness

In Chapter 18, “Presenting Your Data with Dynamic HTML,” you were introduced to the
data-binding capabilities of DHTML. This chapter’s introduction includes the following:

■ Data source objects (DSOs), which are ActiveX objects or Java applets that allow you
to bind HTML elements to a data source

■ Extensions to the HTML specification necessary to support data binding

■ The Tabular Data Control (TDC), which is a simple ActiveX object that allows you
to connect your DHTML page to a delimited text file

In this chapter, you’ll learn more about using the TDC to allow the people browsing your
HTML pages to manipulate the data that’s presented to them. As you’ll recall from Chapter
18, this includes sorting and filtering the data source. However, the TDC does not support
editing and updating of the data. We’ll save that discussion for Chapter 20, “Updating the
Data,” where I discuss the Remote Data Services in depth.

This chapter also discusses how you can use the table paging features of DHTML to display
data in pages, limiting the number of records visible at a particular time to a manageable number.

For the sake of completeness, let’s review the database we’ll use for the examples in this chap-
ter. The database is designed to hold information about a baseball trading card collection. I
introduced the database in Chapter 18, but we’ll briefly review the structure of the database
now.

The database contains fields for year, issuer, card set name, card number, description,
condition (also known as grade), and card value. The year field is formatted as an integer,
because day and month aren’t tracked for trading cards. The card number field will also be an
integer, and the card value field will be a float, because it represents a currency value.

Listing 19.1 provides the data for the file. Name the file CARDS.TXT. This file is also available on
the Sams.net Dynamic HTML Guru Web site at http://www.htmlguru.com. (Listing 19.1 con-
tains a great deal more data than is used in Chapter 18.)

CARDS.TXT

year:Int, issuer, setname, cardnumber:Int, description, grade, value:float
1977,Topps,1977 Topps,450,Pete Rose,NR MT,18.00
1977,Topps,1977 Topps,287,Reds Team (Sparky Anderson),NR MT,2.00
1976,Topps,1976 Topps,240,Pete Rose,EX,15.00
1975,Topps,1975 Topps,70,Mike Schmidt,EX,35.00
1976,Topps,1976 Topps,616,Buck Martinez,EX,0.75
1977,Topps,1977 Topps,1,”Batting Leaders (George Brett, Bill Madlock)”,EX,1.40
1976,Topps,1976 Topps,66,”Father & Son (Buddy Bell, Gus Bell)”,NR MT,1.00
1975,Topps,1975 Topps,421,”Mets Team (Yogi Berra)”,EX,1.45
1975,Topps,1975 Topps,15,Jose Cardenal,EX,0.30
1975,Topps,1975 Topps,38,Buddy Bell,VG,0.60

Client-side Data Manipulation

19

1975,Topps,1975 Topps Mini,29, Dave Parker,VG,6.00
1975,Topps,1975 Topps,430,Luis Tiant,VG,0.30
1975,Topps,1975 Topps,437,Al Cowens,EX,0.40
1976,Topps,1976 Topps,300,Johnny Bench,EX,5.00
1976,Topps,1976 Topps,150,Steve Garvey,NR MT,9.00
1976,Topps,1976 Topps,268,Dell Unser,EX,0.16
1976,Topps,1976 Topps,295,Dave Cash,NR MT,0.30
1976,Topps,1976 Topps,321,Jose Crux,NR MT,0.70
1976,Topps,1976 Topps,550,Hank Aaron,NR MT,14.00
1976,Topps,1976 Topps,430,Jose Cardenal,EX,0.20
1978,Topps,1978 Topps,500,George Foster,NR MT,1.40
1978,Topps,1978 Topps,580,Rod Carew,EX,2.50
1978,Topps,1978 Topps,450,Tom Seaver,NR MT,2.50
1978,Topps,1978 Topps,201,”Batting Leaders (Rod Carew, Dave Parker)”,EX,3.50
1978,Topps,1978 Topps,1,Record Breaker (Lou Brock),NR MT,4.00
1978,Topps,1978 Topps,5,Record Breaker (Pete Rose),NR MT,4.00
1978,Topps,1978 Topps,60,Thurmon Munson, EX,2.50
1975,Topps,1975 Topps,560,Tony Perez,EX,1.25

Save this file into the folder you’ll be using to store your DHTML documents. As mentioned,
you should name this file cards.txt, because this is the name that I’ll use for the DataURL prop-
erty in the examples in this chapter.

If you can do nothing else with regard to letting users manipulate the data on your Web pages,
you must at least allow them to sort it. Sorting is perhaps the most used feature of any data
viewing application, and data-bound DHTML pages should be no exception.

The method used to sort the data varies depending on the DSO used to bind the page to the
data source. For the purposes of this chapter we’ll be using the Tabular Data Control. This
control was discussed in depth in Chapter 17. I’ll discuss the TDC’s Sort property next; re-
view the section “Tabular Data Source Properties and Methods” of Chapter 17 for further details
about the TDC.

Sort
The Sort property allows you to specify the order in which the data is returned from the data
file to the data-bound page. Multiple fields are specified by separating the field names with a
semicolon (;).

Use a minus sign (-) in front of the field name to specify descending sort order. For example,
the following code specifies that data should be sorted by the year field in ascending order and
by the value field in descending order:

<PARAM NAME=”Sort” VALUE=”year; -value”>

By setting the Sort property in the object tag of the TDC, you can provide an initial sort order.
You can also set the property in script code. After doing so, invoke the Reset method to cause
the new sort order to take effect.

Data Awareness

The remainder of this section provides two examples of using the Sort property in your data
bound pages.

Of course, if the users of your DHTML pages don’t know how to sort the data you provide
them, you might as well not provide the capability. This section discusses some ways to pro-
vide the user interface for data sorting. We’ll discuss how to indicate that a column is sorted as
well as how the user might specify which column(s) to sort with.

If you’re using a table to display the data, as shown in Figure 19.1, you can use the column
headers to indicate sort order. As you can see in Figure 19.1, the data is sorted by the year and
card number. This is indicated by the plus sign (+) in front of the column name.

An example of a sorted
DHTML table.

You can also indicate sort order by using graphics, providing a different background color for
the column, or using a check box or option group in a separate row, among other ways. The
key is to make sure the user is aware of why the column looks different. If you’re using color to
indicate the sort order, you’ll probably want to provide a color legend of some sort.

Using the dynamic content features provided by DHTML makes it extremely easy to indicate
sort order to the user. To create the page shown in Figure 19.1, I used the innerText and
innerHTML properties to change the text shown in the column header, adding plus and minus
signs where appropriate. If you were to use an image to indicate sort order, you’d modify the
src property of the appropriate <IMAGE> element to change the displayed image, again using
dynamic content functionality.

Client-side Data Manipulation

19

Now that we’ve discussed ways to indicate that a column is sorted, let’s look at ways to allow
the user to specify which columns to sort. There are many ways to provide the user with this
capability. Again, the key is to make sure the user knows how to sort the data. If it’s not obvi-
ous based on the user interface you choose, you should provide some text indicating how to
sort the data, as you can see in Figure 19.1.

The most common means for users to sort data that’s displayed in tabular format is to click the
column’s header. This is the actual standard for data displayed in any of Microsoft’s products
that provide list or table views of information. To trap the click on an HTML table cell, simply
place the attribute onclick=”clickroutine()” in the cell’s <TD> tag. Of course, clickroutine
must be a valid VBScript or JScript subroutine, and you can also specify any parameters you
wish. In Listing 19.2, I use some very simplistic VBScript and DHTML to accomplish the
column header click.

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML//EN”>
<html><head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1">
<title>Baseball Cards</title></head>
<body bgcolor=”#FFFFFF”>
<p>
<object id=”cards” ondatasetcomplete=”dataloaded()”
classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83" width=”192" height=”192">
 <param name=”DataURL” value=”cards.txt”>
 <param name=”UseHeader” value=”1">
 <param name=”Sort” value=”year; cardnumber”>
</object>
</p>

<H3>To sort by any column, click the column’s header.</H3>

<table border=”1" datasrc=”#cards” align=”center” cellpadding=”2">
<THEAD>
 <tr>
 <td align=”left” id=”year” onclick=”tableclick(‘year’)”
 bgcolor=”#00FFFF”><big>+Year</big></td>
 <td align=”left” id=”CardNumber” onclick=”tableclick(‘cardnumber’)”
 bgcolor=”#00FFFF”><big>+Number</big></td>
 <td align=”left” id=”setname” onclick=”tableclick(‘setname’)”
 bgcolor=”#00FFFF”><big>Set Name</big></td>
 <td align=”left” id=”issuer” onclick=”tableclick(‘issuer’)”
 bgcolor=”#00FFFF”><big>Issuer</big></td>
 <td align=”left” id=”description” onclick=”tableclick(‘description’)”
 bgcolor=”#00FFFF”><big>Description</big></td>
 <td align=”left” id=”grade” onclick=”tableclick(‘grade’)”
 bgcolor=”#00FFFF”><big>Grade</big></td>
 <td align=”right” id=”value” onclick=”tableclick(‘value’)”
 bgcolor=”#00FFFF”><big>Value</big></td>
 </tr>
</THEAD>
 <tr>

continues

Data Awareness

 <td><div datafld=”year”></div></td>
 <td><div datafld=”cardnumber”></div></td>
 <td><div datafld=”setname”></div></td>
 <td><div datafld=”issuer”></div></td>
 <td><div datafld=”description”></div></td>
 <td><div datafld=”grade”></div></td>
 <td width=”50" align=”right”><div datafld=”value”></div></td>
 </tr>
<TFOOT>
 <tr>
 <td colspan=”6" align=”right” height=”40" bgcolor=”#000080">
 Total:</td>
 <td valign=”center” align=”right” bgcolor=”#000080">

 <div id=”TotalText”></div></td>
 </tr>
</TFOOT>
</table>

<p>
<script language=”VBScript”><!--

sub tableclick(columnname)

if columnname <> “year” and (left(document.all.item(“year”).innertext,1)
➥ = “+”
➥ or left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

if columnname <> “cardnumber” and
➥ (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if columnname <> “setname” and
➥ (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if columnname <> “issuer” and
➥ (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if columnname <> “description” and
➥ (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

Client-side Data Manipulation

19

if columnname <> “grade” and
➥ (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if columnname <> “value” and
➥ (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

if left(document.all.item(columnname).innertext,1) = “+” then
 document.all.item(columnname).innerHTML = “<big>-” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = “-” + columnname
elseif left(document.all.item(columnname).innertext,1) = “-” then
 document.all.item(columnname).innerHTML = “<big>+” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = columnname
else
 document.all.item(columnname).innerHTML = “<big>+” +
➥ document.all.item(columnname).innertext + “</big>”
 cards.sort = columnname
end if

cards.reset

end sub

sub dataloaded()

while not(cards.recordset.eof)
 total = total + cards.recordset(“value”)
 cards.recordset.movenext
wend
document.all.totaltext.innertext = total

end sub

--></script> </p>
</body></html>

Notice first that I’ve specified an initial sort order for the data. This is done in the <OBJECT> tag
by setting the Sort property to year; cardnumber. I’ve also used the plus sign in the table header
cells for these fields.

After the DSO is specified, the definition of the data-bound table begins. In the <THEADER>
section, you’ll find the column headers. (The <THEADER> tag informs the parser to exclude this
section from being repeated for each data row found in the data file.) Each of the <TD> tags
contains a reference to a subroutine named tableclick. This subroutine is where the sorting
and column header text modification takes place. You’ll find it near the bottom of Listing 19.2,
immediately following the <SCRIPT> tag.

Data Awareness

The tableclick subroutine’s first task is to fix up the column header text. There are more elo-
quent uses of the DHTML object model than the one I’ve chosen here, but I think this method
gets the point across a little better.

The first section of code (all of the if columnname <> ... constructs) is responsible for chang-
ing the header text of any previously sorted columns back to the original text. Remember, the
onclick event occurs on a single column header. This is done by comparing the columnname
parameter with each of the known column names. If the user hasn’t clicked a particular col-
umn header, its text is reset (removing any plus or minus signs).

Next, we check to see if the column is already sorted. This is done by examining the text of the
column header. If it contains a plus sign, we change the text to a minus sign and change the
Sort property to have a minus sign preceding the column name (forcing a descending sort). If
the text contains a minus sign, we do the same but leave off the minus sign on the Sort prop-
erty to force an ascending sort. Finally, if neither character is displayed, we use the plus sign
and an ascending sort order.

After the column headers and Sort property have been set, we use the Reset method to force
the TDC to apply the new sort order.

You can also use other HTML elements to allow the user to specify how to sort the data. You
could use a drop-down list box that has a choice for each useful sort order. Or, you could place
some pushbuttons on the page, label them appropriately, and use the onclick event to modify
the sort order. This is exactly what I’ve done to create the page shown in Figure 19.2.

An example of a
DHTML table sorted
using multiple columns.

Client-side Data Manipulation

19

For this page, I’ve left the column header click in place and added some buttons to allow the
user to quickly specify some extended sort orders. With the simple column heading click, for
example, you cannot sort by year and grade at the same time. Using the pushbuttons we can
specify any sort order we wish. The code for this page, provided in Listing 19.3, is identical to
Listing 19.2, with the addition of the buttons and the buttonclick subroutine.

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML//EN”>
<html><head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1">
<title>Baseball Cards</title></head>
<body bgcolor=”#FFFFFF”>
<p>
<object id=”cards” ondatasetcomplete=”dataloaded()”
classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83" width=”192" height=”192">
 <param name=”DataURL” value=”cards.txt”>
 <param name=”UseHeader” value=”1">
 <param name=”Sort” value=”year; cardnumber”>
</object>
</p>

<!-- START modified from Listing 19.2 -->
<h3 align=”center”>Use any of these buttons to sort the data:</h3>
<p align=”center”><input type=”button” value=”Year/Card Number” name=”B1"
onclick=”buttonclick(1)”><input type=”button” value=”Description” name=”B2"
onclick=”buttonclick(2)”><input type=”button” value=”Year/Grade” name=”B3"
onclick=”buttonclick(3)”><input type=”button” value=”Value” name=”B4"
onclick=”buttonclick(4)”></p>
<h3 align=”center”>Or, to sort by any column, click the column’s header.</h3>
<!-- END modified from Listing 19.2 -->

<table border=”1" datasrc=”#cards” align=”center” cellpadding=”2">
<THEAD>
 <tr>
 <td align=”left” id=”year” onclick=”tableclick(‘year’)”
 bgcolor=”#00FFFF”><big>+Year</big></td>
 <td align=”left” id=”CardNumber” onclick=”tableclick(‘cardnumber’)”
 bgcolor=”#00FFFF”><big>+Number</big></td>
 <td align=”left” id=”setname” onclick=”tableclick(‘setname’)”
 bgcolor=”#00FFFF”><big>Set Name</big></td>
 <td align=”left” id=”issuer” onclick=”tableclick(‘issuer’)”
 bgcolor=”#00FFFF”><big>Issuer</big></td>
 <td align=”left” id=”description” onclick=”tableclick(‘description’)”
 bgcolor=”#00FFFF”><big>Description</big></td>
 <td align=”left” id=”grade” onclick=”tableclick(‘grade’)”
 bgcolor=”#00FFFF”><big>Grade</big></td>
 <td align=”right” id=”value” onclick=”tableclick(‘value’)”
 bgcolor=”#00FFFF”><big>Value</big></td>
 </tr>
</THEAD>
 <tr>
 <td><div datafld=”year”></div></td>
 <td><div datafld=”cardnumber”></div></td>
 <td><div datafld=”setname”></div></td>

continues

Data Awareness

 <td><div datafld=”issuer”></div></td>
 <td><div datafld=”description”></div></td>
 <td><div datafld=”grade”></div></td>
 <td width=”50" align=”right”><div datafld=”value”></div></td>
 </tr>
<TFOOT>
 <tr>
 <td colspan=”6" align=”right” height=”40" bgcolor=”#000080">
 Total:</td>
 <td valign=”center” align=”right” bgcolor=”#000080">

 <div id=”TotalText”></div></td>
 </tr>
</TFOOT>
</table>

<p>
<script language=”VBScript”><!--

sub tableclick(columnname)

if columnname <> “year” and
➥ (left(document.all.item(“year”).innertext,1) = “+”
➥ or left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

if columnname <> “cardnumber” and
➥ (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if columnname <> “setname” and
➥ (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if columnname <> “issuer” and
➥ (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if columnname <> “description” and
➥ (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

Client-side Data Manipulation

19

if columnname <> “grade” and
➥ (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if columnname <> “value” and
➥ (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

if left(document.all.item(columnname).innertext,1) = “+” then
 document.all.item(columnname).innerHTML = “<big>-” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = “-” + columnname
elseif left(document.all.item(columnname).innertext,1) = “-” then
 document.all.item(columnname).innerHTML = “<big>+” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = columnname
else
 document.all.item(columnname).innerHTML = “<big>+” +
➥ document.all.item(columnname).innertext + “</big>”
 cards.sort = columnname
end if

cards.reset

end sub

<!-- START modified from Listing 19.2 -->
sub buttonclick(button)

if (left(document.all.item(“year”).innertext,1) = “+” or
➥ left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

if (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

continues

Data Awareness

if (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

if (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

select case button
case 1
 document.all.item(“year”).innerHTML = “<big>+” +
➥ document.all.item(“year”).innertext + “</big>”
 document.all.item(“cardnumber”).innerHTML = “<big>+” +
➥ document.all.item(“cardnumber”).innertext + “</big>”
 cards.sort = “year; cardnumber”
case 2
 document.all.item(“description”).innerHTML = “<big>+” +
➥ document.all.item(“description”).innertext + “</big>”
 cards.sort = “description”
case 3
 document.all.item(“year”).innerHTML = “<big>+” +
➥ document.all.item(“year”).innertext + “</big>”
 document.all.item(“grade”).innerHTML = “<big>+” +
➥ document.all.item(“grade”).innertext + “</big>”
 cards.sort = “year; grade”
case 4
 document.all.item(“value”).innerHTML = “<big>+” +
➥ document.all.item(“value”).innertext + “</big>”
 cards.sort = “value”
end select

cards.reset
end sub
<!-- END modified from Listing 19.2 -->

sub dataloaded()

while not(cards.recordset.eof)
 total = total + cards.recordset(“value”)
 cards.recordset.movenext
wend
document.all.totaltext.innertext = total

end sub
--></script> </p>
</body></html>

Client-side Data Manipulation

19

In the buttonclick() subroutine, we first clear all the column headers any sort order indicator.
Then, based on the button parameter passed to the routine, we set the appropriate column
header text and the Sort property of the TDC. Then we invoke the TDC’s Reset method to
apply the new sort order.

As you can see, using pushbuttons or a drop-down list is a very intuitive way to allow the user
to specify a sort order.

The second most useful data manipulation feature you can provide your users is the capability
to filter the displayed data. Doing so allows the user to view only the data in which he or she is
interested at the time.

Most DSOs will provide the capability of filtering the data. The method used to filter data
varies depending on the DSO used to bind the page to the data source. As mentioned previ-
ously, the Tabular Data Control is the DSO we’re using for this chapter. This control is dis-
cussed in depth in Chapter 17. I’ll discuss the TDC’s Filter property next; review the section
“Tabular Data Source Properties and Methods” of Chapter 17 for further details about the
TDC.

Filter
Filter is a string property that defines the criteria that will be used to filter the data cached in
the TDC’s recordset. The default value for this property is an empty string, which means that
no filter is applied to the recordset.

You can provide initial filtering of the data by setting the Filter property in the TDC’s
<OBJECT> tag. You can also set the property in script code and invoke the Reset method to cause
the new filter to take effect.

The syntax of the Filter property allows you to combine comparison operators and logical
operators such as AND (&) and OR (|), as in the following:

(year = 1976) & (value > 5)

The syntax of the property is defined as follows:

Complex ::== Simple
 ::== Simple ‘&’ Simple [‘&’ Simple ...]
 ::== Simple ‘|’ Simple [‘|’ Simple ...]
Simple ::== ‘(‘ Complex ‘)’
 ::== Atom Relop Atom
Relop ::== ‘=’ | ‘>’ | ‘>=’ | ‘<‘ | ‘<=’ | ‘<>’
Atom ::== Characters up to a (,), >, <, =, & or |

Note that AND and OR have equal precedence when evaluated and, therefore, must be sur-
rounded by parentheses if both are combined in a single criteria.

Data Awareness

To provide filtering capabilities to your users, you must provide some sort of user interface
that can be used to build the value for the Filter property. This can consist of any of the HTML
input elements—including text boxes, drop-down lists, or pushbuttons. You should also pro-
vide a pushbutton or image that the user must click in order to apply the filter. Without a separate
button, the user will have a hard time constructing a filter combining multiple criteria.

Figure 19.3 shows an example of using a text box and pushbuttons to build a filter based on
the year field. The user simply enters the year of interest and clicks the Filter button. Entering
1978 and clicking Filter produces the results shown in Figure 19.4. To clear the text box and
reset the data to the complete result set, click the Reset button.

An example of a filter
construction form.

To create this page, use the code in Listing 19.4. I’ve again simply extended the page constructed
in Listing 19.3. The modified sections in Listing 19.4 are marked with HTML comments within
the listing. I’ve added the HTML form that contains the text box and buttons for constructing
the filter and, of course, the VBScript code that actually performs the filter.

Client-side Data Manipulation

19

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML//EN”>
<html><head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1">
<title>Baseball Cards</title></head>
<body bgcolor=”#FFFFFF”>
<p>
<object id=”cards” ondatasetcomplete=”dataloaded()”
classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83" width=”192" height=”192">
 <param name=”DataURL” value=”cards.txt”>
 <param name=”UseHeader” value=”1">
 <param name=”Sort” value=”year; cardnumber”>
</object>
</p>

<!-- START modified from Listing 19.3 -->
<h3 align=”center”>
To filter the data for a specific year, enter the year here and click the
Filter button:</h3>
<form id=”filterform”>
 <div align=”center”><center><h3>Year:
 <input type=”text” name=”FilterYear” size=”20"></h3>
 </center></div>
 <div align=”center”><center><h3>
 <input type=”submit” value=”Filter” name=”B1" onclick=”filteryear(0)”>
 <input type=”reset” value=”Reset” name=”B2" onclick=”filteryear(1)”>
 </h3></center></div>
</form>
<hr>

The results of a filter
based on year = 1978.

continues

Data Awareness

<h3 align=”center”>Use any of these buttons to sort the data:</h3>
<p align=”center”><input type=”button” value=”Year/Card Number” name=”B1"
onclick=”buttonclick(1)”><input type=”button” value=”Description” name=”B2"
onclick=”buttonclick(2)”><input type=”button” value=”Year/Grade” name=”B3"
onclick=”buttonclick(3)”><input type=”button” value=”Value” name=”B4"
onclick=”buttonclick(4)”></p>
<h3 align=”center”>Or, to sort by any column, click the column’s header.</h3>
<hr>
<!-- END modified from Listing 19.3 -->

<table border=”1" datasrc=”#cards” align=”center” cellpadding=”2">
<THEAD>
 <tr>
 <td align=”left” id=”year” onclick=”tableclick(‘year’)”
 bgcolor=”#00FFFF”><big>+Year</big></td>
 <td align=”left” id=”CardNumber” onclick=”tableclick(‘cardnumber’)”
 bgcolor=”#00FFFF”><big>+Number</big></td>
 <td align=”left” id=”setname” onclick=”tableclick(‘setname’)”
 bgcolor=”#00FFFF”><big>Set Name</big></td>
 <td align=”left” id=”issuer” onclick=”tableclick(‘issuer’)”
 bgcolor=”#00FFFF”><big>Issuer</big></td>
 <td align=”left” id=”description” onclick=”tableclick(‘description’)”
 bgcolor=”#00FFFF”><big>Description</big></td>
 <td align=”left” id=”grade” onclick=”tableclick(‘grade’)”
 bgcolor=”#00FFFF”><big>Grade</big></td>
 <td align=”right” id=”value” onclick=”tableclick(‘value’)”
 bgcolor=”#00FFFF”><big>Value</big></td>
 </tr>
</THEAD>
 <tr>
 <td><div datafld=”year”></div></td>
 <td><div datafld=”cardnumber”></div></td>
 <td><div datafld=”setname”></div></td>
 <td><div datafld=”issuer”></div></td>
 <td><div datafld=”description”></div></td>
 <td><div datafld=”grade”></div></td>
 <td width=”50" align=”right”><div datafld=”value”></div></td>
 </tr>
<TFOOT>
 <tr>
 <td colspan=”6" align=”right” height=”40" bgcolor=”#000080">
 Total:</td>
 <td valign=”center” align=”right” bgcolor=”#000080">

 <div id=”TotalText”></div></td>
 </tr>
</TFOOT>
</table>

<script language=”VBScript”><!--
sub tableclick(columnname)

if columnname <> “year” and
➥ (left(document.all.item(“year”).innertext,1) = “+”
➥ or left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

Client-side Data Manipulation

19

if columnname <> “cardnumber” and
➥ (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if columnname <> “setname” and
➥ (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if columnname <> “issuer” and
➥ (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if columnname <> “description” and
➥ (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

if columnname <> “grade” and
➥ (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if columnname <> “value” and
➥ (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

if left(document.all.item(columnname).innertext,1) = “+” then
 document.all.item(columnname).innerHTML = “<big>-” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = “-” + columnname
elseif left(document.all.item(columnname).innertext,1) = “-” then
 document.all.item(columnname).innerHTML = “<big>+” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = columnname
else
 document.all.item(columnname).innerHTML = “<big>+” +
➥ document.all.item(columnname).innertext + “</big>”
 cards.sort = columnname
end if

cards.reset

continues

Data Awareness

end sub

sub buttonclick(button)

if (left(document.all.item(“year”).innertext,1) = “+” or
➥ left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

if (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

if (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

select case button
case 1
 document.all.item(“year”).innerHTML = “<big>+” +
➥ document.all.item(“year”).innertext + “</big>”
 document.all.item(“cardnumber”).innerHTML = “<big>+” +
➥ document.all.item(“cardnumber”).innertext + “</big>”
 cards.sort = “year; cardnumber”
case 2
 document.all.item(“description”).innerHTML = “<big>+” +
➥ document.all.item(“description”).innertext + “</big>”
 cards.sort = “description”

Client-side Data Manipulation

19

case 3
 document.all.item(“year”).innerHTML = “<big>+” +
➥ document.all.item(“year”).innertext + “</big>”
 document.all.item(“grade”).innerHTML = “<big>+” +
➥ document.all.item(“grade”).innertext + “</big>”
 cards.sort = “year; grade”
case 4
 document.all.item(“value”).innerHTML = “<big>+” +
➥ document.all.item(“value”).innertext + “</big>”
 cards.sort = “value”
end select

cards.reset
end sub

<!-- START modified from Listing 19.3 -->
sub filteryear(reset)

if reset then
 fstring = “”
else
 fstring = “year = “ + document.forms(“filterform”).item(“filteryear”).value
end if

cards.filter = fstring
cards.reset

end sub
<!-- END modified from Listing 19.3 -->

sub dataloaded()

while not(cards.recordset.eof)
 total = total + cards.recordset(“value”)
 cards.recordset.movenext
wend
document.all.totaltext.innertext = total

end sub
--></script>
</body></html>

Let’s start by looking at the form I’ve added. The form and text box are given an ID because
we’ll need to reference them in order to get the value that the user entered into the text box.
The two pushbuttons both have their onclick event set to filteryear(), each with a different
parameter.

The code for filteryear() is found, of course, within the <SCRIPT> tag at the bottom of the
listing. This routine’s parameter, reset, is used to determine whether the filter criteria should
be cleared or should be derived from the form’s text box. The code for this routine is very straight-
forward, consisting only of an If...Then...Else statement, an assignment to the TDC’s
Filter property, and the invocation of the TDC’s Reset method.

Data Awareness

Notice the total value row at the bottom of the table. As you can see in Figure 19.4, the data
has changed to show the total value of the cards included in the filter instead of all the cards.
This further demonstrates the usefulness of the filter property: You can summarize data across
differing criteria by applying multiple filters to the data prior to each summarization.

The sample data file we’ve been using in this chapter doesn’t contain an overwhelming amount
of data. But what if our trading card collection was enormous, with thousands of cards? We
certainly wouldn’t want to display all of those cards on a single page. For this reason, DHTML
includes a feature known as table paging. The biggest advantage of using table paging as op-
posed to some CGI or Active Server paging mechanism is that, after the data is loaded by the
DSO, there won’t be any further trips to the server to gather data. The DSO, even with table
paging enabled, still has all the data cached locally.

Using table paging allows you to specify how many records will appear on each page. Table
paging doesn’t rely on the DSO to get its job done. Instead, the <TABLE> element is also ex-
tended to include the necessary elements. These extensions are discussed in the following two
sections.

The third section explains how to extend the pages we’ve already built to include table paging.
As you’ll see, adding table paging to your pages is a snap.

DATAPAGESIZE
One of the extensions of the <TABLE> element is the DATAPAGESIZE attribute. When the table is
being used to display bound data (that is, when it has a valid DATASRC attribute specified), the
DATAPAGESIZE attribute specifies the number of rows to be displayed on each page. By specify-
ing an integer value for this attribute, you’re instructing the DHTML parser to display only
that number of records on each data page.

The table object in the DHTML object model includes a dataPageSize property. This means
that you can change the page size at runtime. You might have a text box or drop-down list that
allows the user to specify a desired page size. Setting the dataPageSize property in script code
causes the table to be rendered again with the new dataPageSize value.

To remove the table paging, simply set the dataPageSize property to 0. This will cause the
table to be re-rendered with all the data from the data source (obeying the filter, of course).

nextPage previousPage
In addition to the dataPageSize property, the table object also includes two methods, nextPage
and previousPage, which scroll the table’s contents through the data source’s data. As you might
expect, nextPage moves the displayed data window to the next set of records, and previousPage
moves the displayed data window to the previous set of records.

Client-side Data Manipulation

19

Listing 19.5 provides the code that was used to create the page you see in Figure 19.5. This
page is built by adding to the code in Listing 19.4. The modified sections are marked with
HTML comments within the listing.

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML//EN”>
<html><head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1">
<title>Baseball Cards</title></head>
<body bgcolor=”#FFFFFF”>
<p>
<object id=”cards” ondatasetcomplete=”dataloaded()”
classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83" width=”192" height=”192">
 <param name=”DataURL” value=”cards.txt”>
 <param name=”UseHeader” value=”1">
 <param name=”Sort” value=”year; cardnumber”>
</object>
</p>

<h3 align=”center”>
To filter the data for a specific year, enter the year here and click the
Filter button:</h3>
<form id=”filterform”>
 <div align=”center”><center><h3>Year:
 <input type=”text” name=”FilterYear” size=”20"></h3>
 </center></div>
 <div align=”center”><center><h3>
 <input type=”submit” value=”Filter” name=”B1" onclick=”filteryear(0)”>
 <input type=”reset” value=”Reset” name=”B2" onclick=”filteryear(1)”>
 </h3></center></div>
</form>
<hr>
<h3 align=”center”>Use any of these buttons to sort the data:</h3>
<p align=”center”><input type=”button” value=”Year/Card Number” name=”B1"
onclick=”buttonclick(1)”><input type=”button” value=”Description” name=”B2"
onclick=”buttonclick(2)”><input type=”button” value=”Year/Grade” name=”B3"
onclick=”buttonclick(3)”><input type=”button” value=”Value” name=”B4"
onclick=”buttonclick(4)”></p>
<h3 align=”center”>Or, to sort by any column, click the column’s header.</h3>
<hr>

<!-- START modified from Listing 19.4 -->
<table border=”1" datasrc=”#cards” datapagesize=5
 align=”center” cellpadding=”2">
<!-- END modified from Listing 19.4 -->
<THEAD>
 <tr>
 <td align=”left” id=”year” onclick=”tableclick(‘year’)”
 bgcolor=”#00FFFF”><big>+Year</big></td>
 <td align=”left” id=”CardNumber” onclick=”tableclick(‘cardnumber’)”
 bgcolor=”#00FFFF”><big>+Number</big></td>
 <td align=”left” id=”setname” onclick=”tableclick(‘setname’)”
 bgcolor=”#00FFFF”><big>Set Name</big></td>

continues

Data Awareness

 <td align=”left” id=”issuer” onclick=”tableclick(‘issuer’)”
 bgcolor=”#00FFFF”><big>Issuer</big></td>
 <td align=”left” id=”description” onclick=”tableclick(‘description’)”
 bgcolor=”#00FFFF”><big>Description</big></td>
 <td align=”left” id=”grade” onclick=”tableclick(‘grade’)”
 bgcolor=”#00FFFF”><big>Grade</big></td>
 <td align=”right” id=”value” onclick=”tableclick(‘value’)”
 bgcolor=”#00FFFF”><big>Value</big></td>
 </tr>
</THEAD>
 <tr>
 <td><div datafld=”year”></div></td>
 <td><div datafld=”cardnumber”></div></td>
 <td><div datafld=”setname”></div></td>
 <td><div datafld=”issuer”></div></td>
 <td><div datafld=”description”></div></td>
 <td><div datafld=”grade”></div></td>
 <td width=”50" align=”right”><div datafld=”value”></div></td>
 </tr>
<TFOOT>
 <tr>
 <td colspan=”6" align=”right” height=”40" bgcolor=”#000080">
 Total:</td>
 <td valign=”center” align=”right” bgcolor=”#000080">

 <div id=”TotalText”></div></td>
 </tr>
</TFOOT>
</table>

<!-- START modified from Listing 19.4 -->
<hr>
<p id=”pagesizetext” align=”center”>Page Size: 5</p>
<p align=”center”><input type=”button” value=”Previous Page” name=”B1"
onclick=”scrollpage(0)”> <input type=”button” value=”Next Page” name=”B1"
onclick=”scrollpage(1)”> </p>

<p align=”center”><input type=”button” value=”Decrease Page Size” name=”B1"
onclick=”pagesize(0)”>
<input type=”button” value=”Increase Page Size” name=”B1"
onclick=”pagesize(1)”></p>

<p align=”center”><input type=”button” value=”Disable Table Paging” name=”B1"
onclick=”pagesize(2)”></p>
<!-- END modified from Listing 19.4 -->

<script language=”VBScript”><!--
sub tableclick(columnname)

if columnname <> “year” and
➥ (left(document.all.item(“year”).innertext,1) = “+”
➥ or left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

Client-side Data Manipulation

19

if columnname <> “cardnumber” and
➥ (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if columnname <> “setname” and
➥ (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if columnname <> “issuer” and
➥ (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if columnname <> “description” and
➥ (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

if columnname <> “grade” and
➥ (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if columnname <> “value” and
➥ (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

if left(document.all.item(columnname).innertext,1) = “+” then
 document.all.item(columnname).innerHTML = “<big>-” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = “-” + columnname
elseif left(document.all.item(columnname).innertext,1) = “-” then
 document.all.item(columnname).innerHTML = “<big>+” +
➥ mid(document.all.item(columnname).innertext,2) + “</big>”
 cards.sort = columnname
else
 document.all.item(columnname).innerHTML = “<big>+” +
➥ document.all.item(columnname).innertext + “</big>”
 cards.sort = columnname
end if

cards.reset

continues

Data Awareness

end sub

sub buttonclick(button)

if (left(document.all.item(“year”).innertext,1) = “+” or
➥ left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
➥ mid(document.all.item(“year”).innertext,2) + “</big>”
end if

if (left(document.all.item(“cardnumber”).innertext,1) = “+” or
➥ left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
➥ mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if (left(document.all.item(“setname”).innertext,1) = “+” or
➥ left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” +
➥ mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if (left(document.all.item(“issuer”).innertext,1) = “+” or
➥ left(document.all.item(“issuer”).innertext,1) = “-”) then
 document.all.item(“issuer”).innerHTML = “<big>” +
➥ mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if (left(document.all.item(“description”).innertext,1) = “+” or
➥ left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
➥ mid(document.all.item(“description”).innertext,2) + “</big>”
end if

if (left(document.all.item(“grade”).innertext,1) = “+” or
➥ left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
➥ mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if (left(document.all.item(“value”).innertext,1) = “+” or
➥ left(document.all.item(“value”).innertext,1) = “-”) then
 document.all.item(“value”).innerHTML = “<big>” +
➥ mid(document.all.item(“value”).innertext,2) + “</big>”
end if

select case button
case 1
 document.all.item(“year”).innerHTML = “<big>+” +
➥ document.all.item(“year”).innertext + “</big>”
 document.all.item(“cardnumber”).innerHTML = “<big>+” +
➥ document.all.item(“cardnumber”).innertext + “</big>”
 cards.sort = “year; cardnumber”
case 2
 document.all.item(“description”).innerHTML = “<big>+” +
➥ document.all.item(“description”).innertext + “</big>”
 cards.sort = “description”

Client-side Data Manipulation

19

case 3
 document.all.item(“year”).innerHTML = “<big>+” +
➥ document.all.item(“year”).innertext + “</big>”
 document.all.item(“grade”).innerHTML = “<big>+” +
➥ document.all.item(“grade”).innertext + “</big>”
 cards.sort = “year; grade”
case 4
 document.all.item(“value”).innerHTML = “<big>+” +
➥ document.all.item(“value”).innertext + “</big>”
 cards.sort = “value”
end select

cards.reset
end sub

sub filteryear(reset)

if reset then
 fstring = “”
else
 fstring = “year = “ + document.forms(“filterform”).item(“filteryear”).value
end if

cards.filter = fstring
cards.reset

end sub

<!-- START modified from Listing 19.4 -->
sub scrollpage(direction)

if direction = 0 then
 mytable.previouspage
else
 mytable.nextpage
end if

end sub

sub pagesize(direction)

if direction = 0 and mytable.datapagesize > 1 then
 mytable.datapagesize = mytable.datapagesize - 1
 document.all.pagesizetext.innertext = “Page Size: “
➥ + cstr(mytable.datapagesize)
elseif direction = 1 then
 mytable.datapagesize = mytable.datapagesize + 1
 document.all.pagesizetext.innertext = “Page Size: “
➥ + cstr(mytable.datapagesize)
elseif direction = 2 then
 mytable.datapagesize = 0
 document.all.pagesizetext.innertext = “Table paging disabled”
end if

end sub
<!-- END modified from Listing 19.4 -->

continues

Data Awareness

sub dataloaded()

while not(cards.recordset.eof)
 total = total + cards.recordset(“value”)
 cards.recordset.movenext
wend
document.all.totaltext.innertext = total

end sub
--></script>
</body></html>

The results of using
data paging.

The first modification is to add the DATAPAGESIZE attribute to the <TABLE> tag. I initially set this
to 5, meaning that the table will show, at most, five records at a time.

Immediately following the close of the <TABLE> tag is a text label and series of buttons. The text
label will inform the user, using dynamic content, of the current table page size. The buttons
will be used to scroll the pages as well as affect the dataPageSize property of our data-bound
table. The code for these buttons is found within the <SCRIPT> tag, right where you’d expect it
to be.

The code to move from page to page is pretty simple. There is no property for the table object
that will let you know which page you’re currently viewing, so there’s no bounds checking. As
a matter of fact, the previousPage and nextPage methods won’t even produce errors if you at-
tempt to go beyond the first or last pages. So, we simply invoke the appropriate method, de-
pending on which button was clicked.

Client-side Data Manipulation

19

For the page size buttons, the code is found in the pagesize() routine. We have three choices:
decrease, increase, or disable. If the user decides to decrease the page size, we first verify that
the value is greater than 1. If it is, we’ll decrease it; otherwise, we simply ignore the button
click. We allow the user to increase the page size to whatever value he or she wishes. To dis-
able the table paging, the dataPageSize property is set to 0. For any button click, the text
displayed in the pagesizetext element is modified to show the current state of the dataPageSize
property.

As you can see, it’s a relatively trivial task to add table paging to your DHTML pages. You’ll
probably want to include the option of table paging on every data-bound page you write.

This chapter covers the three most important aspects of client-side data manipulation: sorting,
filtering, and paging. Using these techniques, you’re well on your way to creating professional
data–browsing HTML pages. Prior to DHTML and DSOs, all these techniques required some
sort of round-trip to the Web server in order to retrieve new data for each action performed.
Now, not only are you not required to make such a round-trip, but you also don’t even need
a Web server to serve these pages to you. DHTML takes care of all this for you.

In Chapter 20, “Updating the Data,” we’ll discuss the next step in creating a database applica-
tion with DHTML: editing and updating data. Although the TDC does not directly support
the updating of data, I’ll show you how you can combine HTML forms with a back-end pro-
cess (either CGI or Active Server Pages) to update the TDC’s data file.

This method, while fine for single-user applications, falls on its face if multiple users attempt
to update the data at the same time. For that reason, we’ll also examine the Remote Data Ser-
vices, which combine a client-side DSO with some server-side objects to provide two-way con-
nections to an ODBC data source.

Data Awareness

Updating the Data

20

by Craig Eddy

■

■

■

■

■

Data Awareness

Chapters 18, “Presenting Your Data with Dynamic HTML,” and 19, “Client-side Data Ma-
nipulation,” deal with presenting data on DHTML pages and providing some rudimentary
data manipulation features, such as sorting and filtering. In this chapter we’ll look at providing
data-updating capabilities in your DHTML pages.

There are two possible locations for data updating: on the client (that is, at the page’s display
point) and on the server. Prior to DHTML and data source objects (DSOs), the server-side
approach was the only approach available to the site developer. With DHTML, the possibility
of client-side data updating is opened up.

The server-side approach requires some application, such as a CGI application or Perl script,
to exist on the HTTP server machine. Microsoft introduced Active Server Pages, which can
execute server-side VBScript, including accessing any ActiveX component that is installed on
the HTTP server. This allows Active Server Pages to access the ActiveX Data Objects (a tech-
nology similar to, and built on the same platform as, DSOs) to both retrieve and update data
contained in ODBC data sources. Even with Active Server Pages, though, you’re relying ex-
clusively on the capabilities and resources of the HTTP server machine.

Using DSOs, you can provide the capability of updating data through DHTML pages. To do
so, though, you must be using a DSO that allows you to update the database. The Tabular
Data Control (TDC) does not allow data updating. The Advanced Data Control (ADC), which
is part of Microsoft’s Remote Data Services (RDS) platform and is automatically installed with
Internet Explorer 4.0 (IE4), does allow data updating. The ADC must work in conjunction
with a server-side piece of the RDS but still provides you with all of the benefits of client-side
data manipulation and caching.

This chapter briefly discusses using Active Server Pages and the ActiveX data objects to update
data on the server side. The remainder of the chapter covers using the functionality provided
by ADC and RDS. The examples in this chapter are built using a database created from the
TDC data file used in Chapter 19. The database was created in Microsoft Access and the file,
cards.mdb, is included on the Companion Web site at http://www.htmlguru.com.

Both the Active Server Page and RDS solutions to updating data require the use of ODBC. To
open a connection to an ODBC data source, you must first have a data source to open. The
data source used must be a system data source that is accessible by your Web server machine.

To create such a data source, you’ll need a few key pieces of information:

■ The database management system (DBMS) on which the data resides. Examples are
SQL Server, Oracle, and Microsoft Access.

■ The name of the database and, if applicable, the name of the server on which the
database resides.

Updating the Data

20

■ Any required login credentials, such as username and password, required to open and
validate a connection to the data source.

When you’ve gathered the necessary information, you can create the data source. The steps
vary depending on the needs of the DBMS and the ODBC driver that connects to it, as well as
the version of the ODBC driver manager you have installed, but they’ll probably follow the
general path presented here:

1. Start the Control Panel application by clicking the Windows Start button and
selecting Settings and then Control Panel.

2. Double-click the 32-bit ODBC icon. The ODBC Data Source Administrator
application is displayed, as shown in Figure 20.1.

3. Select the System DSN tab. You must create a system DSN as opposed to a user DSN
because the Web server runs as a system service, not as a logged-in user. A system
DSN is valid for every user of the particular system as well as any service running on
the system.

4. Click the Add button. The Create New Data Source dialog, shown in Figure 20.2, is
displayed. The drivers shown in the list box are the ODBC drivers that have been
installed on the system. If the driver you need is not present, you must install it on the
system before it can be used. The installation process depends on the individual
driver.

5. In the list box, select the ODBC driver that matches the database to which you’re
connecting. Then click the Finish button.

6. The ODBC data source setup dialog for the driver chosen in step 5 is displayed.
Although this dialog is different for each driver, they all have two things in common: a
data source name and a database location. Some drivers might require additional

The ODBC Data
Source Administrator.

Data Awareness

information to complete the definition of the data source. If you need help defining
the data source, click the Help button. The driver-specific help file will be displayed.

7. After you’ve entered the necessary information, click the OK button to save the data
source information and return to the ODBC Data Source Administrator.

The Create New Data
Source dialog.

Now that you’ve created the data source, you can use it with Active Server Pages containing
ActiveX Data Objects or with the RDS.

To update data using a server-side process, you must have an application or Active Server Page
that runs on the Web server machine. This application requires server resources and network
bandwidth in the process of retrieving the data changes from the user and modifying the un-
derlying data source. (This section discusses using Active Server Pages in combination with
ADO to update the data.)

Active Server Pages, which are installed with Microsoft’s Internet Information Server, com-
bine server-side VBScript, JScript, or any other Active Script language with server-side compo-
nents. If you’re familiar with VBScript (or Visual Basic itself) or JScript, you won’t have any
trouble picking up Active Server Page programming. The scripting code is parsed by the Web
server before the page is returned to the browser. None of the Active Server Page script code is
actually returned to the user. This allows you to hide the implementation details from the
browser, thus making both your code and your data more secure. In addition, because Active
Server scripting can access and manipulate ActiveX components, you can further encapsulate
your code by creating an ActiveX component.

The ActiveX Data Objects (ADO) are a set of data-access objects contained with an ActiveX
component installed with Active Server Pages. Using the ADO is very similar to using its cous-
ins, Remote Data Objects (RDO) and Data Access Objects (DAO). Both of these technolo-
gies will be familiar to you if you’ve done any database programming using Visual Basic.

Updating the Data

20

Active Server Pages combine HTML with server-side scripting. The script code is delimited
from the HTML using the characters <% and %> to mark the start and end of server-side script.
The HTTP server executes this script code as it parses the page for return to the browser. (For
the purposes of this chapter, I’ll work only with VBScript.)

After you have the Active Server Page system files installed on your Web server, you must cre-
ate a Web-accessible directory with executable permission to house them. You can then use a
text editor or any HTML editor that supports scripting to create the Active Server Page files. If
you’ll be doing a great deal of Active Server Page coding, I recommend investing in a copy of
Microsoft Visual InterDev. InterDev is a complete Web server programming environment that
includes the Visual Data Tools, a set of handy tools for creating database tables, queries, stored
procedures, and triggers, as well as manipulating the data itself.

You can place script code either in line or within procedures. Placing the script in line allows
you to alter the HTML that is returned to the browser based on the code’s execution. For ex-
ample, the following snippet will place the current date into the page:

<H2>Today’s date is <%= Date() %>.</H2>

The marker <%= instructs the parser to output the results of the expression to follow in place of
the marker. If you use this construct, make sure your expression returns a value that can be
displayed properly by the parser.

Or, for a more complicated example, the following uses an If...Then statement to control the
browser output:

<% If rs(“date”) = Date() then %>
<H2>This appointment is for Today.</H2>
<% elseif rs(“date”) < Date() then %>
<H2>This appointment is for a date in the past.</H2>
<% else %>
<H2>This appointment is for a date in the future. </H2>
<% end if %>

When this code is executed by the Active Server Page parser, only one of the <H2> lines will be
returned to the browser. Viewers of the page, even if they use View Source, won’t have any
idea how the line was placed onto the page.

Script code does not necessarily have to return HTML or anything at all. It can simply be ex-
ecuted. This will be necessary for accomplishing data updates using Active Server Pages. The
code is still executed as it is stumbled upon by the parser. If no HTML is returned, nothing is
placed in the output page for that section of code. The following section discusses how to use
the ADO to actually update data provided by an HTML form.

The Active Server Page system has several built-in objects, including server, request, and
response. The server object provides access to several utility functions available on the Web
server. This includes the all-important CreateObject method, which is used to create instances
of ActiveX components installed on the server. The request object provides access to the data

Data Awareness

passed from the Web browser to the Web server during the HTTP request. This includes any
data passed either within the page’s URL or within an HTTP POST request message (such as
from an HTML form). The response object is used to specify the data and server properties
that will be returned to the Web browser in the HTTP response message.

The ADO components are high-speed, lightweight data-access objects specifically designed for
use with Microsoft OLE DB providers such as ODBC. The ADO, as you’ll see in this chapter,
has a very flat object model. This makes it particularly easy to program in the Active Server
environment because you do not have to traverse an entire object model to get your database
work accomplished.

The ADO includes only six objects of any significance: connection, recordset, field,
command, error, and parameter (see Figure 20.3).

The ADO object model.

The connection object is used to establish the physical connection to the data source. The
recordset object contains the properties and methods we’ll use in updating the database. The
other objects, though they serve useful purposes elsewhere, won’t be necessary for our purposes
here.

Updating the Data

20

To use a connection object to access a data source, you’ll use code similar to the following:

<%
set conn = Server.CreateObject(“ADODB.Connection”)
conn.open “DSN=AdvWorks;”, “sa”, “secret”
%>

This code creates a new object named conn using the CreateObject method of the Server ob-
ject. The Server object is a built-in object that is always available to Active Server Page code.
The method’s parameter specifies the programmatic class identifier of the object being created.
In this case we’re creating an ADO connection object.

To open a recordset using this connection, you can code the following:

<%
set rs = Server.CreateObject(“ADODB.recordset”)
rs.Open “Products”, conn, 1, 3, 2
%>

The first parameter of the Open method is the table name. The second parameter is the Connection
object that was opened on the database. The third and fourth are the cursor type and lock type
to be used when accessing the data in the table. The last parameter specifies that the first pa-
rameter is a table name. (The first parameter could also have been a SQL statement, a stored
procedure name, or any other command supported by the data provider.)

After the recordset is successfully opened, you can navigate its records or use any of the meth-
ods available to the recordset object. We’ll see an example of this in the section “The Advanced
Data Control,” but first let’s examine how to create an ODBC data source you can use to open
the connection in the first place.

Now that we’ve seen how to create recordset objects and ODBC data sources, it’s time to put
that knowledge to use. The recordset object provides you with access to the fields in the un-
derlying data source. If the recordset was opened using an updatable cursor and lock type, you
can modify any updatable field and use the object’s Update method to store the changes back
to the data source.

Remember that because this is a server-side activity, you must have some means of submitting
any data modifications to the Web server. For this example we’ll use an HTML form with a
submit button that activates an Active Server Page file. This file outputs the data for a given
card onto the form. The code for this Active Server Page file is provided in Listing 20.1. The
ODBC data source used in these files points to the cards.mdb file created for the trading card
database. The data could also have been provided by a DHTML DSO that can access ODBC
data sources.

Data Awareness

<html><head><title>Data Editing Form</title></head>

<body>
<%set conn = server.createobject(“ADODB.connection”)
conn.open “DSN=Cards”

set rs = Server.createobject(“ADODB.recordset”)
rs.open “Select * from Cards where CardID = “ + request(“CardID”), conn, 3, 1, 1
%>

<form method=”POST” action=”update.asp?CardID=<%=request(“CardID”)%>”>
 <p>Year: <input type=”text” name=”Year” size=”20" value=”<%=rs(“Year”)%>”></p>
 <p>Issuer: <input type=”text” name=”Issuer” size=”20"
 value=”<%=rs(“Issuer”)%>”></p>
 <p>Set Name: <input type=”text” name=”SetName” size=”20"
 value=”<%=rs(“SetName”)%>”></p>
 <p>Card Number: <input type=”text” name=”CardNumber” size=”20"
 value=”<%=rs(“CardNumber”)%>”></p>
 <p>Description: <input type=”text” name=”Description” size=”50"
 value=”<%=rs(“Description”)%>”></p>
 <p>Grade: <input type=”text” name=”Grade” size=”20"
 value=”<%=rs(“Grade”)%>”></p>
 <p>Value: <input type=”text” name=”Value” size=”20"
 value=”<%=rs(“Value”)%>”></p>
 <p><input type=”submit” value=”Submit Changes” name=”B1">
 <input type=”reset” value=”Reset”
 name=”B2"></p>
</form>
</body></html>

As you can see, this is a pretty straightforward piece of code. A connection object and a recordset
object are opened to retrieve the data from the database. Then an HTML <FORM> tag is started.
The action for this form is another Active Server Page, which takes posted data from the form
as well as a URL parameter specifying the value for the CardID field. Then a text box is output
for each field that can be updated. The initial value for each text box is taken from the recordset
opened earlier in the page (this is specified in the VALUE element of each <INPUT> tag). Finally,
the form’s buttons are placed onto the page.

The update.asp file referenced in the <FORM> tag’s ACTION element is shown in Listing 20.2.

<html><head><title>Submit Changes</title></head>
<body>
<%set conn = server.createobject(“ADODB.connection”)
conn.open “DSN=Cards”

set rs = Server.createobject(“ADODB.recordset”)
rs.open “Select * from Cards where CardID = “ + request(“CardID”), conn, 1, 2, 1

rs(“Year”) = request(“Year”)
rs(“Issuer”) = request(“Issuer”)
rs(“SetName”) = request(“SetName”)

Updating the Data

20

rs(“CardNumber”) = request(“CardNumber”)
rs(“Description”) = request(“Description”)
rs(“Grade”) = request(“Grade”)
rs(“Value”) = request(“Value”)

on error resume next
rs.Update

if err then %>
<h2 align=”center”>An error occurred updating the database:</h2>
<h3 align=”center”><%= err.description %></h3>
<% else %>
<h2 align=”center”>Updates successful!</h2>
<% end if %>
</body></html>

Again, the code opens a connection and a recordset object. The recordset’s fields are then up-
dated with the data passed from the HTML form in the request object. The request object is
referenced using the NAME element from the form’s <INPUT> elements. The recordset’s Update
method is then invoked, and the result of the method is output to the browser.

This is all well and good, you’re probably thinking, but what has this got to do with DHTML?
To be honest, the only thing it has to do with DHTML is to serve as a stark contrast to the
method used with DHTML. Using the Active Server Page approach requires several trips to
the server: one trip to retrieve the data placed on the HTML form and a round-trip to post the
updated data to the database and to determine whether the update was successful.

Using DSOs, as we’ll see in the next section, does not require an HTTP round-trip. Instead,
the client-side DSO caches the data and communicates updates directly with the server-side
RDS components. This lightens the load on the Web server and provides a much more effi-
cient data access mechanism.

Microsoft’s Remote Data Services (RDS) provide the capability to update data contained in
ODBC-compliant data sources using a client-side DSO. The RDS provides complete data-
base connectivity to your Internet and intranet applications. By combining the RDS with
ActiveX components, HTML, and VBScript, you can quickly and easily port existing Visual
Basic applications to Web-based applications.

With the RDS, you can do the following:

■ Bind data-aware controls, including DHTML elements, to data on remote servers.

■ View, edit, and update this remote data.

■ Utilize the DSO’s client-side data caching capabilities, thereby reducing the required
number of round-trips to the HTTP or database server.

■ Create three-tiered systems using the Web server or server-based ActiveX components
as the middle tier.

Data Awareness

■ Secure the data using the Secured Sockets Layer technologies available with Internet
Information Server.

All these benefits are extremely useful to Web site developers, both for Internet and intranet
applications. The RDS provides you with a complete platform upon which to develop data-
aware Web-based applications.

To use RDS, you’ll need the following software configuration on your Web server machine:

■ Microsoft Windows NT Server, version 4.0 Service Pack 3 or later, or Windows 95.

■ Internet Information Server (IIS) 3.0 or Windows 95 Personal Web Server, both with
Microsoft Active Server Pages installed.

■ An ODBC Level 2–compliant data source, such as Microsoft SQL Server 6.5 or
Microsoft Access 97. (See the earlier section “Creating an ODBC Data Source” for
details on setting up a data source.)

To install the server-side RDS system files to your IIS machine, download the necessary files
from the Microsoft Web site at http://www.microsoft.com/data. As of this writing, the latest
version of RDS was a beta of version 1.5.

The client side of RDS, the Advanced Data Control, is installed automatically when IE4 is
installed. As of this writing, the ADC had not been successfully tested with the Netscape
Navigator 4.0.

More information regarding the RDS can be obtained from Microsoft’s Internet Client Soft-
ware Developer’s Kit, downloadable from http://www.microsoft.com/workshop/prog/inetsdk/.

The ADC is the first tier of the RDS’s three-tiered data access approach. The ADC provides all
of the capabilities of the TDC (discussed in Chapters 18 and 19), plus the capability to access
remote data and to update that data.

The class ID for the ADC is BD96C556-65A3-11D0-983A-00C04FC29E33. To insert an ADC into
a Web page, use the following syntax:

<OBJECT CLASSID=”clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
 ID=”AdvancedDataControl”
</OBJECT>

You can also specify the initial values for properties such as Connect, Server, and SQL in <PARAM>
tags within the <OBJECT> tag. We’ll examine the properties and methods of the ADC in the
following sections.

The ADC has many of the same properties that the TDC has. Several properties, such as those
involving sorting and filtering, provide the same functionality as the TDC but use different
(often more straightforward) script code.

Updating the Data

20

Connect
The Connect property sets or returns the ODBC data source’s connection string. This string is
made up of the name given to the data source as well as any user authentication information
necessary to complete the connection to the data source. The format for this string is as fol-
lows, where user is the name of a valid user on the database and password is that user’s database
login password:

DSN=DataSourceName;UID=user;PWD=password

This property can be set at runtime using VBScript code or at design time using the <PARAM>
tag found in the object’s <OBJECT> tag.

ExecuteOptions
The ExecuteOptions property’s setting controls asynchronous operation of the ADC. Left at
its default value (0), no asynchronous operation takes place. The property can also be set to
adAsyncExecute or adAsyncFetch, in which case data is retrieved asynchronously. You can check
the value of the State property after a Refresh or Reset method to verify whether a query is
still executing (adStateExecuting), an error has occurred (adStateClosed), or the fetch has
completed (adStateOpen).

adAsyncExecute

ADCVBS.INC the C:\Program Files\Common Files\System\MSADC

FilterColumn FilterCriterion FilterValue
FilterColumn, FilterCriterion, and FilterValue, in combination with the Reset method, allow
you to filter the data available in the ADC’s recordset. The FilterColumn property holds the
name of the field to be used to evaluate the filter. The FilterCriterion property holds the
evaluation operator to be used when evaluating the filter. Valid values for this string property
are <, <=, >, >=, =, and <> (not equal). The FilterValue property is a string property that holds
the value used to filter the data. After these properties have been set, invoking the Reset method
executes the filter and replaces the current recordset with a read-only recordset containing only
records matching the filter.

For example, to filter the cards.mdb database for cards whose year field equals 1976, the fol-
lowing code would be used:

Cards.FilterColumn = “year”
Cards.FilterCriterion = “=”
Cards.FilterValue = “1976”
Cards.Reset

Data Awareness

By invoking Reset(True), you can filter the data available from a previous filter. If you specify
Reset(False) or do not provide this optional parameter, the original data set is considered for
the filter evaluation. For example, to view only those cards from 1976 having a value field greater
than $10, you would use the following code:

Cards.FilterColumn = “year”
Cards.FilterCriterion = “=”
Cards.FilterValue = “1976”
Cards.Reset

Cards.FilterColumn = “value”
Cards.FilterCriterion = “>”
Cards.FilterValue = “10”
Cards.Reset(True)

Recordset SourceRecordset
Recordset and SourceRecordset are ActiveX Data Object recordsets that provide you with a
means of accessing the ADC’s underlying data. The Recordset property is read-only and will
be the most often used of these two. This is the recordset provided by the default RDS system
(that is, without using custom ActiveX components in the middle tier).

The SourceRecordset property is a write-only property that you will set to the recordset ob-
ject returned by a custom ActiveX component (also known as a business object). Creating busi-
ness objects for use with RDS is an advanced topic best left for an entire book on the subject of
RDS. Microsoft’s Web site has plenty of information on creating these objects as well. Visit
http://www.microsoft.com/data/rds/rds_doc/default.htm to view the Remote Data Services
documentation.

Server
The Server property, which can be set in a <PARAM> tag or at runtime, specifies the name of the
HTTP server machine as well as the protocol used to communicate with that machine (http:
or https:). This property is necessary for the ADC to connect with the server-side compo-
nents of the RDS system.

SQL
The SQL property, which can be set in a <PARAM> tag or at runtime, specifies the query string
used to retrieve data from the data source. This property should be set to a valid SQL-92 syn-
tax SQL statement such as Select * From Cards. Unless you’re using a custom business object
for the middle tier, this property is required in order for the ADC to retrieve any data.

You are not limited to SQL statements that return data. You can also execute any action que-
ries, such as SQL UPDATE, that are supported by the ODBC driver for the data source that the
ADC is using. We’ll see an example of updating data with this method in the section “Updat-
ing Data Using the ADC.”

Updating the Data

20

SortColumn SortDirection
The SortColumn property specifies the name of the field to be used to sort the recordset’s data.
The SortDirection property specifies the order of the sort. Setting SortDirection to True in-
dicates an ascending sort order; setting it to False indicates descending sort order. After these
properties are set, invoke the Reset method to enact the new sort specification.

State
The State property returns the current state of the ADC’s recordset object. The possible val-
ues follow:

State Description

adStateClosed The recordset is closed.

adStateOpen The recordset is open.

adStateExecuting The ADC is executing asynchronously.

adStateFetching The ADC is fetching data asynchronously.

If an error occurs, the value of State changes to adStateClosed.

The ADC provides several methods similar to the TDC and two important methods that aren’t
provided by the TDC: CancelUpdate and SubmitChanges.

Cancel
The Cancel method, when invoked, cancels the current asynchronous operation. If the ADC
was asynchronously fetching records, the fetch is canceled. The State property is immediately
set to adStateClosed, and Recordset will evaluate to the value Nothing.

CancelUpdate
The CancelUpdate method discards any changes that have been made to the client-side copy of
the data. The values of the recordset’s fields are set to their values at the last Refresh method
call. Any data-bound controls have their data restored to the original values as well.

CreateRecordset
This method, another of the advanced features provided for use with custom middle-tier busi-
ness objects, allows you to create a new recordset object and specify its layout (that is, infor-
mation about the fields it contains).

MoveFirst MoveLast MoveNext MovePrevious
MoveFirst, MoveLast, MoveNext, and MovePrevious, used mostly with current record binding,
are used to navigate the ADC’s recordset object. Typically, pages that use current record binding
will provide buttons for navigating forward and backward through the data, as well as moving
to the first or last record. These methods provide the muscle behind those buttons.

Data Awareness

Refresh
The Refresh method causes the ADC to query the data source, fetch a fresh copy of the data
set, and to discard any changes that have not been saved. The Server, Connect, and SQL prop-
erties must be set prior to invoking Refresh. This method differs from the Reset method in
that it actually goes out to the remote data source and retrieves the data again. After Refresh is
called, the first record in the recordset is made the current record.

Reset
The Reset method executes the sort or filter specified by the SortColumn, SortDirection,
FilterValue, FilterCriterion, and FilterColumn properties. This operation acts on the cached
copy of the recordset, thus preventing a round-trip to the server.

This method has an optional parameter that specifies whether the filter should be applied to
the current filtered data (pass True) or to the original copy of the recordset before any previous
filters were applied (leave the parameter off or set to False).

SubmitChanges
The SubmitChanges method is used to save the modified data to the underlying data source.
The Server, Connect, and SQL properties must be set prior to invoking SubmitChanges.

You do not have to invoke this method each time a record is updated. Instead, you can allow
the user to update a “batch” of records and then invoke SubmitChanges. Using this method,
either all updates succeed or all updates fail.

This method cannot be used if you’re using a custom business object on the middle tier.

Now that we’ve learned all about the properties and methods of the ADC, let’s put that knowl-
edge to use. We’ve already seen how to update data using Active Server Pages. This involves
several Active Server Page files and several round-trips between the browser, the Web server,
and the database.

Using the ADC, the number of round-trips will be cut dramatically, thanks to the client-side
data caching. For example, there will only be a single round-trip made to retrieve the data and
editing page. Subsequently, data will be retrieved from the client-side data cache instead of
having to open an Active Server Page file such as the one in Listing 20.1.

This section discusses two methods of updating the data: using a SQL UPDATE statement and
using the ADC’s SubmitChanges method.

The first step is to create a DHTML page to be used when updating the database. We’ll use
current record binding and place text boxes on the page to hold the field values. We could also
use a data-bound grid to allow editing of many records at once.

Updating the Data

20

Figure 20.4 shows the page we’ll use to edit the data. The First, Prev, Next, and Last buttons
are used to move the record pointer through the recordset. The Requery button forces a re-
fresh of the data cache, and the Save Changes button stores the data to the database. The HTML
for this page is shown in Listing 20.3.

<html><head><title>Trading Card Database Editor</title></head>
<body
bgcolor=”ffffff” text=”000000" link=”000080" language=”VBS” onload=”Init”>

<object classid=”clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
 id=”ADC” height=”1" width=”1">
</object>

<h1 align=”center”>Trading Card Database Editor</h1>

<p align=”center”>

</p>
<div align=”center”><center>

<table border=”0" cellpadding=”5">
 <tr>
 <td align=”right”>CardID:</td>
 <td><input type=”text” name=”CardID” size=”20" datasrc=”#ADC”
 datafld=”CardID”></td>
 </tr>
 <tr>
 <td align=”right”>Year:</td>

continues

The Trading Card
Database Editor page.

Data Awareness

 <td><input type=”text” name=”YearFld” size=”20" datasrc=”#ADC”
 datafld=”year”></td>
 </tr>
 <tr>
 <td align=”right”>Issuer:</td>
 <td><input type=”text” name=”Issuer” size=”20" datasrc=”#ADC”
 datafld=”Issuer”></td>
 </tr>
 <tr>
 <td align=”right”>Set Name:</td>
 <td><input type=”text” name=”SetName” size=”20" datasrc=”#ADC”
 datafld=”SetName”></td>
 </tr>
 <tr>
 <td align=”right”>Card Number:</td>
 <td><input type=”text” name=”CardNumber” size=”20" datasrc=”#ADC”
 datafld=”CardNumber”></td>
 </tr>
 <tr>
 <td align=”right”>Description:</td>
 <td><input type=”text” name=”Description” size=”50" datasrc=”#ADC”
 datafld=”Description”></td>
 </tr>
 <tr>
 <td align=”right”>Grade:</td>
 <td><input type=”text” name=”Grade” size=”20" datasrc=”#ADC”
 datafld=”Grade”></td>
 </tr>
 <tr>
 <td align=”right”>Value:</td>
 <td><input type=”text” name=”ValueFld” size=”20" datasrc=”#ADC”
 datafld=”CardValue”></td>
 </tr>
</table>
</center></div>

<p align=”center”><input type=”BUTTON” name=”First” value=”First”
onclick=”MoveFirst”> <input type=”BUTTON” name=”Prev” value=”Prev”
onclick=”MovePrev”> <input type=”BUTTON” name=”Next” value=”Next”
onclick=”MoveNext”> <input type=”BUTTON” name=”Last” value=”Last”
onclick=”MoveLast”>

<input type=”BUTTON” name=”Run” value=”Requery” onclick=”Requery”>
<input type=”BUTTON” name=”Update” value=”Save Changes” onclick=”Update”>
<input type=”BUTTON” name=”Cancel” value=”Cancel Changes” onclick=”Cancel”> </p>

<p>SQL UPDATE:

<input type=”text” name=”SQL” size=”100"></p>

<script language=”VBScript” onload=”Init”><!--

SUB MoveFirst
 ADC.Recordset.MoveFirst
END SUB

SUB MoveNext
 On Error Resume Next

Updating the Data

20

 ADC.Recordset.MoveNext
 IF ERR.Number <> 0 THEN
 ADC.Recordset.MoveLast ‘If already at end of recordset stay at end.
 END IF
END SUB

SUB MovePrev
 On Error Resume Next
 ADC.Recordset.MovePrevious
 IF ERR.Number <> 0 THEN
 ADC.Recordset.MoveFirst ‘If already at start of recordset stay at top.
 END IF
END SUB

SUB MoveLast
 ADC.Recordset.MoveLast
END SUB

‘Submits edits made and pull a clean copy of the new data.
SUB Update
 ssql = “Update Cards Set “
 ssql = ssql + “Year = “ + yearfld.value + “, “
 ssql = ssql + “Issuer = ‘“ + issuer.value + “‘, “
 ssql = ssql + “SetName = ‘“ + setname.value + “‘, “
 ssql = ssql + “CardNumber = “ + cardnumber.value + “, “
 ssql = ssql + “Description = ‘“ + description.value + “‘, “
 ssql = ssql + “Grade = ‘“ + grade.value + “‘, “
 ssql = ssql + “CardValue = “ + valuefld.value + “ “
 ssql = ssql + “WHERE CardID = “ + CardID.Value

 SQL.value = ssql

 ADC.SQL = ssql
 ADC.Refresh

 ADC.SQL = “Select * from Cards”
 ADC.Refresh

END SUB

‘Cancel edits and restores original values.
SUB Cancel
 ADC.CancelUpdate
END SUB

SUB Requery
 ADC.Server = “http://<%=Request.ServerVariables(“SERVER_NAME”)%>”
 ADC.Connect = “DSN=Cards”
 ADC.SQL = “Select * from Cards”
 ADC.Refresh

END SUB

SUB Init
 ADC.Server = “http://<%=Request.ServerVariables(“SERVER_NAME”)%>”
 ADC.Connect = “DSN=Cards”
 ADC.SQL = “Select * from Cards”

continues

Data Awareness

 ADC.Refresh

END SUB

--></script>
</body></html>

The first major item in this page is the ADC’s <OBJECT> tag. None of the design-time param-
eters are set. Instead, a procedure named Init is used to initialize the ADC control. Each of the
buttons also has its own procedure that is executed in response to the onclick event for each
button. The Update procedure is where most of the action takes place. We’ll discuss this proce-
dure in the next two sections.

As mentioned in the section “Updating Data Using the ADC,” there are two ways to update a
record using the ADC: You can execute an SQL UPDATE statement, or you can use the
SubmitChanges method. I stumbled upon the SQL statement method in response to a bug in
the beta version of RDS that prevented updates to Microsoft Access data sources. It seems that
the current beta of version 1.5 would not actually update the database but also wouldn’t pro-
vide any indication that it hadn’t updated the data.

For this reason I needed to come up with an alternative method of updating the database. The
Update procedure provided in Listing 20.3 utilizes the SQL UPDATE method. The UPDATE state-
ment is generated by retrieving the value of each text box on the form with the exception of the
CardID field, which is not an editable field. The SQL statement is then assigned to the ADC’s
SQL property, and the Refresh method is invoked. Immediately following this, the original
recordset is restored by resetting the SQL property to its original value and once again invoking
Refresh.

There are a few drawbacks to using this method:

■ You cannot batch the updates as you can with the SubmitChanges method.

■ Every field’s value is included in the UPDATE statement, not just the fields that have
been updated. Although not significant, this does result in a few more bytes being sent
over the wire to the RDS server machine.

For the present time, however, this method does have the major advantage of actually working
with an Access data source. For now, this advantage greatly outweighs the two disadvantages.
By the time you read this chapter, we hope that the RDS’s SubmitChanges method (discussed
in the following section) will have been fixed to work properly with Access data source.

Updating the Data

20

SubmitChanges
To use the SubmitChanges method, you simply need to replace the Update procedure in Listing
20.3 with the procedure found in Listing 20.4.

Update SubmitChanges

SUB Update
 ADC.SubmitChanges
 ADC.Refresh
END SUB

As you can see, this method requires significantly less code. It also overcomes the two disad-
vantages of the previous method.

This chapter presented two methods of updating data in an ODBC data source. The Active
Server Page method, which uses ActiveX Data Objects, is an inefficient means of updating data
because it requires several round-trips to the Web server in order to accomplish the update.

On the other hand, using DHTML and the RDS, you can create powerful, efficient Web-
based database applications. The RDS takes advantage of a DHTML client-side DSO, the ADC,
to provide the caching and client-side data-manipulation efficiency necessary for large-scale
Web-based database applications.

In Chapter 21, “Summing Up—A Practical Application,” we’ll build a complete application
based upon the RDS, the ADC, and our trading card database.

Data Awareness

Summing Up—A Practical Application

21

by Craig Eddy

■

■

■

■

■

■

■

Data Awareness

In Chapters 18–20 you learned a great deal about all the basics of data binding using Dynamic
HTML (DHTML). This section starts with Chapter 18, “Presenting Your Data with Dynamic
HTML,” and the most essential part of data binding—providing a means to display the data
to the user. This is followed by Chapter 19, “Client-side Data Manipulation,” which discusses
ways you can use DHTML to allow users to rearrange how they view the available data. Fi-
nally, Chapter 20, “Updating the Data,” shows you how to use the Remote Data Services (RDS)
to allow browsers to update the data in your ODBC databases.

In this chapter, I present the culmination of the work done thus far. The chapter builds on the
database and examples used throughout the other three chapters of Part V, “Data Awareness.”
In fact, many of the pages used in previous chapters will be repeated with some enhancements
for this chapter. The text discussing these pages will only cover the differences in the rendition
of the pages here. I provide a reference to the original discussion of these pages for you to re-
view if necessary.

The application created is based completely on DHTML and the Microsoft RDS. All the pro-
gramming is done with DHTML and VBScript. You won’t need to utilize any other program-
ming environment to make this application work. You will need a Web server application,
though, as discussed in the “Software Requirements” section.

After I list the software you’ll need, I show you how to set up the Web site used to house the
application. Finally, we’ll review the database being used to store the trading card data.

After all this setup information is covered, I’ll get into the meat of the chapter—the actual Web
files that make the application tick. These sections present the complete listing for each page
and then provide some discussion about how these pages function. The pages as well as the
database are also provided in the Web site at http://www.htmlguru.com.

The software requirements for this application are the basic requirements for Microsoft’s RDS.
These are introduced in Chapter 20, but I’ll repeat them here. I’ll also let you know which one
I use in this chapter if there’s a choice available. The requirements are as follows:

■ Microsoft Windows NT Server, version 4.0 Service Pack 3 or higher, or Windows 95.

■ Internet Information Server (IIS) 3.0 or Windows 95 Personal Web Server (PWS),
both with Microsoft Active Server Pages (ASPs) installed. For this chapter I use the
PWS.

■ Microsoft Internet Explorer 4.0.

■ Microsoft Remote Data Services version 1.5 or higher. The files and installation
instructions are available for download at http://www.microsoft.com/data.

■ An ODBC Level 2–compliant data source, such as Microsoft SQL Server 6.5 or
Microsoft Access 97. For this chapter I use Access 97.

Summing Up—A Practical Application

21In addition to these, you’ll also need an editor if you plan to enter or edit the pages yourself. I’d
recommend using either Microsoft FrontPage (which is what I used to develop the applica-
tion) or Visual InterDev.

Because this application uses the RDS, you’ll need a Web server and a Web site onto which
you’ll deploy the application. By site I simply mean a directory that the Web server recognizes
as housing the application’s files. You’ll create the pages in this directory. When the pages are
viewed by the browser, the URL will include the virtual directory name you assign to the site,
not the physical pathname you see in Windows Explorer for this directory.

In this section I’ll walk you through how to create the site using the PWS. The steps are very
similar for the IIS Web server, so I’ll only cover the PWS here. In fact, if you use the HTML
Administration features of IIS instead of the IIS Server Manager, the steps will be practically
identical.

After you have PWS installed and running on your machine, follow these steps to create the
directory to house the application:

1. Run Control Panel by using the Start menu’s Settings | Control Panel menu item.
Double-click the Personal Web Server icon.

2. On the Personal Web Server Properties dialog, select the Administration tab. Click
the Administration button.

3. Internet Explorer will load and display the Internet Services Administrator page, as
shown in Figure 21.1.

The Internet Services
Administrator start
page.

Data Awareness

4. Click the WWW Administration link. On the page that is displayed, click the Directo-
ries tab.

5. A page similar to the one shown in Figure 21.2 is displayed. Scroll this page, if
necessary, until you see a link labeled Add… in the Action column. Click this link.

The Internet Services
Administrator
Directories page.

6. The Directory Add page, shown in Figure 21.3, is displayed. If you’ve already created
the directory you’ll use to store the pages, enter the directory’s path in the Directory
text box. If you haven’t created the directory yet or can’t remember the pathname,
click the Browse button. The page that is displayed contains a tree showing the
directory structure on the machine. There’s also a text box for entering the name of a
new subdirectory. Navigate to the location you want to use for the site. If you’re
creating a new directory, enter a directory name in the New Directory text box and
click the Create Directory button.

7. After the Directory text box on the Directory Add page contains a valid directory
path, enter cards in the Directory Alias text box of the Virtual Directory section of the
page. Then, check the Execute checkbox in the Access section. Click the OK button.

8. The Directories page is loaded again, now showing the cards virtual directory. If
you’ve made a mistake entering the settings for the directory, you can click the Edit
link next to the cards directory to modify the settings.

9. Close Internet Explorer. The site is now ready to use.

Summing Up—A Practical Application

21

Although we used the database in Chapter 20, I’ll cover how to set up the database here as well.
You’ll also need to create an ODBC data source for the database. Instructions for doing so are
covered in the section “Creating an ODBC Data Source” in Chapter 20.

The database consists of a single table, Cards, that holds the data for the trading cards in my
collection. The design of this table is shown in Table 21.1.

Cards

Field Name Data Type Field Size

CardID AutoNumber Long Integer

Year Number Integer

Issuer Text 50

SetName Text 50

CardNumber Number Integer

Description Text 50

Grade Text 10

CardValue Currency

The Internet Services
Administrator
Directory Add page.

Data Awareness

That’s all there is to it. You can create this database in any database platform you want to use,
as long as it provides an ODBC driver.

After you’ve created the database, create an ODBC data source for the database. Name the
data source Cards to match the pages of this chapter. If this name is already used by another
data source, you can choose a different name. You can then use the Setup page (discussed in
the section “The Application Setup Page”) to change the data source name that the application
uses or change all the code to use the alternate data source name.

The home page serves as the launching pad for the application. You give the home page a
filename that matches the Default Document setting for your Web server. For the PWS, the
value of this setting is found on the Directories tab of the WWW Administration page. The
default value is default.htm.

The home page for the trading card application, shown in Figure 21.4, provides links to the
other pages in the application as well as a form that can be used to search for cards.

The home page for the
trading card applica-
tion.

The search form allows the user to select a field to search, an operator to use in the search, and
a value to search on. The information entered here will be provided to an ASP, list.asp, which
is discussed in the section “The Card List Page.” list.asp uses this information to populate
the FilterColumn, FilterCriterion, and FilterValue properties of the Advanced Data Con-
trol (see the section “The Advanced Data Control” in Chapter 20 for more details on these
properties).

Summing Up—A Practical Application

21The code for default.htm is provided in Listing 21.1.

default.htm

<html>
<head><title>Home Page</title></head>
<body>
<h2>Trading Card Database Maintenance Application
</h2>
<blockquote>
 <form method=”POST” action=”list.asp”>
 <table border=”0" width=”100%”>
 <tr>
 <td width=”29%”><h3>
View List of Cards</h3></td>
 <td width=”71%” align=”center” rowspan=”4"><h3>Search For:</h3>
 <h3><select name=”FilterColumn” size=”1">
 <option selected value=”Year”>Year</option>
 <option value=”Issuer”>Issuer</option>
 <option value=”SetName”>Set Name</option>
 <option value=”CardNumber”>Card Number</option>
 <option value=”Description”>Description</option>
 <option value=”Grade”>Grade</option>
 <option value=”CardValue”>Card Value</option>
 </select> <select name=”FilterCriterion” size=”1">
 <option selected value=”=”>=</option>
 <option value=”<”><</option>
 <option value=”>”>></option>
 <option value=”<=”><=</option>
 <option value=”>=”>>=</option>
 <option value=”<>”><></option>
 </select> <input type=”text” name=”FilterValue” size=”20"></h3>
 <h3><input type=”submit” value=”Search” name=”B1">
<input type=”reset” value=”Reset”
 name=”B2"></h3>
 </td>
 </tr>
 <tr>
 <td width=”29%”><h3>
Edit Cards</h3>
 </td>
 </tr>
 <tr>
 <td width=”29%”><h3>
Add a New Card</h3>
 </td>
 </tr>
 <tr>
 <td width=”29%”><h3>
Application Setup</h3>
 </td>
 </tr>
 </table>
 </form>
</blockquote>
</body></html>

Data Awareness

The Application Setup page, shown in Figure 21.5, allows you to specify values for some of the
variables used in the application. The Submit button activates an ASP (submitprfs.asp) that
stores the entered values in the browser’s cookie file.

The Application Setup
page.

You can enter the protocol and machine name of the database server. This is necessary if the
database server is not on the same machine as the Web server or if you’re using a protocol other
than HTTP to access the RDS.

If you’ve used a name other than Cards for the database’s ODBC data source, enter that in the
Data Source Name text box.

Finally, the default value for the DATAPAGESIZE element of any data-bound tables is entered in
the final text box. This element controls table paging, first introduced in the section “Using
Table Paging” of Chapter 19. If 0 is entered, table paging is disabled. Otherwise, the value en-
tered will be the number of records displayed in each table page.

When the Submit button is clicked, submitprfs.asp stores the form’s data in the browser’s
cookie file. The ASP code then redirects the browser back to the home page.

The code for setup.asp is provided in Listing 21.2. The code for submitprfs.asp is provided
in Listing 21.3.

Summing Up—A Practical Application

21setup.asp

<html>
<head><title>Application Setup</title></head>

<body>
<% servername = request.cookies(“servername”)
 if len(servername)=0 then
 servername = “http://” + Request.ServerVariables(“SERVER_NAME”)
 end if
 datapagesize = request.cookies(“pagesize”)
 if len(datapagesize) = 0 then
 datapagesize = “0”
 end if
 dsn = request.cookies(“dsn”)
 if len(dsn) = 0 then
 dsn = “Cards”
 end if
%>

<h2 align=”center”>Application Setup</h2>

<form method=”POST” action=”submitprfs.asp” align=”center”>
 <div align=”center”><div align=”center”>
<center>
<table border=”0" style=”font-family: Tahoma; font-size: 9pt” width=”325">
 <tr>
 <td width=”109">Server: </td>
 <td width=”208" align=”center”><input type=”text” name=”server” size=”20"
 value=”<%=servername%>”></td>
 </tr>
 <tr>
 <td width=”109">Data Source Name: </td>
 <td width=”208" align=”center”>
 <input type=”text” name=”dsn” size=”20" value=”<%=dsn%>”></td>
 </tr>
 <tr>
 <td width=”109">Table Page Size: </td>
 <td width=”208" align=”center”>
 <input type=”text” name=”pagesize” size=”20" value=”<%=datapagesize%>”>
 </td>
 </tr>
 <tr>
 <td width=”109"></td>
 <td width=”208" align=”center”>(use 0 to disable table paging)</td>
 </tr>
</table>
 </center></div><div align=”center”><center><p>
 <input type=”submit” value=”Submit” name=”B1">
 <input type=”reset” value=”Reset” name=”B2"> </p>
 </center></div></div>
</form>
</body></html>

Data Awareness

submitprfs.asp

<%
response.cookies(“servername”) = request(“server”)
response.cookies(“dsn”) = request(“dsn”)
response.cookies(“pagesize”) = request(“pagesize”)
response.redirect “default.htm”
%>
<html>
<head><title>Submit Setup</title></head>
<body>
<p align=”center”>
If you’re viewing this page, your browser doesn’t support redirection. </p>
<p align=”center”>
Click here to go to the Home Page. </p>
</body></html>

The editing page, shown in Figure 21.6, is the same page introduced in Chapter 20’s “Updat-
ing Data Using the ADC” section, with a minor change or two. The code for this page,
editor.asp, is provided in Listing 21.4.

The page uses current record binding (first introduced in the section “Using Data-bound HTML
Elements” of Chapter 18) to display a single record from the data source object. There are buttons
that are used to navigate the recordset, plus buttons used for updating the data.

The Database Editor
page.

Summing Up—A Practical Application

21The first difference is apparent at the top of the listing. The page’s server-side code first re-
trieves the setup page options stored in the cookie file and assigns them to local variables that
will be used later in the page. Another addition to this page is the Add New Card button. This
button invokes a procedure that uses the window.navigate method to load the Add New Card
page.

This page also sports a Delete button, which will delete the current record.

editor.asp

<html>
<% servername = request.cookies(“servername”)
 if len(servername)=0 then
 servername = “http://” + Request.ServerVariables(“SERVER_NAME”)
 end if
 dsn = request.cookies(“dsn”)
 if len(dsn) = 0 then
 dsn = “Cards”
 end if
%>

<head><title>Trading Card Database Editor</title></head>

<body bgcolor=”ffffff” text=”000000" link=”000080" language=”VBS”
 onload=”init”>

<h1 align=”center”>Trading Card Database Editor</h1>
<div align=”center”><center>

<table border=”0" cellpadding=”5">
 <tr>
 <td align=”right”>CardID:</td>
 <td>
 <input type=”text” name=”CardID” size=”20"
 datasrc=”#ADC” datafld=”CardID”>
 </td>
 </tr>
 <tr>
 <td align=”right”>Year:</td>
 <td>
 <input type=”text” name=”YearFld” size=”20"
 datasrc=”#ADC” datafld=”year”>
 </td>
 </tr>

continues

Data Awareness

 <tr>
 <td align=”right”>Issuer:</td>
 <td>
 <input type=”text” name=”Issuer” size=”20"
 datasrc=”#ADC” datafld=”Issuer”>
 </td>
 </tr>
 <tr>
 <td align=”right”>Set Name:</td>
 <td>
 <input type=”text” name=”SetName” size=”20"
 datasrc=”#ADC” datafld=”SetName”>
 </td>
 </tr>
 <tr>
 <td align=”right”>Card Number:</td>
 <td>
 <input type=”text” name=”CardNumber” size=”20"
 datasrc=”#ADC” datafld=”CardNumber”>
 </td>
 </tr>
 <tr>
 <td align=”right”>Description:</td>
 <td>
 <input type=”text” name=”Description” size=”50"
 datasrc=”#ADC” datafld=”Description”>
 </td>
 </tr>
 <tr>
 <td align=”right”>Grade:</td>
 <td>
 <input type=”text” name=”Grade” size=”20"
 datasrc=”#ADC” datafld=”Grade”>
 </td>
 </tr>
 <tr>
 <td align=”right”>Value:</td>
 <td>
 <input type=”text” name=”ValueFld” size=”20"
 datasrc=”#ADC” datafld=”CardValue”>
 </td>
 </tr>
</table>
</center></div>

<p align=”center”>
<input type=”BUTTON” name=”First” value=”First” onclick=”MoveFirst”>
<input type=”BUTTON” name=”Prev” value=”Prev” onclick=”MovePrev”>
<input type=”BUTTON” name=”Next” value=”Next” onclick=”MoveNext”>
<input type=”BUTTON” name=”Last” value=”Last”
onclick=”MoveLast”></p>

<p align=”center”><input type=”button” name=”AddNew” value=”Add New Card”
onclick=”AddNewCard”> <input type=”button” name=”Delete” value=”Delete Card”
onclick=”DeleteCard”></p>

<p align=”center”> <input type=”BUTTON” name=”Update” value=”Save Changes”

Summing Up—A Practical Application

21onclick=”Update”> <input type=”BUTTON” name=”Cancel” value=”Cancel Changes”
onclick=”Cancel”> </p>

<p align=”center”>
<input type=”BUTTON” name=”Run” value=”Requery” onclick=”Requery”></p>

<p>SQL UPDATE:

<input type=”text” name=”SQL” size=”100"></p>

<p>
<object classid=”clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
id=”ADC” height=”1" width=”1">
</object>
</p>
<script language=”VBScript” onload=”Init”><!--

SUB MoveFirst
 ADC.Recordset.MoveFirst
END SUB

SUB MoveNext
 On Error Resume Next
 ADC.Recordset.MoveNext
 IF ERR.Number <> 0 THEN
 ADC.Recordset.MoveLast
 END IF
END SUB

SUB MovePrev
 On Error Resume Next
 ADC.Recordset.MovePrevious
 IF ERR.Number <> 0 THEN
 ADC.Recordset.MoveFirst
 END IF
END SUB

SUB MoveLast
 ADC.Recordset.MoveLast
END SUB

SUB Update
 ssql = “Update Cards Set “
 ssql = ssql + “Year = “
 if isnumeric(yearfld.value) then
 ssql = ssql + yearfld.value + “, “
 else
 ssql = ssql + “0, “
 end if
 ssql = ssql + “Issuer = “
 if len(issuer.value) > 0 then
 ssql = ssql + “‘“ + issuer.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if

 ssql = ssql + “SetName = “
 if len(setname.value) > 0 then

continues

Data Awareness

 ssql = ssql + “‘“ + setname.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if
 ssql = ssql + “CardNumber = “
 if isnumeric(cardnumber.value) then
 ssql = ssql + cardnumber.value + “, “
 else
 ssql = ssql + “0, “
 end if
 ssql = ssql + “Description = “
 if len(description.value) > 0 then
 ssql = ssql + “‘“ + description.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if
 ssql = ssql + “Grade = “
 if len(grade.value) > 0 then
 ssql = ssql + “‘“ + grade.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if

 ssql = ssql + “CardValue = “
 if isnumeric(valuefld.value) then
 ssql = ssql + valuefld.value + “”
 else
 ssql = ssql + “0”
 end if

 ssql = ssql + “WHERE CardID = “ + CardID.Value

 SQL.value = ssql

 ADC.SQL = ssql
 ADC.Refresh

 ADC.SQL = “Select * from Cards”
 ADC.Refresh

END SUB

SUB DeleteCard
 ssql = “DELETE FROM Cards WHERE CardID = “ + CardID.Value
 SQL.value = ssql

 ADC.SQL = ssql
 ADC.Refresh

 ADC.SQL = “Select * from Cards”
 ADC.Refresh
end sub

‘Cancel edits and restores original values.
SUB Cancel
 ADC.CancelUpdate
END SUB

Summing Up—A Practical Application

21SUB Requery
 ADC.Server = “<%=servername%>”
 ADC.Connect = “DSN=Cards”
 ADC.SQL = “Select * from Cards”
 ADC.Refresh

END SUB

Sub AddNewCard
 window.navigate “addnew.asp”

end sub

SUB Init
 ADC.Server = “<%=servername%>”
 ADC.Connect = “DSN=<%=dsn%>”
 ADC.SQL = “Select * from Cards”
 adc.refresh
END SUB

--></script>
</body></html>

The Add Card page (addcard.asp) is shown in Figure 21.7 and its listing is provided in Listing
21.5. This page is very similar to the Database Editor page; however, it has only three buttons:
Save Changes, Cancel Changes, and Add Another New Card. The Save Changes button fires
off a procedure that performs an SQL INSERT statement, inserting a new record with the infor-
mation entered on the form. If the INSERT is successful, the user is prompted as to whether he
or she wants to add another card. If the answer is yes, the page is reloaded. If no, the home page
is loaded.

The page used to add
cards to the database.

Data Awareness

addcard.asp

<html>
<head><title>Add A Trading Card</title></head>

<body
bgcolor=”ffffff” text=”000000" link=”000080" language=”VBS” onload=”init”>
<% servername = request.cookies(“servername”)
 if len(servername)=0 then
 servername = “http://” + Request.ServerVariables(“SERVER_NAME”)
 end if
 dsn = request.cookies(“dsn”)
 if len(dsn) = 0 then
 dsn = “Cards”
 end if
%>

<h1 align=”center”>Add Card</h1>
<div align=”center”><center>

<table border=”0" cellpadding=”5">
 <tr>
 <td align=”right”>Year:</td>
 <td><input type=”text” name=”YearFld” size=”20"></td>
 </tr>
 <tr>
 <td align=”right”>Issuer:</td>
 <td><input type=”text” name=”Issuer” size=”20"></td>
 </tr>
 <tr>
 <td align=”right”>Set Name:</td>
 <td><input type=”text” name=”SetName” size=”20"></td>
 </tr>
 <tr>
 <td align=”right”>Card Number:</td>
 <td><input type=”text” name=”CardNumber” size=”20"></td>
 </tr>
 <tr>
 <td align=”right”>Description:</td>
 <td><input type=”text” name=”Description” size=”50"></td>
 </tr>
 <tr>
 <td align=”right”>Grade:</td>
 <td><input type=”text” name=”Grade” size=”20"></td>
 </tr>
 <tr>
 <td align=”right”>Value:</td>
 <td><input type=”text” name=”ValueFld” size=”20"></td>
 </tr>
</table>
</center></div>

<p align=”center”> <input type=”BUTTON” name=”Update”
value=”Save Changes” onclick=”Update”> <input type=”BUTTON” name=”Cancel”
value=”Cancel Changes” onclick=”Cancel”></p>

<p align=”center”>
<input type=”button” name=”AddNew” value=”Add Another New Card”
 onclick=”AddNewCard”></p>

Summing Up—A Practical Application

21<p> </p>

<p>
<object classid=”clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
id=”ADC” height=”1" width=”1">
</object>
</p>
<script language=”VBScript” onload=”Init”><!--

SUB Update

 ssql = “Insert Into Cards (Year,Issuer,SetName,CardNumber, “
 ssql = ssql + “Description, Grade, CardValue) VALUES (“
 if isnumeric(yearfld.value) then
 ssql = ssql + yearfld.value + “, “
 else
 ssql = ssql + “0, “
 end if
 if len(issuer.value) > 0 then
 ssql = ssql + “‘“ + issuer.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if
 if len(setname.value) > 0 then
 ssql = ssql + “‘“ + setname.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if
 if isnumeric(cardnumber.value) then
 ssql = ssql + cardnumber.value + “, “
 else
 ssql = ssql + “0, “
 end if

 if len(description.value) > 0 then
 ssql = ssql + “‘“ + description.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if
 if len(grade.value) > 0 then
 ssql = ssql + “‘“ + grade.value + “‘, “
 else
 ssql = ssql + “NULL, “
 end if
 if isnumeric(valuefld.value) then
 ssql = ssql + valuefld.value + “)”
 else
 ssql = ssql + “0)”
 end if

 ADC.SQL = ssql
 ADC.Refresh
 if err = 0 then
 if Msgbox(“Add another card?”,4) = 6 then
 location.reload
 else
 window.navigate “default.htm”
 end if

continues

Data Awareness

 else
 msgbox “An error occurred.”
 end if

END SUB

SUB Cancel
 ADC.CancelUpdate
 yearfld.value = “”
 issuer.value = “”
 setname.value = “”
 cardnumber.value = “”
 description.value = “”
 grade.value = “”
 valuefld.value = “”

END SUB

Sub AddNewCard
 window.location.href = “addnew.asp”
end sub

SUB Init
 ADC.Server = “<%=servername%>”
 ADC.Connect = “DSN=<%=dsn%>;”
 ADC.SQL = “Select * from Cards”

END SUB

--></script>
</body></html>

The Card List page, shown in Figure 21.8, is first introduced in Chapter 19. The code for this
rendition is provided in Listing 21.6.

The sorting and filtering features of this page have been modified to match the properties and
methods available for the ADC. These properties and methods are introduced in the section
“Using the Advanced Data Control” in Chapter 20.

The page also checks the ASP request object to see whether any filter information was pro-
vided when the page was loaded. The home page, as you’ll recall from the section “Creating
the Home Page,” provides this information to the page if the user enters it and clicks its Search
button. If this information is provided in the request object, the Init procedure sets the ADC’s
filter properties, thus causing the data presented to the user to match the search criteria entered
on the home page.

Summing Up—A Practical Application

21

list.asp

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML//EN”>
<html>
<% servername = request.cookies(“servername”)
 if len(servername)=0 then
 servername = “http://” + Request.ServerVariables(“SERVER_NAME”)
 end if
 datapagesize = request.cookies(“pagesize”)
 if len(datapagesize) = 0 then
 datapagesize = “0”
 end if
 dsn = request.cookies(“dsn”)
 if len(dsn) = 0 then
 dsn = “Cards”
 end if
 filtercolumn = request(“filtercolumn”)
 filtercriterion = request(“filtercriterion”)
 filtervalue = request(“filtervalue”)
%>

<head>
<title>Trading Card List</title>
</head>

<body bgcolor=”#FFFFFF” language=”vbs” onload=”init”>

<p> </p>

<p>
<object classid=”clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
id=”ADC” height=”1" width=”1"

The page used for
displaying a list of
trading cards.

continues

Data Awareness

ondatasetcomplete=”dataloaded()”>
</object>
</p>

<p> </p>

<table id=”MyTable” border=”1" datasrc=”#ADC” datapagesize=”<%=datapagesize%>”
align=”center” cellpadding=”2">
<thead>
 <tr>
 <td onclick=”tableclick(‘year’)” align=”left”
 id=”year” bgcolor=”#00FFFF”><big>+Year</big></td>
 <td align=”left” bgcolor=”#00FFFF” onclick=”tableclick(‘cardnumber’)”
id=”CardNumber”><big>+Number</big></td>
 <td align=”left” onclick=”tableclick(‘setname’)” id=”setname”
 bgcolor=”#00FFFF”><big>Set Name</big></td>
 <td align=”left” onclick=”tableclick(‘issuer’)” id=”issuer”
 bgcolor=”#00FFFF”><big>Issuer</big></td>
 <td align=”left” onclick=”tableclick(‘description’)”
 id=”description” bgcolor=”#00FFFF”><big>Description</big></td>
 <td align=”left” onclick=”tableclick(‘grade’)”
 id=”grade” bgcolor=”#00FFFF”><big>Grade</big></td>
 <td align=”right” onclick=”tableclick(‘cardvalue’)”
 id=”Cardvalue” bgcolor=”#00FFFF”><big>Value</big></td>
 </tr>
</thead>
 <tr>
 <td><div datafld=”year”></div></td>
 <td><div datafld=”cardnumber”></div></td>
 <td><div datafld=”setname”></div></td>
 <td><div datafld=”issuer”></div></td>
 <td><div datafld=”description”></div></td>
 <td><div datafld=”grade”></div></td>
 <td width=”50" align=”right”><div datafld=”cardvalue”></div></td>
 </tr>
<tfoot>
 <tr>
 <td colspan=”6" align=”right” height=”40" bgcolor=”#000080">
 Total:</td>
 <td valign=”center” align=”right” bgcolor=”#000080">
 <div id=”TotalText”></div></td>
 </tr>
</tfoot>
</table>

<hr>
<% if datapagesize = 0 then %>

<p id=”pagesizetext” align=”center”>Table paging disabled.</p>
<% else %>

<p id=”pagesizetext” align=”center”>Page Size: 5</p>
<% end if %>

<p align=”center”><input type=”button”
value=”Previous Page” name=”B1"
onclick=”scrollpage(0)”> <input type=”button” value=”Next Page” name=”B1"

Summing Up—A Practical Application

21onclick=”scrollpage(1)”> </p>

<p align=”center”><input type=”button” value=”Decrease Page Size” name=”B1"
onclick=”pagesize(0)”>
<input type=”button” value=”Increase Page Size” name=”B1"
onclick=”pagesize(1)”></p>

<p align=”center”><input type=”button” value=”Disable Table Paging” name=”B1"
onclick=”pagesize(2)”></p>

<p> </p>

<h3 align=”center”>
To filter the data for a specific year, enter the year here and click
the Filter button:</h3>

<h3 align=”center”>Year: <input type=”text”
 name=”FilterYearTxt” size=”20"></h3>

<h3 align=”center”>
<input type=”button” value=”Filter” name=”B1" onclick=”filteryear(0)”>
<input type=”reset” value=”Reset” name=”B2" onclick=”filteryear(1)”></h3>

<hr>

<h3 align=”center”>To sort by any column, click the column’s header.</h3>

<hr>

<p><script language=”VBScript”><!--

sub tableclick(columnname)

if columnname <> “year” and
➥(left(document.all.item(“year”).innertext,1) = “+”
➥or left(document.all.item(“year”).innertext,1) = “-”) then
 document.all.item(“year”).innerHTML = “<big>” +
 ➥mid(document.all.item(“year”).innertext,2) + “</big>”
end if

if columnname <> “cardnumber” and
➥(left(document.all.item(“cardnumber”).innertext,1) = “+”
➥or left(document.all.item(“cardnumber”).innertext,1) = “-”) then
 document.all.item(“cardnumber”).innerHTML = “<big>” +
 ➥mid(document.all.item(“cardnumber”).innertext,2) + “</big>”
end if

if columnname <> “setname” and
➥(left(document.all.item(“setname”).innertext,1) = “+” or
➥left(document.all.item(“setname”).innertext,1) = “-”) then
 document.all.item(“setname”).innerHTML = “<big>” + ➥
 ➥mid(document.all.item(“setname”).innertext,2) + “</big>”
end if

if columnname <> “issuer” and
➥(left(document.all.item(“issuer”).innertext,1) = “+”
➥or left(document.all.item(“issuer”).innertext,1) = “-”) then

continues

Data Awareness

 document.all.item(“issuer”).innerHTML = “<big>” +
 ➥mid(document.all.item(“issuer”).innertext,2) + “</big>”
end if

if columnname <> “description” and
➥(left(document.all.item(“description”).innertext,1) = “+” or
➥left(document.all.item(“description”).innertext,1) = “-”) then
 document.all.item(“description”).innerHTML = “<big>” +
 ➥mid(document.all.item(“description”).innertext,2) + “</big>”
end if

if columnname <> “grade” and
➥(left(document.all.item(“grade”).innertext,1) = “+” or
➥left(document.all.item(“grade”).innertext,1) = “-”) then
 document.all.item(“grade”).innerHTML = “<big>” +
 ➥mid(document.all.item(“grade”).innertext,2) + “</big>”
end if

if columnname <> “cardvalue” and
➥(left(document.all.item(“cardvalue”).innertext,1) = “+” or
➥left(document.all.item(“cardvalue”).innertext,1) = “-”) then
 document.all.item(“cardvalue”).innerHTML = “<big>” +
 ➥mid(document.all.item(“cardvalue”).innertext,2) + “</big>”
end if

if left(document.all.item(columnname).innertext,1) = “+” then
 document.all.item(columnname).innerHTML = “<big>-” +
 ➥mid(document.all.item(columnname).innertext,2) + “</big>”
 ADC.sortcolumn = columnname
 ADC.sortdirection = false
elseif left(document.all.item(columnname).innertext,1) = “-” then
 document.all.item(columnname).innerHTML = “<big>+” +
 ➥mid(document.all.item(columnname).innertext,2) + “</big>”
 ADC.sortcolumn = columnname
 ADC.sortdirection = true
else
 document.all.item(columnname).innerHTML = “<big>+” +
 ➥document.all.item(columnname).innertext + “</big>”
 ADC.sortcolumn = columnname
 ADC.sortdirection = true
end if

adc.reset

end sub

sub filteryear(resetfilter)

if resetfilter then
 adc.refresh
else
 adc.filtercriterion = “=”
 adc.filtercolumn = “year”
 adc.filtervalue = filteryeartxt.value
 adc.reset(false)
end if

Summing Up—A Practical Application

21
end sub

sub scrollpage(direction)

if direction = 0 then
 mytable.previouspage
else
 mytable.nextpage
end if

end sub

sub pagesize(direction)

if direction = 0 and mytable.datapagesize > 1 then
 mytable.datapagesize = mytable.datapagesize - 1
 document.all.pagesizetext.innertext =
 ➥“Page Size: “ + cstr(mytable.datapagesize)
elseif direction = 1 then
 mytable.datapagesize = mytable.datapagesize + 1
 document.all.pagesizetext.innertext =
 ➥“Page Size: “ + cstr(mytable.datapagesize)
elseif direction = 2 then
 mytable.datapagesize = 0
 document.all.pagesizetext.innertext = “Table paging disabled”
end if

end sub

sub dataloaded()

while not(adc.recordset.eof)
 total = total + adc.recordset(“cardvalue”)
 adc.recordset.movenext
wend
document.all.totaltext.innertext = total

end sub

sub init
 Adc.Server=”<%=servername%>”
 adc.Connect=”DSN=<%=dsn%>”
 adc.SQL=”Select * from Cards”
<% if len(filtercriterion) > 0 and len(filtercolumn) > 0 and
 ➥len(filtervalue) > 0 then %>
 adc.filtercolumn = “<%=filtercolumn%>”
 adc.filtercriterion=”<%=filtercriterion%>”
 adc.filtervalue=”<%=filtervalue%>”
<% end if %>
 adc.refresh

end sub
--></script> </p>
</body></html>

Data Awareness

This chapter served as the summary for Part V, “Data Awareness.” Although most of the Web
pages are repeats from previous chapters, this is the first time I’ve combined them into a cohe-
sive unit, creating a usable, extendible Web-based database application.

Using these pages as a base, you can easily create any data-bound DHTML application to suit
your needs. Part VI, “Other Dynamic Techniques,” introduces you to many cool features avail-
able when using DHTML. These include transition effects, layers, and multimedia effects. After
you’ve completed Part VI, you might want to return to this chapter and spice up the pages
using these features.

■

■

■

■

Using Layers

22

by Ryan Peters

■

■

■

Other Dynamic Techniques

Layers aren’t a new concept. Desktop publishing and graphics packages have been using layers
for years, but only recently has this technology started to appear in Web technology. With the
release of Netscape Navigator and Communicator 4.0, layering has made a huge splash on the
Web. Whereas prior releases required the developer to use a complex layout of HTML tables,
graphics, and text, 4.0 brings the ease of simplicity that only layering makes possible. In this
chapter we examine HTML layers, their acceptance in the industry among competing stan-
dards, and simple ways to implement them. You’ll learn

■ What layers are and which browsers support them

■ How to create single- and multi-layered documents

■ The difference between cascading style sheets (CSS) and layers

■ How to safely use layers in your pages

For those of you familiar with applications such as Adobe Photoshop or Microsoft Publisher,
layers are nothing new. The concept of assigning an element a position above or below other
elements within a document makes layered documents extremely flexible when it comes to any
type of publishing. HTML layers are poised to create a new breed of Web page: faster, cleaner,
more dynamic—a revolution in the way we look at an online document. With an easy-to-use
HTML syntax, layering is a technology for everyone. Add the capability to control those layers
through JavaScript, and you have the basis for some pretty interactive Web sites.

The browser wars have been escalating over the past year, bringing a wealth of new technolo-
gies to our desktops. Prior to the release of the 4.0 browsers from Microsoft and Netscape,
you’ve enjoyed some model of compatibility between the two. With layering, that compatibil-
ity goes right out the door. Microsoft’s view of layers focuses on the CSS document model,
which allows a group of page elements to be grouped together in a CSS and any of those ele-
ments to be manipulated through JScript or VBScript. Although Netscape 4.0 supports CSS,
it supports a slightly different implementation and extends the style sheet’s properties in the
document object model through JavaScript—hence, JSS, or JavaScript style sheets.

To create layered page elements under an Internet Explorer browser, one simply modifies the
properties of a style sheet. Netscape’s browser offers an entirely new markup tag, <LAYER>, to
create layered documents. Internet Explorer does not recognize this tag; it simply ignores it
and processes any embedded HTML elements.

Currently, the only browser that supports the <LAYER> tag is the Netscape Navigator/
Communicator 4.0 and higher. Although some market studies say that Netscape still holds
more than 70 percent of the market share, some of that percentage are still older versions of the

Using Layers

22

Navigator software. When you’re thinking about implementing a layer-enhanced site, unless
you know that your target user group is sure to use the latest and greatest from Netscape, it’s best
to use layers to augment or complement existing work. I consider myself a tremendous Netscape
advocate, yet I’d be somewhat hesitant to deploy an entire site based on this technology.

It’s important to note that a lot of the functionality in layers can be duplicated, although not
as easily, in Microsoft’s Internet Explorer 4.0 (IE4) using CSS. Microsoft’s version of Dynamic
HTML (DHTML) is similar in function to Netscape’s but accomplishes absolute positioning,
animation and movement effects, and other tactics in a matter not completely compatible with
Netscape’s implementation of DHTML. The point is that similar tricks can be pulled off in
either browser, but not using the same code.

At first glance, JavaScript layers can be even more daunting than the first time you looked at
tables. My first quick peek at a multi-layered Netscape HTML document had me running for
cover, back to the safety and comfort of version 3.0. But, like the rest of you, curiosity got the
better of me, and late one night (or was it early in the morning?) I went back for a closer look.
I forget the exact page—it was buried somewhere on Netscape’s DevEdge site http://
developer.netscape.com/—but I was determined to get a handle on it. After printing out the
source code and staring relentlessly back and forth at the piece of paper in my hand and the
screen, it dawned on me how much sense layers actually made. If you look at a complex table
layout, it’s pretty easy to get lost among the <td> and <tr> shuffle. A closer look at the layers’
syntax showed that things that used to take an incredible amount of code or some artwork to
pull off were now relatively simple to do.

The jump into the realm of layers starts with a really quick page for this killer new design firm
called XYZ Webcrafters. XYZ is a pretty new company, so they’ve gone online with a really
basic page—no advanced design elements. Outside of some specific fonts, it’s pretty much the
same under about any browser out there. Being the new company that they are, XYZ doesn’t
have the resources yet to get a graphics guru, so even the logo is plain text. The source is shown
below in Listing 22.1. Simple enough? Take a look at Figure 22.1 and decide for yourself.

<html>
<head>
<title>XYZ webcrafting</title>
</head>
<body bgcolor=”#000000" text=”#ffffff”>
<center>
X Y Z

w e b c r a f t i n g
</center>
<blockquote>

continues

Other Dynamic Techniques

<p>don’t the burden of building a presence online get to
you? innovation comes easy at XYZ. we pride ourselves
on being at the very forefront of technology, incorporating
the latest in web design components. just contact us for
all your javascript, java, and dynamic html needs</p>

</blockquote>
</body>
</html>

“#ffffff” “aqua”

XYZ Webcrafting: the
first round.

With that tiny tidbit of a Web page, XYZ is only sort of ready for business. But how can they
be at the forefront of technology when their page can be viewed under just about anything
with no difference in appearance? It’s the enhanced pages that set the edge guys like us apart
from the rest of the pack, right?

Using Layers

22

Without the budget for a graphics person, artwork is out of the question. Multimedia stuff like
Shockwave or RealAudio clips both require either expensive server or developer software. Got
it…time to trick it out with a little splash of DHTML à la Netscape!

Like I said, layers just make sense when you look at them closely. The syntax for most of the
layers’ basic properties is the same as other HTML elements. Each layer has a width, a height,
a background or bgcolor, the layer SRC or source, and some layer-specific attributes. The only
layer-specific attributes needed now are the top, visibility, and id properties. The top prop-
erty specifies how many pixels from the top of the page the layer should be, the id is an op-
tional attribute specifying the name of the layer, and the visibility controls whether the layer
is displayed. The redesign starts with taking the word Webcrafting and throwing it into a sepa-
rate layer; then we just move it to a specific spot on the page. How? Check out the new source
in Listing 22.2. It’s easier than you think!

<html>
<head>
<title>XYZ webcrafting</title>
</head>
<body bgcolor=”#000000" text=”#ffffff”>
<center>
X Y Z

<layer top=36 id=”subheading” visibility=show>
<center>
w e b c r a f t i n g
</center>
</layer>
</center>
<blockquote>

<p>don’t the burden of building an online presence get to
you? innovation comes easy at xyz. we pride ourselves
on being at the very forefront of technology, incorporating
the latest in web design components. just contact us for
all your javascript, java, and dynamic html needs</p>

</blockquote>
</body>
</html>

See the change? It only took four small lines of code to add a simple layer to the XYZ page.
Now, without graphics or artwork, we have a superimposed effect on the company name. Check
the result in Figure 22.2, and compare it with the original. Although it’s a simple effect, pull-
ing this trick off without layers would’ve required either the use of graphics (which is out of
XYZ’s budget for now) or some type of special plug-in. In either case, the end result would
have probably taken a bit longer to load than our little layer hack.

Other Dynamic Techniques

This chapter briefly touches on using layers in conjunction with CSS technology. Accomplish-
ing this is pretty straightforward, much like using a style anywhere else in a document. Look-
ing back on XYZ again, notice that the subtitle appears centered, lowercase, and in an aqua
color. Taking those attributes, it’s easy to create a simple style and apply it to the subtitle text.
The result is pretty much identical to the previous iteration, except now you have access to that
same style across anything in the document, if needed.

<html>
<head>
<title>XYZ webcrafting</title>
</head>
<style type=”text/css”>
all.subtitle {
font-family:Arial;
font-weight:bold;
font-size:14pt;
color: aqua;
textAlign:center;
}
</style>
<body bgcolor=”#000000" text=”#ffffff”>
<center>
X Y Z

<layer top=36 name=”subheading” visibility=show>
w e b c r a f t i n g
</layer>
</center>

XYZ Webcrafting gets
layered.

Using Layers

22

<blockquote>

<p>don’t the burden of building an online presence get to
you? innovation comes easy at xyz. we pride ourselves
on being at the very forefront of technology, incorporating
the latest in web design components. just contact us for
all your javascript, java, and dynamic html needs</p>

</blockquote>
</body>
</html>

That’s about the most one can do with that one layer, so it’s time to start getting a little more
in depth. You should know that because its designers used DHTML, XYZ Webcrafting is now
gaining notoriety in the development community. Bigger budgets are on the horizon, so let’s
attack this page with a little more effort in the next section.

Now that you’ve mastered the concept of adding a simple layer to a page, it’s time to get down to
business. XYZ’s site has gotten a bit bland with the recent flood of layer-enhanced sites onto the
Web. I’ll run through the more advanced concepts behind layers, look at how the properties and
parameters for layers work, and create XYZ’s first-quarter DHTML-enabled newsletter.

To get rolling with the new project (the XYZ DHTML newsletter), we need to get deep into
the trenches of layering. In the section “Creating Your First Layer,” you were introduced to
some basic layer parameters, or properties. The first examples used three parameters in the last
few XYZ revisions: top, id, and visibility. Take a look at the triple-layer setup listed in List-
ing 22.4. The first layer (ID main) is the parent or container layer for the other two layers (IDs
sub1 and sub2). The top attribute specified in the main layer is relative to the document win-
dow. Because the other two layers were coded within the main layer, their top parameter is rela-
tive to their parent layer. It’s pretty close to working with <frameset> tags, so those of you
familiar with setting up frames should be able to get nested layers down fairly quickly.

<layer id=main bgcolor=red top=50 left=50 height=210 width=200>
 <p align=center>Parent Layer</p>
 <layer id=sub1 bgcolor=blue top=20 left=10 height=40 width=180>
 <p align=center>Child Layer 1</p>
 </layer>
 <layer id=sub2 bgcolor=silver top=70 left=10 height=130 width=180>
 <p align=center>Child Layer 1</p>
 </layer>
</layer>

Other Dynamic Techniques

The id parameter is that layer’s unique name. An optional parameter, this comes in handy when
you’re manipulating your layers through JavaScript. You notice we used a left parameter
in Listing 22.4; this acts exactly the same as the top parameter except on the position from
the left side of the window or parent layer. Check out the end result of these nested layers in
Figure 22.3.

Nested layers using
relative positioning.

id

id

id

Visibility is cool, especially when you’re scripting your layers. There are three flavors to choose
from when it comes to deciding whether a layer is visible. The first, show, means that the layer
is visible within the browser. Setting the visibility parameter to hide makes it invisible to the
user but still accessible using JavaScript. My personal favorite is setting visibility to inherit,
meaning that it follows the lead of its parent layer. You’ll see briefly in the section “Layers and
Their Properties” and much more in Chapter 23, “Transition Effects,” how inherited visibility
makes work easy when scripting layer effects.

Using Layers

22

Those are the parameters you’ve touched on so far. You’ve seen how setting up parent/child
layers and basic positioning work. In the next section, you’ll see some of the other possible
attributes of a layer. You’ll be amazed at what you can pull off with a layer and a little ingenu-
ity, so let’s forge ahead!

In the previous sections I used a few of the core properties behind layers, but to take the project
to the next level, you need to harness all the power of the <layer> tag. For those of you familiar
with the CSS syntax, some of this will be a review. Believe it or not, CSS and layers share a lot
of similar parameters, making the learning curve for the “other” technology a breeze. Table
22.1 shows each of the parameters used in a <layer> tag and gives a brief description of how it
affects that layer.

<layer>

Property Values Description

position absolute/relative Defines whether a layer’s position is
absolute when compared to the parent
document or relative to where it is in the
flow of the HTML.

id (any string value) A name for the layer, the id can be
anything but must begin with an alpha-
betic character.

left and top number of pixels Specifies the horizontal and vertical
position of the upper-left corner of a layer
in relation to the top-left corner of its
parent container, which can be either the
page or another layer.

width number of pixels Specifies the layer’s width. The percentage
or percentage value is based on the parent container’s

width.

height number of pixels Specifies the layer’s height. The percentage
or percentage value is based on the parent container’s

height.

pageX and pageY number of pixels Specifies the position of a layer’s top-left
or percentage corner, in relation to the X and Y pixels of

the Web page. The top-left corner of the
Web page translates to 0 and 0 for both
values.

continues

Other Dynamic Techniques

visibility show/hide/inherit The visibility attribute controls whether
the layer is shown. Setting it to inherit
means that it follows the lead of its parent
layer.

z-index positive number The z-index allows you to control the
z-order, or stacking order of your layers.
Higher z-index value layers are above lower
ones. (If one layer had a z-index of 1 and
the second had a z-index of 2, the second
layer would be above the first.)

above and below a layer ID Setting an above or below parameter is an
alternate way to control the stacking
order of layers. Let’s say you have three
layers, with IDs of lay1, lay2, and lay3.
You can make sure that lay1 is below
lay3 by setting the below attribute on lay1
to below=’lay3' or the above attribute on
lay3 to above=’lay1'. You can only use
one of the three (above, below, or z-index)
parameters when working with the z-order
on your layers.

clip “#,#,#,#” or “#,#” The clip property sets a visible rectangle
area of a layer. By default, a layer’s clipped
area is determined by its height and width
or content. The numbers correspond to the
left value, top value, right value, and
bottom value. If you just set two numbers,
this affects the left and top values of the
visible rectangle. As a suggestion, if you
don’t use the quotes, make sure there are
no spaces between any numbers.

src URL to file The src attribute loads an external file into
a layer.

Property Values Description

Using Layers

22

bgcolor RGB or color name Just as you set the background color for a
Web page or table, you can specify the
background color for a layer. If you omit
the bgcolor attribute, the HTML layer
defaults to having a transparent back-
ground.

background URL to file The background property functions exactly
like the background for a Web page. If you
specify a background, that layer will load a
tiled version of the image pointed to by
that URL.

Most of the <layer> tag’s attributes are optional, so you can keep them simple at first, adding
more advanced properties as needed. Now that you have an idea of what the attributes are, let’s
start looking at using them for XYZ’s newsletter. At this point, you can see how using layers
gave us increased flexibility in the layout of the “XYZ Webcrafting” logo, saving the trouble,
expense, and bandwidth of creating a graphical logo. Now that you’ve got a handle on mul-
tiple layers and understand how their properties work, it’s time to take XYZ a little further
along the road to Internet glory.

<html>
<head>
<title>XYZ webcrafting</title>
</head>
<!-- these are the styles we’ll be using in this document -->
<style type=”text/css”>
<!--
all.subtitle {
font-family:Arial;
font-weight:bold;
font-size:14pt;
color:aqua;
textAlign:center;
}

all.menus {
font-family:Tahoma;
font-weight:bold;
font-size:16pt;
color:white;
text-decoration:none;
}

Property Values Description

continues

Other Dynamic Techniques

all.verbage{
font-family:Tahoma,Arial;
font-size:10pt;
color:white;
textAlign:justify;
}

all.gtitle {
font-family:Tahoma,Arial;
font-weight:bold;
font-size:xx-large;
color:gray;
textAlign:center;
}

all.stitle {
font-family:Tahoma,Arial;
font-weight:bold;
font-size:xx-large;
color:silver;
textAlign:center;
}

-->
</style>
<body bgcolor=”#000000" text=”#ffffff”>

<!-- This is the container layer for the entire newsletter -->
<layer z-index=1 left=25 top=25 height=250 width=500 id=”title_block”>

<!-- These three layers make up the “x”, “y”, and “z” of the logo -->
<layer left=0 top=0 height=65 width=40 id=”main_x”>
X
</layer>
<layer z-index=3 left=30 top=12 height=65 width=40 id=”main_y”>
Y
</layer>
<layer z-index=1 left=60 top=0 height=65 width=40 id=”main_z”>
Z
</layer>

<!--These two layers create the thin blue lines used to -->
<!--outline the top-left of the newsletter -->
<layer z-index=2 bgcolor=”blue” left=50 top=5 height=240 width=1 id=”div0">
</layer>
<layer z-index=2 bgcolor=”blue” left=0 top=35 height=1 width=500 id=”div1">
</layer>

<layer z-index=3 left=310 top=25 id=”sub_title” visibility=show>
w e b c r a f t i n g
</layer>

<layer z-index=2 left=125 top=55 width=375 id=”title_block”>
<p class=”verbage”>don’t the burden of building an online presence get to
you? innovation comes easy at xyz. we pride ourselves

Using Layers

22

on being at the very forefront of technology, incorporating
the latest in web design components. just contact us for
all your javascript, java, and dynamic html needs</p>
</layer>
</layer>
</body>
</html>

XYZ gets rolling with
multiple layers.

CSS and layers are similar in syntax and implementation, offering the developer two possible
routes for positioning HTML content. Layers have the advantage of not requiring any pre-
defined parameters, and I personally find them somewhat more flexible for creating animation
effects with graphics. Style sheets, in my humble opinion, tend to be geared more toward text
style, positioning, and layout, and certainly have their place in the future of the Web. Layers
and CSS can be used in conjunction to easily apply a style to the content of a layer.

Other Dynamic Techniques

<NOLAYER>
Like any other advanced Web creation, your layered pages might occasionally be trafficked by
nonsupported browsers. Remember the big uproar when frames came out a few years ago, and
people were adding frame-based navigation to a page without handling the users who hadn’t
upgraded? The same thing is bound to happen with a document using the <LAYER> tag, and
you run the risk of scaring off potential visitors.

The simplest way to tackle the non-Netscape crowd is to include a set of tags that display alter-
nate text to those users. Placing either another, layerless copy of the content or a “Please
Upgrade Your Browser” message between a set of <NOLAYER> and </NOLAYER> tags will display
that information to the user. It takes a few minutes to set up, but it encourages further use of
your site and can help deter any nasty “I came to your page, but nothing came up on my screen!”
messages you might receive.

When developing a layer-specific page, it’s important to remember that any text or images within
your layer are shown to older browsers without the layer-specific formatting.

Look at the example in Listing 22.6, showing a few colored layers containing nothing but text
with a <NOLAYER> tag set at the end of the document. The resulting document is shown in Fig-
ure 22.5.

<html>
<head>
<title>My Layers</title>
</head>
<body bgcolor=”white” text=”black”>
<layer id=”lower” bgcolor=”blue” top=100 left=100 width=100 height=40>
This is the ‘lower’ layer.
</layer>
<layer id=”upper” bgcolor=”red” top=10 left=10 width=100 height=40>
This is the ‘upper’ layer.
</layer>
<nolayer>Requires Netscape 4!</nolayer>
</body>
</html>

Looking at the code, notice how the flow of the document doesn’t match what’s slated to be
shown to the layer-ready browser. However, because of the beauty of being able to specify ex-
actly where to display a layer, HTML flow isn’t a concern when targeting the Netscape 4 browser.
But look at that same code under an older version of Internet Explorer in Figure 22.6.

Using Layers

22

Simple layers.

Layers viewed under an
incompatible browser.

Other Dynamic Techniques

Placing the <nolayer> and </nolayer> tags in the document did nothing more than append
that text to other senseless text. Know that your layered document could contain an incredible
amount of scripting, resulting in larger file sizes and longer download times to view essentially
nothing. The easiest way to get around this inconvenience is to create a document containing
all your layer-specific code and call that document in as an external source file from your page.
Using the same code listed in Listing 22.6 as a separate document named layers.htm, you could
create a page that loads layers.htm as the source for a layer with an unassigned size. The code
in Listing 22.7 provides you with the flexibility to add extremely comprehensive older browser
code to the parent document, enclosing it in the <nolayer> and </nolayer> tags, which en-
sures that visitors are looking at the page you want to be seen.

<html>
<head>
<title>My Layers</title>
</head>
<body bgcolor=”white” text=”black”>

<layer src=”layers.htm”>
</layer>

<nolayer>
non-Layer HTML code goes here….
</nolayer>

</body>
</html>

Safe layers under non-
layered browsers.

Using Layers

22

So it is possible to create a page that supports layer- and non–layer-capable browsers at the
same time. With the advances made possible in Netscape Navigator/Communicator 4.0 and
IE4 and a little creative coding, you can create pages that take full advantage of the best both
versions of DHTML have to offer.

Layers and style sheets are revolutionizing content on the Web, giving you the ability to define
exactly how you want your Web site to appear. The dimension added to online publishing by
layers can help you create faster, more effective Web sites in less time than more conventional
methods.

By now, you should have a fairly decent idea of what layers are and how to create and position
them and have a basic grasp on what their properties are. In Chapter 23, you’ll see how you
can utilize JavaScript to create animations and transition effects and manipulate your Web
creations in an effort to grab and hold your user’s attention.

Other Dynamic Techniques

Transition Effects

23

by Ryan Peters

■

■

■

■

■

Other Dynamic Techniques

Web pages with layers can make people open their eyes to what you really can do with the
Web. Page elements are placed exactly where the developer intended them to be. Text and images
flow fluidly throughout the document. This translates into a much more attractive browsing
experience, as the Web finally gets a much-needed facelift. Of course, the Web is much more
than a place to read text and look at pretty pictures. Today’s users expect multimedia, sound,
video, interaction, and more.

There is a formula for fast, interactive, compelling Web sites. Layers + JavaScript = Cooler Pages.
Sure, absolute positioning is nice, and having more control over text elements and layouts is
okay, but this chapter takes you to the next level. You’ll learn

■ Core scripting concepts for layer transitions

■ Low-bandwidth layer animations using layers

■ High impact layer animation effects for your site

■ How to avoid overdoing it

You’ve seen how each layer has a set of properties that define its width, height, visibility, clip-
ping area and position on the screen. By taking control of these attributes with JavaScript, you
can easily create seemingly complex animations, transitions, and movements with a relatively
small amount of code. Smaller code means smaller file sizes, less transfer time, and most im-
portant, faster pages. There’s nothing more frustrating to someone on the Web than having to
wait an eternity for a page to load all its plug-ins, applets, controls, and animations.

Along with other page elements in a document, Netscape Communicator exposes the Layers
Array for your control. For those unfamiliar with arrays, think of it as a type of Rolodex, with
each layer translating into a specific card in the bunch. These layers, referred to as elements of
the document’s layer array, can be accessed by either their name (the ID property) or their in-
dex within the document (the first layer is layer 0, the second one is layer 1, and so on) via your
script. Take a look at the code in Listing 23.1, and you’ll see how you can use this JavaScript
to play with some of the attributes of each layer in a document.

<html>
<head>
<title>Playing With The Layers Array</title>
</head>
<script language=”JavaScript1.2">
<!--//

var currentLayer;

Transition Effects

23

//-------loadLayer function--------
//this function populates a <select> input box with the array of layers on the
//page...

function loadLayers(obj) {
 var n = 0;
 var el;
 for(n=1;n<document.layers.length;n++) {
 el = new Option(‘document.layers[‘ + n + ‘]’, n);
 obj.mylayers.options[n] = el;
 }
}

//-------getLayer function--------
//if you’ve selected a layer from the select list (mylayers) this function
//populates the form with information about the layer, then moves the layer into
//the table for your inspection and manipulation...

function getLayer(obj) {
 if (obj.mylayers.selectedIndex > 0) {
 var selLayer = obj.mylayers.options[obj.mylayers.selectedIndex].value;
 if ((currentLayer != selLayer) && (currentLayer)) {
 document.layers[currentLayer].left = (20 + ((currentLayer -1) * 40));
 document.layers[currentLayer].top = 10;
 document.layers[currentLayer].width = 40;
 }
 currentLayer = selLayer;
 document.layers[currentLayer].left = 380;
 document.layers[currentLayer].top = 113;
 obj.layername.value = document.layers[currentLayer].id;
 } else {
 alert(‘No Layer Selected!’);
 }
}

//-------getValue function--------
//if you’re looking at a layer, the JavaScript statement in the control box has a
//dropdown list of several layer properties. Selecting one of them will auto-fill
//that attribute’s property in the form...

function getValue(obj) {
 if (currentLayer) {
 var gv = obj.att.options[obj.att.options.selectedIndex].value
 var cl = document.layers[currentLayer]
 if (gv == ‘top’) obj.setting.value = cl.top;
 if (gv == ‘left’) obj.setting.value = cl.left;
 if (gv == ‘visibility’) obj.setting.value = cl.visibility;
 if (gv == ‘src’) obj.setting.value = cl.src;
 } else {
 alert(‘No Layer Was Selected!’);
 }
}

continues

Other Dynamic Techniques

//-------resetLayers function--------
//this just clears the form, and moves all layers back to their original
//positions...

function resetLayers(obj) {
 if (currentLayer) {
 document.layers[currentLayer].left = (20 + ((currentLayer -1) * 40));
 document.layers[currentLayer].top = 10;
 document.layers[currentLayer].width = 40;
 currentLayer = null;
 obj.layername.value = ‘’;
 obj.setting.value = ‘’;
 obj.att.options[0].selected = true;
 } else {
 alert(‘No Active Layer Selected!’);
 }
}

//-------setValue function--------
//once you’re viewing a layer, and have selected an attribute, you can change its
//value and click the ‘set’ button to assign that value to the selected property.
//Keep in mind that the page is showing the actual JavaScript syntax that could
//be run to control that selected layer...

function setValue(obj) {
 if ((currentLayer) && (obj.setting.value != ‘’)){
 var gv = obj.att.options[obj.att.options.selectedIndex].value;
 var cl = document.layers[currentLayer];
 if (gv == ‘top’) cl.top = obj.setting.value;
 if (gv == ‘left’) cl.left = obj.setting.value;
 if (gv == ‘visibility’) cl.visibility = obj.setting.value;
 if (gv == ‘src’) cl.src = obj.setting.value;
 } else {
 alert(‘No Layer or Attribute Was Selected!’);
 }
}

//-->
</script>
<body bgcolor=”white”>
<layer z-index=1 id=”redblock” width=40 bgcolor=”red” top=10 left=20><h1>[1]</h1>
➥</layer>
<layer z-index=2 id=”blueblock” width=40 bgcolor=”blue” top=10 left=60><h1>[2]
➥Easier and Faster Animations
</h1></layer>
<layer z-index=3 id=”silverblock” width=40 bgcolor=”silver” top=10
➥left=100><h1>[3]</h1></layer>
<layer z-index=4 id=”yellowblock” width=40 bgcolor=”yellow” top=10
➥left=140><h1>[4]</h1></layer>
<layer z-index=5 id=”greenblock” width=40 bgcolor=”green” top=10 left=180><h1>[5]
➥Easier and Faster Animations
</h1></layer>
<layer z-index=0 name=”control” width=550 height=70 left=20 top=65>
<form>
<table width=550>
<tr><td colspan=3 align=center>
Control Center (document.layers[0])
</td></tr>

Transition Effects

23

<tr><td valign=top width=150>
<select name=”mylayers” size=6>
<option value=””>----Layers Array----
</select>
</td><td valign=middle align=center width=100>
<input type=”button” value=”Load Array” onClick=”loadLayers(this.form)”>
<input type=”button” value=”Properties “ onClick=”getLayer(this.form)”>
<input type=”button” value=” Reset “ onClick=”resetLayers(this.form)”>
</td><td bgcolor=”black” width=250>

</td></tr>
<tr><td align=center valign=top colspan=3 width=500>

<tt>document.layers[‘<input type=”text” name=”layername”
 size=12>’]</tt>.<select name=”att” onChange=”getValue(this.form)”>
<option value=””>
<option value=”top”>top
<option value=”left”>left
<option value=”visibility”>visibility
<option value=”src”>src
</select> = <input type=”text” size=15 name=”setting”>
<input type=button value=”set” onClick=”setValue(this.form)”>

</table>
</form>
</layer>
</body>
</html>

Working with the
Layers Array.

Other Dynamic Techniques

This code presents your browser with six layers. The five small color-keyed blocks are manipu-
lated through the form in the “Control Center,” housed in the first layer. The page, shown in
Figure 23.1, allows you to dynamically set the position and visibility of a layer through the use
of a form and some simple JavaScript. In the example, referring to the layer can be done in one
of two ways: either document.layers[1] or document.layers[‘redblock’]. Add a property to
the end of either one of those objects, assign a value, and you’ve changed that attribute.

One of the points I’ve stressed is that layers can be used to create fast-loading animations.
Conventional Web-based animations range from simple GIF89a images to complex streaming
video clips, many of which can range in size from 25K to several megabytes for higher quality
content. You can move, clip, and hide or show layers on demand to create complex animations
that don’t even come close to using the bandwidth consumed by standard means.

As you saw in the example in Listing 23.1, you can assign the position to a layer on-the-fly.
How can you create animations using this idea? Simple! Take a look at the slideTo function in
Listing 23.2 to see how you can progressively move a layer to a destination.

function slideTo(targetLayer, targetTop, targetLeft) {
 if((targetLayer.top != targetTop) || (targetLayer.left != targetLeft)) {
 if (targetLayer.top < targetTop) targetLayer.top = targetLayer.top + 1;
 if (targetLayer.top > targetTop) targetLayer.top = targetLayer.top - 1;
 if (targetLayer.left < targetLeft) targetLayer.left = targetLayer.left + 1;
 if (targetLayer.left > targetLeft) targetLayer.left = targetLayer.left - 1;
 setTimeout(‘slideTo(document.layers[“‘+targetLayer.name+’”],’+targetTop+’,
 ➥’+targetLeft+’)’,1);
 }
}

The slideTo function accepts three arguments:

■ targetLayer—A reference to the layer to be moved

■ targetTop—The target top position of the moving layer

■ targetLeft—The target left position of the moving layer

By setting a timer event in the function, the movement of the layer is slowed down somewhat,
so it appears to be sliding across the screen to that position. When both conditions are finally
met for the while loop, the function clears the time-out event and exits. In Chapter 9, “Using
JavaScript with Dynamic HTML,” you learned how JavaScript 1.2 allows you to capture and
route events. By capturing the mouseUp event and routing it to the slideTo function, you can
create a layer that “follows” the user’s instructions on your Web page.

Transition Effects

23

How about using it to tell a virtual puppy to obey your commands? Check out Listing 23.3 for
a glimpse at how the page featured in Figure 23.2 handles this animation based on where you
click.

<html>
<head>
<title>Walk The Dog</title>
</head>
<body bgcolor=”white”>
<script language=”JavaScript1.2">
<!--//

//first off, the page sets itself to capture the
//MOUSEDOWN event and route it to the moveLayer handler

window.captureEvents(Event.MOUSEDOWN);
window.onmousedown = moveLayer;

//The moveLayer function takes the mousedown event, and throws
//where the user clicked to the slideTo function. It also moves
//the cartoon style ‘blurb’ layer to where the mouse was clicked,
//changing it to visible, and releases the MOUSEDOWN event.

function moveLayer(e) {
 slideTo(document.layers[‘slider’], e.pageY, e.pageX);
 document.layers[‘blurb’].moveTo(e.pageX, e.pageY);
 document.layers[‘blurb’].visibility = true;
 window.releaseEvents(Event.MOUSEDOWN);
}

//the only thing added to this iteration of the slideTo function
//was an ‘else’ block, that hides the ‘blurb’ layer, then re-enables
//capturing of the MOUSEDOWN event. The reason I release the event
//is to avoid confusing the script by recursively calling the slideTo
//function with different coordinates.

function slideTo(targetLayer, targetTop, targetLeft) {
 if((targetLayer.top != targetTop) || (targetLayer.left != targetLeft)) {
 if (targetLayer.top < targetTop) targetLayer.top = targetLayer.top + 1;
 if (targetLayer.top > targetTop) targetLayer.top = targetLayer.top - 1;
 if (targetLayer.left < targetLeft) targetLayer.left = targetLayer.left + 1;
 if (targetLayer.left > targetLeft) targetLayer.left = targetLayer.left - 1;
 setTimeout(‘slideTo(document.layers[“‘+targetLayer.name+’”],’+targetTop+
 ➥’,’+targetLeft+’)’,1);
 } else {
 window.captureEvents(Event.MOUSEDOWN);
 document.layers[‘blurb’].visibility = false;
 }
}
//-->
</script>
<body bgcolor=”white”>

continues

Other Dynamic Techniques

<!-- the ‘slider’ layer holds the picture of the puppy -->
<layer z-index=2 id=”slider” height=50 width=50 top=0 left=0>

</layer>
<!-- the ‘blurb’ layer is invisible until the user clicks on the page -->
<!-- when it is moved to the spot clicked, and shown -->

<layer z-index=1 visibility=hide id=”blurb” width=50 height=50 top=100 left=100>

</layer>
</body>
</html>

Shown in Figure 23.2, the entire Walk The Dog page, animation, graphics, and HTML, is
only around 5KB. Something that small is sure to load fast, even over a dial-up connection. If
you’d attempt to duplicate just the moving dog itself, with any other technology, the file sizes
and transfer times would increase accordingly.

Walk The Dog: simple
layer animation.

You probably noticed the bit of code in the function moveLayer document.layers[‘blurb’].
moveTo(e.pageX, e.pageY); that controlled the “blurb” layer. When moving a layer, you have
several different layer methods at your disposal. The moveTo method, which was touched on in
Chapter 22, “Using Layers,” accepts two arguments: the x or top position of the layer, and the
y or left position of the layer. These coordinates are in relation to its parent container, in this
case the document. As an alternative, you could use the moveBy method, which accepts the same
x and y arguments as the moveTo method, but the values are the number of pixels to move in
either direction.

Transition Effects

23

Another thing to keep in mind when scripting layer movement is the layer’s position in the
stack. Think of the stacking order of layers like a deck of cards. The King may be over the Ace,
which is under the Jack. Confused? Look at the page in Figure 23.3, which has a total of four
layers.

Over, under, above,
and below: ordering
layers.

The grass, tree, dog, and form buttons are each contained on separate layers. The source code
is available in Listing 23.4, and you can see how each of the layers has a z-index attribute speci-
fied. When working with the z-Order of layers on a Web page, higher numbers mean that those
layers are above any lower-numbered layers. The base layer (yard) has a z-index of 1, and all
the other layers fall above that in the stacking order. The “tree” layer has a z-index of 3, allow-
ing the “puppy” layer to have a z-index of 2 so it can move behind the tree.

It’s easy to set up a layered page with the correct order, but changing the z-index of layers on-
the-fly to create layers that move above and behind one another requires JavaScript. Notice the
walkDog function in Listing 23.4. Passed an argument of a single number (the argument (d),
either a 1 or 0), the walkDog function determines whether the “puppy” layer is below or above
the “tree” layer. Based on that argument, either the moveBelow or moveAbove method is used on
the layer. Both of these methods accept a reference to a layer as their single argument. The
code dl.moveBelow(document.layers[‘tree’]) re-assigns dl (object variable that got set to
document.layers[‘puppy’] in the first line of the function) to be below document.layers[‘tree’]
in the z-Order.

Other Dynamic Techniques

From that point it’s pretty straightforward. The first if... else... block checks to make sure
that the “puppy” layer is either at the start or end position of the movement cycle, making sure
that the layer isn’t trying to move in multiple directions at once. The last if... else condi-
tional determines whether the puppy is on the right or left, and fires off the slideTo function
to move the layer in the opposite direction.

z-Order

<html>
<head>
<title>In the Yard</title>
</head>
<body bgcolor=”white”>
<script language=”Javascript1.2">
<!--//

function walkDog(d) {
 var dl = document.layers[‘puppy’];
 if ((dl.left == 270) || (dl.left == 200)) {
 if (d == 1) {
 dl.moveBelow(document.layers[‘tree’]);
 } else {
 dl.moveAbove(document.layers[‘tree’]);
 }
 if (dl.left == 200) {
 slideTo(dl, 70, 270);
 } else if (dl.left == 270) {
 slideTo(dl, 70, 200);
 }
 }
}

function slideTo(targetLayer, targetTop, targetLeft) {
 if((targetLayer.top != targetTop) || (targetLayer.left != targetLeft)) {
 if (targetLayer.top < targetTop) targetLayer.top = targetLayer.top + 1;
 if (targetLayer.top > targetTop) targetLayer.top = targetLayer.top - 1;
 if (targetLayer.left < targetLeft) targetLayer.left = targetLayer.left + 1;
 if (targetLayer.left > targetLeft) targetLayer.left = targetLayer.left - 1;
 setTimeout(‘slideTo(document.layers[“‘+targetLayer.name+’”],’+targetTop+
 ➥’,’+targetLeft+’)’,1);
 }
}
//-->
</script>
<body bgcolor=”white”>

<layer z-index=2 id=”grass” background=”grass.gif” height=200 width=200 top=0
➥left=150></layer>

<layer z-index=4 id=”tree” background=”tree.gif” height=124 width=20 top=10
➥left=250></layer>

<layer z-index=3 id=”puppy” height=50 width=50 top=70 left=200>

</layer>

Transition Effects

23

<layer name=”commands” top=120 left=0>
<form>
<input type=”button” value=”Go Around” width=100 onClick=”walkDog(0)”>

<input type=”button” value=”Go Behind” width=100 onClick=”walkDog(1)”>
</form>
</layer>

</body>
</html>

Until this point, all the layers in the examples were written right into the HTML. The bulk of
the time, documents have their layers predefined, but occasionally, you need to create new layers
on demand. By using the new operator, you can use JavaScript to create new layers on-the-fly.

When generating new layers, there are several key things to keep in mind. First, any new layer
you create has a visibility of false until you set it. That was enough to make me pull my hair
out for hours trying to figure out why everything was fine, no errors were generated, but my
new layers were missing in action. Second, once you create a layer, it’s a blank canvas; you have
to either write content to it, or use the load method to bring in an external source file. Third
and most important, just remember that you can’t create new layers until the page has finished
loading.

The page shown in Figure 23.4 starts off with one simple layer in the upper-left corner and is
set to capture the MOUSEDOWN event. Viewing the code in Listing 23.5, you can see that when the
event happens, it’s routed to the buildLayer function. A new layer is created, and its source is
written using the document.write method. The script can determine exactly where the user
clicked on the page. Passing a reference to the new layer along with the coordinates determined
by e.pageY and e.pageX, the slideTo function can move the new layer to where the click took
place.

In the interest of saving time on generating and moving these new layers, the slideTo function
was slightly modified to move the layer at a faster pace. The function shown in Listing 23.5
increments the layer’s position by 15 pixels, and rather than check to see if the layer is at the
exact point the user clicked, it loops until the position of the layer is greater than the spot that
was clicked.

Other Dynamic Techniques

Just for kicks, when the new layer is moved into position and the MOUSEDOWN event is recap-
tured, the script updates the status bar with the total number of puppies, and a running total
of what they’re worth. With the ability to create new layers, almost anything is possible. You
could have a menu of news items in a page, and clicking on one of them would create a new
layer with the article and move it to a prespecified destination. Because these layers are created
on demand, you wouldn’t have to write new layers into the parent document, just script an
event handler that creates the new layer, and load an external source file into it that contains
the article.

<html>
<head>
<title>Layer Breeder</title>
</head>
<body bgcolor=”white”>
<script language=”Javascript1.2">
<!--//

//capture MOUSEDOWN events, routing them to the buildLayer function
window.captureEvents(Event.MOUSEDOWN);
window.onmousedown = buildLayer;

//The buildLayer function takes the mousedown event, and starts
//by creating a new layer object. After dynamically writing the
//html needed for the ‘puppy.gif’ image, it makes the new layer
//visible, and starts a modified slideTo function that moves it
//to where the user clicked. Again, the MOUSEDOWN event is released
//to ensure that you don’t end up overloading your browser with
//fifty or so layers moving at once.

New layers on demand.

Transition Effects

23

function buildLayer(e) {
 var newPup = new Layer(50);
 newPup.document.write(“”);
 newPup.document.close();
 newPup.moveTo(0,0);
 newPup.visibility=true;
 slideTo(newPup, e.pageY, e.pageX);
 window.releaseEvents(Event.MOUSEDOWN);
}

//This modified slideTo function, in the interest of building new layers
//as fast as possible, just fires until the layer is beyond
//the target coordinate on the screen. Just for kicks, because it’s a
//Yorkshire Terrier, and those dogs aren’t cheap, it also keeps a running
//tally of your total amount in dogs in the status line by
//multiplying the number of layers in the layers array by $595 :)

function slideTo(targetLayer, targetTop, targetLeft) {
 if((targetLayer.top <= targetTop) || (targetLayer.left <= targetLeft)) {
 if (targetLayer.top <= targetTop) targetLayer.top = targetLayer.top + 15;
 if (targetLayer.left <= targetLeft) targetLayer.left = targetLayer.left +
15;
 setTimeout(‘slideTo(document.layers[“‘+targetLayer.name+’”],’+targetTop+
 ➥’,’+targetLeft+’)’,1);
 } else {
 window.captureEvents(Event.MOUSEDOWN);
 n = document.layers.length;
 self.status = n + ‘ Puppies, Total Value : $’ + (n * 595);
 }
}
//-->
</script>
<body bgcolor=”white”>

<layer id=”puppy” height=50 width=50 top=0 left=0>

</layer>

</body>
</html>

The previous example briefly touched on writing content to a layer, and I had mentioned in
passing the ability to load external source files into a layer. It shouldn’t come as any surprise
that with JavaScript, you have complete control over what’s shown in any layer in your docu-
ment. Every layer can have an external source file, which is defined in the <layer> tag by the
src attribute. But, by using the load method of a layer, you can load in a new source file, even
if one had not been used previously.

The load method takes two arguments, the first of which is a string containing either a full or
relative path to the source document, the second is a number used to resize the width of the
layer. For example, document.layers[0].load(“myfile.html”, 300) loads the specified file into
the first layer in the layer array and resizes its width to 300 pixels. This is perfect for instances

Other Dynamic Techniques

where you may be regularly updating specific content, and allows you to make drastic changes
to that content with no revisions to the parent page.

The other way to change the content, which was used on one of the previous examples, is by
using the document.write() method. The code in Listing 23.6 shows how it’s possible to give
the appearance of an image resizing on-the-fly by looping through a function until the picture
reaches a specified size.

<html>
<head>
<title>Dynamic Layer Content</title>
</head>
<body bgcolor=”white”>
<script language=”Javascript1.2">
<!--//

//The growPic and shrinkPic functions resize the layers and
//use the document.write() method to replace the layer’s content
//with the same image, width larger or smaller height and width
//values.

function growPic(targetLayer, img, height, width) {
 if((targetLayer.clip.height <= height) || (targetLayer.clip.width <= width)) {
 if (targetLayer.clip.height <= height) targetLayer.clip.height =
➥targetLayer.clip.height + 1;
 if (targetLayer.clip.width <= width) targetLayer.clip.width =
➥targetLayer.clip.width + 1;
 targetLayer.document.write(“<img src=’” + img + “‘
➥width=”+targetLayer.clip.width+” height=”+targetLayer.clip.height+”>”);
 targetLayer.document.close();
 setTimeout(‘growPic(document.layers[“‘+targetLayer.name+’”],”’+img+’”,’+height+
➥’,’+width+’)’,1);
 }
}

function shrinkPic(targetLayer, img, height, width) {
 if((targetLayer.clip.height >= height) || (targetLayer.clip.width >= width)) {
 if (targetLayer.clip.height >= height) targetLayer.clip.height =
➥targetLayer.clip.height - 1;
 if (targetLayer.clip.width >= width) targetLayer.clip.width =
➥targetLayer.clip.width - 1;
 targetLayer.document.write(“<img src=’” + img + “‘
➥width=”+targetLayer.clip.width+” height=”+targetLayer.clip.height+”>”);
 targetLayer.document.close();
 setTimeout(‘shrinkPic(document.layers[“‘+targetLayer.name+’”],”’+img+’”,’
➥+height+’,’+width+’)’,1);
 }

}

//-->
</script>
<body bgcolor=”white”>
<layer id=”control” height=40 width=100 top=4 left=0>
<!--- notice how the script is called ‘parent.window.document’ -->
<!--- this is used to call scripts in other windows and other -->

Transition Effects

23

<!--- child layers within the document. A necessary evil sometimes.-->
<form>
<input type=”button” value=”Grow”
 onClick=”growPic(parent.window.document.layers[‘puppy’],
➥‘puppy.gif’,100,100)”><input
 type=”button” value=”Shrink”
 onClick=”shrinkPic(parent.window.document.layers[‘puppy’], ‘puppy.gif’,25,25)”>
</form>
</layer>
<layer id=”puppy” height=50 width=50 top=44 left=0>

</layer>
</body>
</html>

Layers give you the ability to place multiple documents at specified locations on the page. For
graphic artists around the world, this means online content gets prettier. As their counterparts
in the Web programmer division get these pages full of nested layers and external content files,
you can almost hear agonizing groans from their offices. Countless “‘someFunction()’ is not
defined” error messages, browser crashes, and material that just doesn’t do what it should do
are likely. With a little foresight and patience you can work around some of the common prob-
lems that stem from using layered documents. In many cases, you can use those same features
that create problems for some programmers to your advantage.

Accessing scripts within other layers can create major headaches for developers. Before layers,
if a script was on a page, you called it, passing any necessary arguments, and it worked. With
nested layers, just because a script is coded into the same page doesn’t mean that the JavaScript
interpreter can even find it.

The concept is easy to grasp. Take a peek at the HTML in Listing 23.7, which is for a page that
has a nested layer setup up to three layers deep. There are two separate scripts on the page,
both of them called usrMessage. The first one, which is accessible from any layer in the docu-
ment by calling usrMessage() is located before the <body> tag. The second usrMessage()is within
the layer named “first”, and can be used by any layer, but must be called with the relative full
document object path to that layer (document.layers[‘first’].usrMessage()) to work.

<html>
<head>
<title>Script Dilemma</title>
</head>
 <script>
 <!--//

continues

Other Dynamic Techniques

 function usrMessage(st) {
 return prompt(‘Parent Window\n’ + st, ‘’);
 }
 //--->
 </script>
<body bgcolor=”white”>
<layer id=”first” width=100 height=40 top=0 left=0>
 <script>
 <!--//
 function usrMessage(st) {
 return prompt(‘document.layers[\’first\’].document.layers[\’firstsub\’].\n’
➥+ st, ‘’);
 }
 //--->
 </script>
</layer>

<layer id=”second” width=100 height=40 top=45 left=0>
 <layer id=”secondsub” width=96 height=36 top=2 left=2>
 <layer id=”subchild1" width=50 height=30 top=3 left=3>
 <!--this one calls the usrMessage in the first document layer -->
 <a href=”javascript:alert(‘Hi ‘ +
➥document.layers[‘first’].usrMessage(‘What\’s Your Name?’)+’!’)”>CLICK
 <!--this one calls the usrMessage at the head of the document -->
 <a href=”javascript:alert(‘Hi ‘ + usrMessage(‘What\’s Your
➥Name?’)+’!’)”>HERE
 </layer>
 </layer>
</layer>

</body>
</html>

So, you have both global and local scripts to work with. Each layer can act as a separate docu-
ment, and that layer can have its own scripts that it calls with the function name. Those scripts
are accessible from other layers in the document, but must be called with the layer object’s
name added to the beginning of the function call.

Animating layers is easy to do with JavaScript, and hopefully with these examples under your
belt, you can start envisioning the next revision of your Web site. In the next section, you’ll see
some practical uses of animations, and gain some insight into how you can incorporate similar
components into your projects.

Just as image onMouseOver tricks quickly took hold as a standard on the Web, layered menus
and documents are sure to follow the same path. This section will show you some real-world
examples that can be easily integrated into site work you may be doing. From drag-and-drop
to sliding menus and content layers, I’ve attempted to annotate the source code as much as
possible, and make the function calls fairly broad to facilitate faster integration with your ideas.

Transition Effects

23

You’ll find all the source code used in this chapter located in the HTML Guru Companion
Site at http://www.htmlguru.com, so feel free to copy, paste, and hack to your heart’s content.

Animations are great, and dogs are man’s best friends, but what about using Dynamic HTML
on a mainstream Web site? The possibilities are endless and limited only by your imagination
as a developer. You’ve learned in the past chapters how to create, place, and control layers. You
have a decent understanding of JavaScript 1.2 and Netscape’s Document Object Model. Put-
ting these pieces together on your site is pretty much up to you.

This section shows one simple way to use DHTML to create an interactive menu system for
your Web pages. Similar to toolbars in Windows 95, the toolbar used in the example has an
auto-hide feature, and allows you to access any page from this chapter with the click of a but-
ton. Extensive use of JavaScript, layers, and forms combine to give you a menu system that’s
smaller than 5KB in size. To get started, check out the source code in Listing 23.8.

<html>
<head>
<title>DHTML Site Navigator</title>
</head>

<!-- small style sheet to set the font properties on the menu -->
<style type=”text/css”>
<!--
all.mnuTxt{
text-decoration:none;
color:black;
font-family:Tahoma,Arial,Helvetica;
font-size:10pt
}
-->
</style>

<script language=”JavaScript1.2">
<!--//

//initialize the global variables immediately...
var seed = 1;
var lastPage = ‘’;
var timerID = null;
var timerRunning = false;

//A throwback to my days with JavaScript 1.0 under Netscape 2.0, the ParseArray
//function builds an arrays on the fly, based on the number of arguments passed to
it. Occasionally, this type //of script is useful for when you’re not too clear on
how many elements are going to be in the //array. Added bonus code! It works on
any JavaScript-compliant browser!
function ParseArray() {

continues

Other Dynamic Techniques

 this.length = ParseArray.arguments.length;
 for (var i = 0; i < this.length; i++) {
 this[i+1] = ParseArray.arguments[i]
 }
}

//A slideTo variant that uses the global variable ‘seed’ to increase the movement
//of the target layer.
function slideTo(targetLayer, targetTop) {
 seed = seed * 1.2;
 if((targetTop >= 0) && ((targetLayer.top + seed * 1.2) < targetTop)) {
 if (targetLayer.top < targetTop) targetLayer.top = targetLayer.top + seed;
 setTimeout(‘slideTo(document.layers[“‘+targetLayer.name+’”],
 ➥’+targetTop+’)’,1);
 } else if((targetTop < 0) && ((targetLayer.top - seed * 1.2) > targetTop)) {
 if (targetLayer.top > targetTop) targetLayer.top = targetLayer.top - seed;
 setTimeout(‘slideTo(document.layers[“‘+targetLayer.name+’”],
 ➥’+targetTop+’)’,1);
 } else {
 //make sure the layer is exactly at its target position and reset the ‘seed’
//variable.
 seed = 1;
 targetLayer.top = targetTop;
 }
}

//The fun really starts here... two arrays are created to hold the titles and urls
//for the menu bar, and initialize the clock. The init() function is called by the
//onLoad event of the document.
function init() {
//The sTitles array holds the titles of the pages on the select menu.
 var sTitles = new ParseArray(‘Current News’,
 ‘Site Help’,
 ‘Company Info’,
 ‘Feedback’);

//The sUrls array holds the filenames for the pages in the select list.
 var sUrls = new ParseArray(‘content1.htm’,
 ‘content2.htm’,
 ‘content3.htm’,
 ‘content4.htm’);

//This for loop cycles through the sUrls and sTitles arrays, and populates the
//DHTML menu’s select box with the page names and URLs to use. To add a new page
//to the menu, you’d simply add or change elements in the two arrays above.
 for (var s = 1; s <= sUrls.length; s++) {
 var nPage = new Option(sTitles[s], sUrls[s]);
 document.layers[‘sysmenu’].layers[‘lock’].document.forms[0].pages.options[s]
➥= nPage;
 }
 //One of the buttons on the menu bar is a clock, so when the page is loaded,
 //the clock is set and fired up to keep track of the current time for the user.
 stopclock()
 showtime()
}

Transition Effects

23

//Which way to go? The showMenu() function determines the menu bar’s current top
//position and fires off the slideTo function to handle the animation. Most
//importantly, notice the first if... block that checks to see if the Auto Hide
checkbox is clear before activating any movement.
function showMenu(layerName) {
 if (document.layers[‘sysmenu’].layers[‘lock’].document.forms[0].hold.checked !=
➥false) {
 if (document.layers[layerName].top <= -32) {
 slideTo(document.layers[layerName], 0);
 } else if(document.layers[layerName].left >= 0) {
 slideTo(document.layers[layerName], -32);
 }
 }
}

//This function stops the clock if necessary. Guards against dreaded memory leaks!
function stopclock(){
 if(timerRunning)
 clearTimeout(timerID)
 timerRunning = false
 }

//A quick hack of the classic showtime() function, this function formats a string
//with the current time, and tacks an ‘am’ or ‘pm’ onto it. The big switch from
//some of the older clock functions out there is that it changes the text on a
//button as opposed to the text in a simple text box.
function showtime(){
 var now = new Date();
 var hours = now.getHours();
 var minutes = now.getMinutes();
 var timeValue = “” + ((hours > 12) ? hours - 12 : hours);
 timeValue += ((minutes < 10) ? “:0” : “:”) + minutes;
 timeValue += (hours >= 12) ? “ pm” : “ am”;
 //notice how the button is referred to via the complete layer hierarchy
 document.layers[‘sysmenu’].layers[‘lock’].document.forms[0].clock.value =
➥timeValue;
 timerID = setTimeout(“showtime()”,1000);
 timerRunning = true;
}

//the openPage function grabs the value of the current selection from the ‘pages’
//select object and loads it into the ‘contentLayer’ layer. By loading the
//external document into an existing layerA quick hack of the classic showtime()
//function, this function formats a string with the current time, and tacks an ‘am’
//or ‘pm’ onto it. The big switch from some of the older clock function
openPage(obj) {
 if (obj.pages.selectedIndex > 0) {
 lastPage = document.layers[‘contentLayer’].src;
 document.layers[‘contentLayer’].src=obj.pages.options[obj.pages.
 ➥selectedIndex].value;
 }
}

//-->
</script>

continues

Other Dynamic Techniques

<body onLoad=”init()” bgcolor=”black”>

<!-- the first layer uses mouseover and mouseout events to determine whether the
➥layer -->
<!-- is shown or hidden. It also serves as the parent layer for the rest of the
menu. -->
<layer id=”sysmenu”
 onMouseOver=”showMenu(‘sysmenu’)”
 onMouseOut=”showMenu(‘sysmenu’)” bgcolor=”silver” width=99% height=34 left=0
➥top=0>

<!-- Graphics? Not here! The shadow is a 1 pixel tall layer in a darker shade of
➥gray. -->
<layer bgcolor=”gray” width=100% height=1 left=0 top=33></layer>

<!-- The menu is held within the ‘lock’ layer’s document. I used a table here to
➥simplify -->
<!--the task of keeping the form elements lined up. -->
<layer id=”lock” width=100% height=27 left=5 top=3>
<table cellspacing=0 cellpadding=0 border=0 width=100%>
<tr>
<form name=”locker”><td align=center valign=middle>
<input type=”checkbox” name=”hold”>Auto Hide |
<input type=”button” value=”Home”
➥onClick=”parent.window.document.layers[‘contentLayer’].src=’content0.htm’” > |
<select size=1 name=”pages”>
<option value=””> ---- Site Quick Navigator ----
<option value=””>
<option value=””>
<option value=””>
<option value=””>
</select> <input type=”button” value=”Open”
 onClick=”openPage(this.form)”> |
<input type=”button” name=”clock” value=” 00:00 “> |
<input type=”button” value=”Exit” onClick=”self.close()” >

</td></form>
</tr>
</table>
</layer>

</layer>

<!--this layer serves as the screen, or canvas that the other pages are loaded in.
➥-->
<layer top=45 left=200 id=”contentLayer” height=245 width=400 src=”content0.htm”>

</layer>

</body>
</html>

Transition Effects

23

The concept behind the example is simple: Create a constant navigation system for the user.
Think of the code shown in Listing 23.8 as a television, with the menu bar controlling the
channels on the screen (the contentLayer layer) and the external files referenced in the sTitles
and sUrls arrays as channels. The page makes a great starting point for a wide variety of Dy-
namic HTML projects.

Some of the possible uses are an online catalog, a real estate property showcase, a news center,
or just a cooler way to view your site. To modify the framework, customize the HTML in List-
ing 23.8, adding whatever artwork, graphics, and links that you see fit. Pay careful attention to
the size and position of the contentLayer layer. You need to make sure that your external files
fit in the width defined by this layer. As an alternative, you could even create another layer
behind contentLayer, allowing your HTML to appear over the image of a monitor screen,
theater, or stage.

Adding your own pages to the menu requires a simple modification to the code in Listing 23.8.
Toward the top of the script, in the init() function, are two calls that create arrays based on a
list of URLs and Web page titles. These two lists should be exactly the same length (that is, if
you have four URLs, you should have four titles) so the list shows the correct information.
After plugging in this information about your pages, save and reload the page. Your new Web
documents are easily accessible, and will load in the same area as the other content. To change
the start page of the site, modify the src attribute of contentLayer. In a few simple steps, you
have a new, innovative Dynamic HTML interface to your creation.

There are some things to be aware of when creating Dynamic HTML-driven sites. It’s quite
easy to overload the user (and possibly their browser) with too many animations at any given
point. Extensive use of setTimeout() functions is a common mistake, resulting in animations
that may work fine for the first 30 seconds or so, but generate errors after that point. Also,
when attempting to use the maximum screen area possible as the canvas for your creation, it’s
important to remember that people are viewing your site in a wide range of resolutions and
color depths. I personally use a 1024×768 resolution on my desktop, and either a 640×480 or
800×600 resolution on my laptop. Just as having access to older browsers makes sense to en-
sure that the folks out there who haven’t upgraded yet get some semblance of a normal page
when hitting your site, it’s imperative to view the work under various screen resolutions.

As you’ve seen, Netscape’s layer implementation makes it incredibly easy to create high im-
pact, low bandwidth animation and transition effects. The material covered in this chapter is
very Netscape-specific, and is meant to show how to use the <layer> tag to enhance or replace
more conventional navigation and multimedia effects that you may use in everyday develop-
ment. The next chapter will cover the other side of the coin, and delve into doing animations,

Other Dynamic Techniques

transitions, and filters through syntax and objects unique to Internet Explorer 4. You can sup-
port both browsers on the same page through the use of careful scripting, external content files,
and the <nolayer> tag.

Building a Web site with Dynamic HTML content takes careful planning, a grasp of the vari-
ous elements used, and a fairly decent understanding of what people are using to access your
pages. I can’t stress enough that deciding which Dynamic HTML path to follow should de-
pend on what your visitors are using. With research, and some decent statistics from your server’s
log files, you can decide for yourself on which side of the fence your Web site’s Dynamic HTML
tricks should fall.

IE 4.0 Multimedia Effects with Dynamic HTML

24

by John J. Kottler

■

■

■

Other Dynamic Techinques

In the world of the Internet, users have become accustomed to technology that changes quickly.
Within the past year we have witnessed many changes in Internet computing and have been
introduced to some new technologies. There was a time when the Internet was simply a collec-
tion of static pages, linked in some fashion to other related information around the world. Within
just the past year, however, we have seen how the Internet is turning into a true computing
platform. This can be seen by the number of online database systems, E-Commerce, and other
applications that are becoming more apparent. But even more interesting is the heightened
approach in marketing and interaction between the user and the Web site.

In an attempt to make the Internet even more appealing, one of the most exciting areas of
computing is being further enhanced on the Internet: multimedia. Although arguably multi-
media has existed on the Internet in one fashion or another for quite some time, with the in-
troduction of new browsers such as Microsoft’s Internet Explorer 4.0, truly rich yet practical
multimedia experiences can be created for the first time on the Internet. With Internet Ex-
plorer 4.0 creating multimedia sites becomes a reality, because many multimedia-rich func-
tions are built into and included with the Internet Explorer 4.0 client.

What does this combination of Internet Explorer and multimedia features mean? From the
user’s perspective the advantage is simple: A user can enjoy all the richness of multimedia sites
that the Internet has to offer without needing to obtain and install ActiveX controls, plug-ins,
or other inconvenient objects to display content. The necessary multimedia controls are avail-
able immediately and the user does not need to endure long delays while controls are down-
loaded from the Internet. From the developer’s perspective, because many multimedia features
are included with Internet Explorer 4.0, the developer simply needs to optimize a Web site for
Internet Explorer and can be assured that visitors will be able to receive the content as it was
intended.

Multimedia has many definitions. Usually a multimedia application is one that consists of
animation, video, and sound. On the Internet, the world of multimedia has progressed slowly.
In the beginning, multimedia on the Internet consisted of hyperlinks that pointed to audio or
video files that could be painstakingly downloaded by the user and played by a separate pro-
gram. To help Web developers control the appearance of video, Shockwave animations, or other
rich data types within their pages, plug-ins were added to the Web browser that displayed this
content within regions that the developer specified. In addition, new streaming technologies
were soon introduced to help relieve the burden of downloading a large video file. Animated
GIFs soon became the optimal approach for creating simply animated pictures. But even with
all these improvements, there was still a lack of interactivity on Web pages. Only true embed-
ded applications such as Java applets or ActiveX controls could provide the interactive multi-
media applications that designers craved.

IE 4.0 Multimedia Effects with Dynamic HTML

24

Let’s face it, until recently the only way to create truly interactive Web pages was to include
Java applets or ActiveX controls, either of which required much more programming experi-
ence. Throughout this book, you have seen that Dynamic HTML is capable of offering fea-
tures similar to those found in application development environments such as Java. Therefore,
the future of multimedia on the Internet includes and relies heavily upon the use of Dynamic
HTML.

There are many ways to accomplish multimedia effects using Internet Explorer 4.0 and
DHTML. Internet Explorer is rich with multimedia capabilities and its Document Object
Model, which has been proposed to the World Wide Web Consortium for standardization,
makes the manipulation of objects on an HTML form simple. This simplicity is important
because one possible method for creating multimedia animation is to simply move objects via
script commands on a page.

Another more impressive feature of Internet Explorer 4.0 is its capability to render special ef-
fects or filters on objects or sets of objects within a Web page. With this capability it is possible
to create special effects on static information on a page, or programmatically control these ef-
fects to create even more stunning presentations. Some of these effects, which will be covered
later in the section “The Filter List,” include Blur, Alpha Channel, Chroma Key, Glow, Shadow,
Waves, and Stage Lights to name a few.

In addition to the scripting and effect filters offered by Internet Explorer, the capability to per-
form transition effects on a Web page is also included. Transition effects are segues from one
image or text block to another. These transitions are the same as those found in typical presen-
tation software packages such as Microsoft PowerPoint. Transition effects such as fade to black,
wipe left or right, vertical blinds, and checkerboard are just a few examples. These effects can
be applied to the enter Web page or to individual objects within the Web page. They can even
be used to span multiple Web pages, providing a visually appealing transition between pages in
a site or a cue for when a user has clicked on a link that leads outside the site.

Finally, as appealing as these special effects and transitions are for creating multimedia sites,
there is still room for improvement when it comes to complex multimedia. To accommo-
date for this need, Microsoft is bundling its Direct Animation control with Internet Explorer
4.0. This ActiveX object works with DirectX technologies to provide accelerated and com-
plex animations. Some of the capabilities that Direct Animation provides include 3D and
polygon rendering, animation paths, sprite manipulation, and direct control over audio.
However, an incredibly powerful multimedia tool, covering Direct Animation completely,
is beyond the scope of this chapter. Instead, we will concentrate on multimedia capabilities
included in Internet Explorer 4.0 that are exposed directly through standard DHTML without
special ActiveX controls.

Other Dynamic Techinques

Throughout this book, you have witnessed how DHTML and scripting can dramatically
improve the usability of a Web page. Likewise, scripting can change the position of DHTML-
controlled objects to create movement, change the object’s size, or perform many other ma-
nipulations. In this section, we will investigate how to move objects, size objects, and change
their layering behind or in front of other objects.

To understand how scripting can aid in animating objects, let’s first take a look at a sample
Web page. Figure 24.1 demonstrates a basic Web page with two images of balloons. Although
these images are static in the figure, they actually float around the screen. When they hit the
sides of the screen, they bounce in the opposite direction. Additionally, the blue balloon be-
comes larger as it nears the center of the screen and shrinks back to normal size as it moves
away from the center. Notice that the Swap Blue/Green Z-Order button toggles which bal-
loon is on top of the other.

Using DHTML and
scripting commands, it
is possible to move and
size objects to create
animation.

Previously, this type of animation was only possible using plug-ins such as Macromedia
Shockwave or Java applets. But now it is possible to do the same animation techniques with
DHTML and scripting languages. To begin to understand how these flying balloons are ani-
mated in Figure 24.1, let’s take a look at the source code for the page. Listing 24.1 contains the
Web page file necessary to create the animated balloons.

IE 4.0 Multimedia Effects with Dynamic HTML

24

<HTML>
<HEAD>
<TITLE>
Dynamic HTML Multimedia
</TITLE>
</HEAD>

<SCRIPT LANGUAGE=”VBScript”>
dim dir1_x, dir1_y, dir2_x, dir2_y

‘Set some initial x,y directions for Balloon1
dir1_x=5
dir1_y=-2

‘Set some initial x,y directions for Balloon2
dir2_x=-3
dir2_y=4

sub window_onload()
 ‘Start a timer. Every 100ms (1/10 second), call the
 ‘function that updates the balloon positions.
 window.settimeout “moveBalloons()”,100
end sub

sub swapZOrder()
 ‘Z-Order for the balloons initially are 0 and 1.
 ‘Doing a “NOT” will toggle state of zIndex property
 ‘between 0 and 1. This treats the property as boolean
 ‘ ie: not 1 = 0, not 0 = 1

 balloon1.style.zIndex = not balloon1.style.zIndex
 balloon2.style.zIndex = not balloon2.style.zIndex
end sub

sub moveBalloons()
 bal1_x = balloon1.style.posLeft
 bal1_y = balloon1.style.posTop
 bal2_x = balloon2.style.posLeft
 bal2_y = balloon2.style.posTop

 ‘If balloon goes off the sides of the screen,
 ‘Change the balloon’s direction.
 if bal1_x<0 or bal1_x>500 then
 dir1_x = -1 * dir1_x
 end if

 if bal1_y<0 or bal1_y>400 then
 dir1_y = -1 * dir1_y
 end if

 if bal2_x<0 or bal2_x>500 then
 dir2_x = -1 * dir2_x
 end if

continues

Other Dynamic Techinques

 if bal2_y<0 or bal2_y>400 then
 dir2_y = -1 * dir2_y
 end if

 ‘We want the balloon to shrink or expand when in the middle,
 ‘depending on the direction of the balloon.
 if bal1_x>200 and bal1_x<300 then
 balloon1.style.posWidth=balloon1.style.posWidth + dir1_x
 balloon1.style.posHeight=balloon1.style.posHeight + dir1_x
 end if

 ‘We want the balloon to shrink or expand again past the middle,
 ‘depending on the direction of the balloon.
 if bal1_x>300 and bal1_x<400 then
 balloon1.style.posWidth=balloon1.style.posWidth - dir1_x
 balloon1.style.posHeight=balloon1.style.posHeight - dir1_x
 end if

 balloon1.style.posleft = bal1_x + dir1_x
 balloon1.style.posTop = bal1_y + dir1_y

 balloon2.style.posLeft = bal2_x + dir2_x
 balloon2.style.posTop = bal2_y + dir2_y

 ‘Call this function again to create a loop, to continuously move.
 window.settimeout “moveBalloons()”,100
end sub

</SCRIPT>

<BODY>
<INPUT TYPE=BUTTON
 VALUE=”Swap Blue/Green Z-Order”
 onClick=”swapZOrder()”>

<img id=balloon1
 style=”position:absolute;
 left:0px;
 top:100px;
 width:92px;
 height:164px;
 z-index:1"
 src=”balloon1.gif”>

<img id=balloon2
 style=”position:absolute;
 width:92px;
 height:164px;
 left:500px;
 top:50px;
 z-index:0"
 src=”balloon2.gif”>

</BODY>

</HTML>

IE 4.0 Multimedia Effects with Dynamic HTML

24

When defining images using cascading style sheets (CSS), you may specify numerous proper-
ties. In our balloon example, we place the images of the balloons at absolute positions and in-
dicate their layering position on top of each other. It is important to notice that when we use
absolute positioning, it will be possible for us to return the exact pixel location later in our
movement script. We can then modify that position easily by adding or subtracting values. For
example, to move the image right, we can simply add a value to the present left location of the
image. To move the image left, we can subtract (or add a negative value) to the image’s present
left location.

To start the animation process we need a timer, some form of conductor that keeps the event
of moving objects going. This timer event can be emulated using the setTimeOut function. This
function causes the browser to wait a given number of milliseconds and then call a function, in
this case the moveBalloons function.

Within the moveBalloons function, the script starts by assigning local variables to the various
left and top positions of the two balloon images. Although this is not necessary, it makes life
easier later in the script when we need to constantly reference these values. Instead of typing
the complete line balloon1.styles.posLeft, we can simply use bal1_x. This will actually save
computational time as well, because the position information used in the conditional state-
ments can be retrieved as fast variables instead of invoking the actual image objects each time.

After setting variables and before actually updating the image’s properties, we need to do some
checking. This checking verifies the current position of the objects to make certain that they
won’t go far off the screen. Each item is checked to see whether its position is less than the left
side or top of the screen. Each is also checked to see whether its position is greater than the
right side or bottom of the screen. If any of these cases occurs, the direction for the object in
question is reversed to create a “bouncing off the wall” effect.

Other Dynamic Techinques

After performing all the conditional checks, we can update the actual positions of the objects.
This update is accomplished by changing the posLeft or posTop properties of the style attribute
for each object. The actual change is accomplished by taking the previous posLeft or posTop
properties and adding an amount to it. In this example it is important to notice that we are
using the posLeft and posTop properties of the style sheet, not the left and top properties.
Although the left and top properties specify the X and Y location for the top-left corner of an
object, these values are stored as strings. Also, because style sheets allow developers to position
objects using a variety of units of measurement, these string values are followed by characters
that indicate what unit is being used. For instance in our balloon example, the balloon images
are loaded and placed at exact pixel (px) locations.

When attempting to update actual numeric values of these properties, we do not want the trailing
unit of measure to get in the way. When we add five pixels, we want the value of the property
to be increased; we do not want the string “5” added to the end of the current position, such as
“20px5”. To avoid the use of string converters that change these strings to values, you can sim-
ply reference the posTop, posLeft, posWidth, posHeight properties. The prefix pos returns the
property values for a style sheet as true numbers, not strings.

Already you can see the power of scripting languages for creating multimedia animations. With
the scripting language and the power of DHTML, it is possible to change any object’s prop-
erty value at any time. Additionally, you can create more interesting effects by changing these
values continuously over time or adding logic to the changes that are made.

For purely demonstration purposes, the blue balloon in Figure 24.1 becomes larger, or is “blown
up,” as it passes through the center of the page. This dynamic scaling is accomplished in a similar
manner as the balloons are moved. If we look back at the moveBalloons function again, you
will notice that there are some additional checks being performed toward the end of the func-
tion. These validations simply determine the location of the blue balloon (balloon1) and whether
it is in the middle, expands, or contracts the balloon accordingly. This change in size can be
easily accomplished by tweaking the width and height parameters for the image.

Although we could simply just double the amount of both the width and height of the image
to double the overall size of the image, we want to make the balloon appear to grow. There-
fore, the script will cause these values to change progressively. You may also notice that the
script in Listing 24.1 uses the dir1_x and dir1_y variables to update the size of the balloon.
This is simply for ease of scripting instead of introducing separate variables. We want the bal-
loon to expand just to the left of the center and collapse to the right of center while the balloon
is heading to the right. If the balloon is heading left, we want the same effects to occur, but in
reverse order. Because the direction variables are already set to positive or negative values de-
pending on the direction the balloon is headed, we can cheat and use those values in the width
and height to achieve the desired effect.

IE 4.0 Multimedia Effects with Dynamic HTML

24

To complete this flying balloons example, you’ll remember that Figure 24.1 demonstrates a
pushbutton in the top-left corner of the page that toggles the “Z-Order” (zIndex) of the bal-
loon objects on the page. Pressing this button will toggle the green balloon on top of the blue
balloon, or vice versa. The zIndex property specifies how far behind or in front of other objects
a particular object should be. The lower the number specified in an object’s zIndex, the further
back that object will be. The appearance achieved is that objects with a lower Z-Order will be
drawn underneath other objects on the screen, while objects with higher Z-Order values will
be drawn on top. Therefore, although the balloon example uses 0 and 1 for each object’s zIndex,
it is possible to use any positive or negative integer value.

zIndex

To provide this functionality in the balloon example, the standard intrinsic HTML button
triggers the swapZOrder function via its onClick event. Whenever a user clicks on the button,
the swapZOrder function is called, which adjusts the zIndex properties of each balloon by per-
forming boolean operations. Figure 24.2 illustrates how the Z-Order of objects appear.

With the zOrder
property it is possible to
control whether the
green balloon appears
in front of or in back of
the blue balloon.

Other Dynamic Techinques

Nowadays, no blockbuster movie would be complete without some incredible special effects.
With the newest capabilities of Internet Explorer 4.0, soon no Web site will be without special
effects as well. True, the special effects we’re talking about here in Internet Explorer are not
three-dimensional dinosaurs, but they are quite useful for creating sites with visual impact that
no longer require separate images. Figure 24.3 demonstrates all the new special effect filters
that are included with Internet Explorer 4.0. Although many of these filters are illustrated on
images, they can be equally applied to other HTML objects such as text or buttons.

Internet Explorer 4.0
allows you to apply
special filters to images
or text on a Web page.

These special effects found in Internet Explorer 4.0 can be applied to any rectangular defining
object in HTML. Therefore, they can be applied to objects such as BODY, BUTTON, IMG, INPUT,
MARQUEE, TABLE, TH, TD, TR, THEAD, TFOOT, and TEXTAREA. These filters also can be used in con-
junction with the DIV and SPAN tags as long as specific width and height properties are assigned
for those tags.

The filter techniques displayed in Figure 24.3 are defined and changed via cascading style sheets
and the STYLE attribute for an HTML object. Therefore, you can set the filters for an object
just as easily as you would specify an object’s absolute position. Additionally, you can choose
to change these filters dynamically using scripting languages and the Document Object Model
to address filter properties for an object. Listing 24.2 demonstrates how to apply styles such as
blur to an object.

IE 4.0 Multimedia Effects with Dynamic HTML

24

<IMG SRC=”balloon1.gif”
 STYLE=”position:static;
 width:92;
 height:164;
 filter:blur(direction=135,strength=1)”
 ID=balloon1>

<SCRIPT LANGUAGE=”VBScript”>
 for z=1 to 150
 balloon1.filters.blur.direction = z
 next
</SCRIPT>

STYLE STYLE

FILTERS

FILTERS

You will notice immediately that some filters contain additional properties of their own that
can adjust the overall effect of the filter. For example, in Listing 24.2 the blur filter can be changed
in both strength and the direction of the blur. These properties can be set via the STYLE at-
tribute as comma-separated, name-value pairs. You can include as many specific properties as
you like. Where no specific values are supplied, the default will be used.

Of course, you can address these properties equally as well using scripting commands. There is
a collection of filters available for each object of the Web page. Each filter defined increases the
total number of items in this collection. An individual filter applied on an object can be ad-
dressed one of three ways, mainly to accommodate for differences in languages and coding
practices induced by languages such as VBScript and JavaScript:

■ As an object of the FILTERS collection, such as myObject.filters.alpha

■ By name, such as myObject.filters[“alpha”]

■ By index value, such as myObject.filters[0]

Most of these filters are useful and cool by themselves; however, it will become necessary at
times to combine filters. For instance, you might find it necessary to apply an alpha channel
filter to an object so that it appears semitransparent, but you may also need the blur effect to
make it look like it is streaking across the screen as it moves.

Other Dynamic Techinques

Chaining filters together is relatively simple. You simply define as many filters as you would
like to apply to an object in that object’s STYLE tag. Each filter that you define must simply be
separated by a space within the tag. When using multiple filters, the technique for referencing
them by name becomes exceedingly important so that you can programmatically change the
right filter at the right time. However, referencing these same filters by number is also useful
for applying similar values to a set of filters that can be iterated easily with a loop in script. In
this case, the order in which filters can be referenced by a number is directly related to the or-
der in which multiple filters are defined using the STYLE tag for that object.

To apply filters in Internet Explorer 4.0, you need to know the name of the filter as well as any
additional properties that can be set on an individual filter. The following is a list of all the
filters available in Internet Explorer 4.0 and the effects they produce.

DIV

Alpha(opacity, finishOpacity, style, startX, startY,
finishX, finishY)
This filter allows you to specify the opacity of an object. In addition to simply making the object
more or less opaque, you may also introduce opacity progressively from one point of the object
to another. The following properties may be set for the Alpha filter:

■ opacity—The level of opacity to be applied to an object. A value of 100 indicates that
the object is to be painted entirely opaque, whereas 0 indicates a transparent object.

■ finishOpacity—Because an object can be more opaque in one portion and less
opaque in another, this value indicates how opaque the final position should be
rendered. For instance, you could set the initial opacity to 100 and the finishOpacity
to 0. The object would get progressively more transparent between the start and end
points.

IE 4.0 Multimedia Effects with Dynamic HTML

24

■ style—Because a gradient will be constructed to create the progressive opacity
between the start and end points, you can choose what style of gradient you would
like to use. The following table illustrates the values available:

0 None

1 Linear

2 Radial

3 Rectangular

■ startX/startY—These two values identify the starting X and Y positions for the
opacity gradient that will be used.

■ finishX/finishY—Like startX and startY, these two values identify X and Y posi-
tions for the opacity gradient. They indicate the ending position of the gradient and
do not necessarily have to be to the lower-right of the starting position.

Blur(add, direction, strength)
To make the appearance of quick movement, you can use the blur filter to streak pixels in a
given direction with a specific strength.

■ add—After streaking the image, the original image will be blurry and unreadable. If
you would like to redraw the original image at its original location, you can set this
value to 1 for true; otherwise, set the value to 0 for false.

■ direction—Streaking can occur in any direction. This property allows you to specify
that direction by supplying a value between 0 and 360 degrees in 45-degree incre-
ments, where zero is straight up.

■ strength—As the image streaks, you can specify how many pixels the filter will extend
with this property.

Chroma(color)
Often images created will require a transparent color so that background information will pass
through the image. This effect, often implemented via GIF89a graphic format files, can be added
dynamically using the Chroma filter.

■ color—This property specifies the color in the image that you want to treat as
transparent. This color is identified using the hexadecimal HTML red, green, and
blue color pairs: #000000 to #FFFFFF.

DropShadow(color, offX, offY, positive)
Usually graphics artists like to create the illusion of depth by adding a drop shadow to the lower-
right corner of an image or text. The effect is essentially an all-gray version of the original im-
age, copied behind the original image and moved slightly to the bottom right. This same effect
can be accomplished easily with the DropShadow filter and numerous properties can be tweaked.

Other Dynamic Techinques

■ color—Although most drop shadows are gray in color, they do not have to be. This
property allows you to identify a color using the hexadecimal HTML red, green, and
blue color pairs: #000000 to #FFFFFF.

■ offX/offY—Common drop shadows can be found to the lower right, but you can
change the amount of this offset and the direction by changing these properties. The
offX property specifies the number of pixels to the left or right that the shadow should
be offset. Likewise, the offY property specifies the number of pixels to offset above or
below the image. Both values are identified in pixels and negative numbers can be
used to indicate left or above offsets.

■ positive—This property is set to 1 or true by default. Changing this value allows you
to specify whether you would like to create a drop shadow for every nontransparent
pixel (true or 1) in an image or for every transparent pixel (false or 0). If you set this
property to 0, every transparent pixel in the original image will be used to make the
shadow for the image. That shadow then will be drawn only within the non-
transparent pixels of the original image. The end result is a shadow that is more like a
mask that is rendered inside the image.

FlipH()
This is one of several filters that are available in Internet Explorer 4.0 that do not have addi-
tional properties. By adding this filter to an image, the image will be flipped horizontally. That
is, the final image will appear as if you were holding up the image to a mirror.

FlipV()
Similar to the FlipH() filter, this filter does not require that any additional properties be set.
Adding this filter to an object will flip the image vertically. This is equivalent to looking at the
image upside down.

FlipH() FlipV()

FlipH()

Glow(color, strength)
Another interesting effect that is added to Web pages is the glow effect. This effect provides the
illusion of a warm glow, cast off from the object itself. Graphics artists usually create this effect
by applying a Gaussian blur to the image. This filter does not apply an actual Gaussian blur
because that effect is too time-consuming. Instead, the blur is simulated to create a soft light
that loses intensity as it moves away from the object.

IE 4.0 Multimedia Effects with Dynamic HTML

24

■ color—You can choose whatever color you want for the glow that emanates from
behind the object. Like other filters, this color is identified using the standard HTML
red, green, and blue color pairs: #000000 to #FFFFFF.

■ strength—You may also specify the intensity for the glow effect ranging from 0 to
100, where 0 indicates no glow and 100 is maximum glow.

Gray()
This filter does not require any properties to be set in order to function. If you apply the Gray()
filter to a color object, the filter will remove any color from the image and create a grayscale
equivalent.

Invert()
The Invert() filter does not require any additional parameters. When this filter is invoked on
an object, the colors in that object are inverted. This inversion reverses the hue, saturation, and
brightness for each pixel within the colored object.

Mask(color)
The Mask() filter is very similar to the Chroma filter, but renders the opposite results. You will
recall that the Chroma filter removes pixels of a particular color from an object and makes them
transparent. The Mask filter removes all pixels from an object except those of a particular color.
If our sample image is a balloon with a gray background, applying the Chroma filter for the gray
color will remove the gray. But applying the Mask filter will “cut out” the balloon and leave just
the surrounding gray image. This is particularly useful for creating “windows” to see only por-
tions of objects behind the masked object.

■ color—Similar to the Chroma filter, you must specify the HTML red, green, and blue
color pairs (#000000 to #FFFFFF) for the color you would like to keep to form the
mask.

Shadow(color, direction)
Not to be confused with DropShadow, the Shadow filter takes the original image and copies it as
a specific color behind the original image at an offset position. What makes this filter different,
however, is that the shadow streaks slightly behind the original image and its color intensity
lightens as it moves away.

■ color—Although most shadows are gray, they do not need to be. You can change the
color of the shadow by changing this property to suitable HTML red, green, and blue
color pairs (#000000 to #FFFFFF).

■ direction—Shadows can be cast in any direction. To specify a direction, set this
property to a degree between 0 and 360 in increments of 45 degrees. Again, like the
Blur filter, a value of 0 indicates the shadow should be directly above the rendered
image.

Other Dynamic Techinques

Wave(add, frequency, lightStrength, phase, strength)
To simulate sinusoidal waves within an image, you can use the Wave filter. This filter includes
numerous properties for specifying the characteristics of the waves that run through an image.

■ add—Similar to the Blur filter, you can set this property to 1 (true) to make a copy of
the original image on top of the image that has been processed with the Wave filter.
Usually the Wave filter will make the image somewhat illegible; this option allows the
original image to be painted again without replacing the Wave effect entirely.

■ frequency—This parameter is a number that indicates the number of waves that are to
appear within the object that this filter acts upon. The higher this number is, the more
waves are rendered.

■ lightStrength—Because the waves are rendered, you can control the amount of light
that should be projected on the rendered image. This strength can be controlled via
this property as a percentage between 0 and 100, where 0 indicates no light.

■ phase—This is the offset at which the waves will appear. Typically the waves begin at
zero degrees, but by changing this value you can modify this amount. Valid values for
this property are from 0 to 100 percent. In this case, 0 indicates 0 degrees and 100
specifies 360 degrees.

■ strength—You can change how much of a ripple effect is caused by varying this
filter’s strength. This property is equivalent to the amplitude of a sine wave. The larger
this amount, the larger ripples are caused to be rendered.

XRay()
This filter, like many others, does not need additional parameters to function. Applying this
filter will decrease the color depth of an image and force it to grayscale. The final effect is an
image that appears somewhat like an X ray of an object.

Light()
In addition to the usual filters that you have been introduced to, you have the ability to add
rendered lighting effects on top of areas of the Web page. The lighting effects are being cov-
ered separately because they are the only filters that must be implemented using script. This is
not necessarily bad, however, because the most dramatic lighting effects will be those that are
animated, panning light across an object, for instance. In any case, the light filter requires that
methods be invoked on the filter, not just the properties set. Because of these methods, you
must use a call statement in VBScript to invoke the methods, as in this example:

call object.filters.light.addAmbient(R, G, B, strength)

Figure 24.4 illustrates a simple cone light added to the image of a balloon. To add a light filter
to an object, you can use the same approach as with the other filters. The following is a list of
the filter’s methods.

IE 4.0 Multimedia Effects with Dynamic HTML

24
AddAmbient(R, G, B, strength)
Ambient light is nondirectional light. Think of an incandescent lightbulb and the way it illu-
minates a room. You don’t see the beams streaming out of the bulb in a single direction, but
rather in all directions. By adding an ambient light to an object, you can change its color sub-
tly. The light is similar to straight light, hitting your computer screen at a perpendicular angle.

■ R,G,B—Together these parameters for the method indicate the color of the light being
added to the scene. These parameters represent the amount of red, blue, and green
light respectively. They are similar to the HTML color pairs that you are familiar
with, but each integer value in this case ranges from 0 to 255.

■ strength—Although you control the independent colors for a light, you can also
adjust the light’s overall intensity by modifying this parameter.

AddCone(x1,y1,z1,x2,y2,R,G,B,strength,spread)
To create more visual lighting effects, you will need to use lights other than ambient lights.
The more stunning presentations come from directional light, in which you can see from where

The balloon image is
left dark except for the
area to which a cone
light is applied.

Other Dynamic Techinques

the light originates and the direction in which it scatters. Cone lights create directional light
where the light cast forms the shape of a cone, tighter and brighter at its origin, and wider and
dimmer as it spreads.

■ x1, y1, z1—Because a cone light has an origin and an intended direction, you can
specify the origin of the light with these first three parameters of the method. The
parameters indicate where the origin of the light should exist horizontally, vertically,
and depth-wise. Like Z-Order, higher values indicate that the light should be emanat-
ing from the front of the object, like a light behind you projecting at your computer
display.

■ x2, y2—Although conical light will spread, you can indicate the general direction in
which you want it to be aimed. By modifying the x2 and y2 parameters, you can
specify a point to which the light should be aimed.

■ R, G, B—As usual, you can specify the unique color of each light. Again like ambient
light, you adjust this color by specifying how much red, green, and blue you would
like to mix into the light.

■ strength—Just as with other lights, you can specify how bright you want the light to
be by addressing this parameter in the method.

■ spread—The conical shape rendered by the light method will spread as light emanates
away from the origin. How much the light spreads is controlled by this method. The
amount of spread is measured in degrees from 0 to 90.

AddPoint(x, y, z, R, G, B, strength)
Just as you can add other lights, you can also add another point light. These types of lights are
similar to incandescent lightbulbs that radiate light in all directions. However, these lights can
appear more as points within the scene, with light radiating off those points. An example of
this would be a picture of the front of a car with lit headlights. These artificial lights could be
enhanced with point lights to create a glow in the scene.

■ x, y, z—Just as with the cone light, you can specify the exact location of a point
light within the scene. These parameters specify the x, y, and z locations for the light.

■ R, G, B—Also like the cone light, you can choose what color a point light should be.
As with other lights, you can pick the color of the light by adjusting the red, green,
and blue values with the R, G, and B parameters, respectively. Each value can be an
integer between 0 and 255.

■ strength—After specifying a location and color, you can adjust the light’s intensity
with the strength parameter.

ChangeColor(lightNumber, R, G, B, absolute)
After you have created your lights, you will continue to use methods to modify their values.
The ChangeColor method, for instance, will allow you to change the color of a light after it has
been created.

IE 4.0 Multimedia Effects with Dynamic HTML

24

■ lightNumber—Because multiple lights can be added for a single object, you can specify
the number of the light you want to change. Lights are numbered by the order in
which they are created.

■ R, G, B—Because the method is named ChangeColor, obviously you will want to alter
the color values for the light. These three parameters allow you to reset the amount of
red, green, or blue to project from the light, respectively.

■ absolute—The default value for this parameter is 1 (true). When set to true, the
values you pass in for the R, G, and B parameters are the actual colors to change the
light to. If you set this parameter to 0 (false), the R, G, and B parameters will indicate
how much to change the color of the light. Therefore, if absolute is set to 0, you can
set the B parameter to -15 to drop the value of the blue channel by 15.

ChangeStrength(lightNumber, strength, absolute)
Just as you can change light colors with the ChangeColor method, you can adjust the intensity
of a light by modifying this parameter.

■ lightNumber—Multiple lights can be assigned to a single object. Therefore, to deter-
mine which light is to be brightened or dimmed, a light’s number must be passed as
part of this method.

■ strength—The actual intensity of the light can be set by this parameter.

■ absolute—Similar to the ChangeColor method, you can choose whether you would
rather change the intensity of the light directly to the strength parameter passed in or
adjust how much to change the intensity of the light. If absolute is set to 0, you could
set the strength parameter to -15 to reduce the intensity by 15.

Clear
If you want to remove all lights from a given object’s light filter, you can simply call the Clear
method. This method will remove all lights and the attributes of those lights from the object.
You do not need to specify any additional parameters in order for this method to function.

MoveLight(lightNumber, x, y, z, absolute)
So far you have seen how to change the properties of the lights, but what if you wanted to
reposition them? Fortunately the MoveLight method provides just this functionality.

■ lightNumber—Because multiple lights may be assigned in a filter to an object, you
must explicitly specify which light you want to move by number.

■ x, y, z—Because you are changing the position of the light source, you must specify
new x, y, and z coordinates for the light. For point lights, this is the location of the
actual source of the light. For cone lights, only the x and y parameters are used to
specify the direction to which the cone light is pointed.

Other Dynamic Techinques

Another special type of filter that can be applied to elements of a Web page is transitions. These
transitions, which you are already familiar with if you use presentation software such as Microsoft
PowerPoint, allow you to do special segues between images, text, or other objects. Instead of
simply changing presentation values of an object, you can change them gracefully with a tran-
sition. For instance, you can display an image on the page and then fade it out progressively
until it is hidden.

You can also apply separate effects that will reveal portions of the destined image or text object
until the entire object is displayed. The portions of the object that are revealed can be displayed
in a variety of animation formats, including checkerboard, wipes, blinds, and much more. In
Internet Explorer 4.0, the two types of transitions that are available are transitions that blend
objects together and transitions that animate to reveal portions of objects. Figure 24.5 illus-
trates the transition between a green and blue balloon using the checkerboard transition. As
you can see, the balloon on the right has the checkerboard effect across it. This effect is ani-
mated and each checkerboard square is elongated, revealing one balloon over another.

To add transition capabilities to objects on a Web page, or to the Web page itself, you simply
add either the blendTrans or revealTrans filters to the style attributes for the object or page.
For example, the following code adds the revealTrans filter to an image on the page:

<IMG SRC=”balloon1.gif”
 id=balloon2

Transition effects are
useful for producing
segues between images.

IE 4.0 Multimedia Effects with Dynamic HTML

24

 STYLE=”position:absolute;
 left:150;
 top:150;
 width:92;
 height:164;
 filter:revealTrans()”>

Just like other filters, transition filters can also be modified by script. To reference a transition,
you can simply use the object.filters syntax followed by the transition name. After the tran-
sition name, you can specify the transition property to change or the method that you want to
invoke. For example, to play a transition via script you could use:

MyObj.filters.blendTrans.play()

Both the blendTrans transition and the revealTrans transition contain similar properties and
methods. The main transition property indicates the length of time allowed for the transition
to occur. In addition to this, the revealTrans transition includes a second property for speci-
fying exactly which transition to use.

■ Duration—The length of time for a transition to occur can be set via this property for
a transition. This duration is measured in seconds, whereas a longer value indicates a
slower transition.

■ Transition—With the revealTrans transition, the source object is replaced by the
destination result by a progressive reveal. The nature in which the revealed areas of the
object appear can be picked from one of 24 transition effects such as wipes or checker-
board. You can specify which transition to use by setting this property between the
values of 0 and 24. Table 24.1 lists all the transitions available to the revealTrans
transition filter and their appropriate values.

revealTrans

Effect Value

Box in 0

Box out 1

Circle in 2

Circle out 3

Wipe up 4

Wipe down 5

Wipe right 6

Wipe left 7

continues

Other Dynamic Techinques

Vertical blinds 8

Horizontal blinds 9

Checkerboard across 10

Checkerboard down 11

Random dissolve 12

Split vertical in 13

Split vertical out 14

Split horizontal in 15

Split horizontal out 16

Strips left down 17

Strips left up 18

Strips right down 19

Strips right up 20

Random bars horizontal 21

Random bars vertical 22

Random 23

Whether you use the blendTrans or the revealTrans transition, you will use three main meth-
ods. The combination of these methods instructs the browser which portions of the page are to
be updated with new content and then executes the transition.

■ apply—The apply method instructs the browser that the information following
the apply method is to be updated in place of the object. Any information between
the apply method and the play method will be considered new content to replace the
original content. For instance, between the two methods you might want to hide the
original object using a style sheet property. When the animated transition is played for
that object, it will slowly disappear.

■ play—After you have finished describing what you want to have happen to the objects
after the transition, you can begin the transition. To start the transition, use the play
method.

■ stop—If you want to abort the transition and reveal the final result, you can stop the
transition with this method.

Effect Value

IE 4.0 Multimedia Effects with Dynamic HTML

24

Listing 24.3 illustrates transitions of Figure 24.5 in action. Notice that there are simply two
subroutines invoked when buttons are clicked on the page. These subroutines perform either
a blended transition or a revealed transition that uses the number in the text box as a transition
effect identifier.

<HTML>
<HEAD>
<TITLE>Special Effects</TITLE>

<SCRIPT LANGUAGE=”VBScript”>
sub doFade(obj)
 if obj.filters.blendTrans.status=0 then
 obj.filters.blendTrans.apply()
 obj.style.visibility=”hidden”
 obj.filters.blendTrans.play()
 end if
end sub

sub doTrans(obj)
 if obj.filters.revealTrans.status=0 then
 obj.filters.revealTrans.apply()

 if right(obj.src,5)=”1.gif” then
 obj.src=”balloon2.gif”
 else
 obj.src=”balloon1.gif”
 end if

 obj.filters.revealTrans.transition=TransType.value
 obj.filters.revealTrans.play()
 end if
end sub
</SCRIPT>
</HEAD>

<BODY>
<IMG SRC=”balloon4.gif”
 id=balloon1
 STYLE=”position:absolute;
 left:50;
 top:150;
 width:92;
 height:164;
 filter:blendTrans()”>
<IMG SRC=”balloon1.gif”
 id=balloon2
 STYLE=”position:absolute;
 left:150;
 top:150;
 width:92;
 height:164;
 filter:revealTrans()”>

continues

Other Dynamic Techinques

<P>
<INPUT TYPE=BUTTON VALUE=”Fade Out” onClick=”doFade(balloon1)”></P>
Enter transition number (0-23):

<INPUT NAME=TransType TYPE=TEXT VALUE=”0">

<INPUT TYPE=BUTTON VALUE=”Do Transition” onClick=”doTrans(balloon2)”>
</BODY>

</HTML>

META

<META HTTP-EQUIV=”Page-Exit”
 CONTENT=”blendTrans(duration=5)”>

Page-Exit Page-Enter Site-Enter

Site-Exit

In this chapter you were introduced to the many new multimedia capabilities integrated within
Internet Explorer 4.0. With the use of Dynamic HTML and scripting, filters, and transitions,
you can create incredibly robust multimedia Web pages without incurring the cost of down-
loading large animation files, Java applets, or additional plug-in support. This chapter only
touches the iceberg of multimedia on the Web in Internet Explorer 4.0. You are encouraged to
check out Microsoft’s Web site at http://www.microsoft.com/ie/ie40 to find out more about
the multimedia capabilities included with Internet Explorer 4.0. For now, enjoy using the tech-
nology you have learned in this chapter to enhance your own pages.

Using Netscape Navigator's Canvas Mode

25

by Stephanos Piperoglou

■

■

■

■

■

Other Dynamic Techniques

In this chapter, we examine a powerful new feature that first appeared in Netscape Communi-
cator Preview Release 2 called canvas mode.

Canvas mode allows developers to open a browser window that contains only the document
canvas. The document canvas is that part of the window in which the document is rendered.

When a window is in canvas mode, it has none of the normal identifying marks; a title bar, a
menu bar, all the navigation icons, the status bar at the bottom, scrollbars, and so on are all
missing. In this chapter, we examine how canvas mode works and how to use it, and suggest
some possible applications. As a bonus, you get a glimpse of the procedure needed to sign your
scripts in JavaScript for authenticity verification.

The first question you have to ask yourself is whether you actually need canvas mode for an
application. Displaying a real-size wall poster of yourself in .TGA format full-screen is hardly a
good reason to get rid of all the user interface stuff in your Navigator. Why would you want to
invoke canvas mode? I can think of some possible reasons, but you might require it for some-
thing else:

■ To have a simple, unadorned pop-up. For instance, you might want to display an image
in a separate window with nothing but the image showing.

■ To create a fancy dialog box. You won’t be the first to decide that your operating
system’s widget set doesn’t appeal to your taste.

■ To create a separate window for output. It’s useful to have a little screen appear out of
nowhere that can be manipulated from the parent page.

■ To briefly display a splash screen. Netscape does it, Microsoft does it, why can’t your
Web page do it?

■ To disable as many Navigator features as possible. For a specific application, you might
not want users to have access to Back, Forward, Print, and View Source features, for
instance. By removing the menu bar and icons (and, as you will see later, access to
hotkeys), you can accomplish this.

■ To increase screen real estate. All the gadgets that normally surround the canvas take up
a lot of space that you usually do not care that much about, but many applications
benefit from each pixel gained.

■ To get rid of the Navigator look. If you’re using Navigator for something such as
navigating through a CD-ROM full of files or accessing your company’s database over
an intranet, you might not want all of the normal appearance that goes along with
Navigator.

■ To have a uniform, cross-platform look. Although canvas mode was exclusive to Naviga-
tor at the time of this writing, it may soon be adopted by other browsers. At such a
time, you can use canvas mode to shed all the gadgets a browser may offer and supply
your own.

Using Netscape Navigator's Canvas Mode

25

As you can see, canvas mode can radically change the way Navigator operates. For this reason,
all scripts that invoke canvas mode need to be signed for security. A lot of the features of canvas
mode rely on the specifics of the operating environment, so you also have a couple of things to
consider before using it on Web pages published on the Internet. For more on script signing
and cross-browser issues, see the relevant sections later in this chapter.

You invoke canvas mode using the title-bar window feature of the open() method for window
objects. In case you’re not familiar with the window.open() method, we summarize the way it
works in the next section.

window.open()
You use the window.open()method to open a new Navigator window, similar to pressing Ctrl+N
or selecting New Window from the File menu in Navigator. What the window.open() method
can do that the New Window menu option can’t is give the window special features. JavaScript
1.2 changed these special features, such as the title-bar feature, which invokes canvas mode.

Versions of Navigator earlier than 4.0PR2 do not recognize the special features. In these ver-
sions of Navigator, all you could do is make the menu bar, toolbar, location bar, status bar,
and scrollbars disappear. Although this created a nice effect (and worked with Internet Explorer
as well), you still had the title bar and window border tagging along (whether you could resize
the window or not). Also, you could only specify the size of the whole window, meaning you
had to make rough calculations about how thick the menu bar and window border would be
to get the required dimensions for your canvas.

In Navigator 4.0, all this changed, and Dynamic HTML authors have absolute control over
the window’s appearance. The syntax for the window.open() method is as follows:

[variable =]window.open(“URL”, “name”, [“features”])

URL is, obviously, the URL you want the window to contain. This can be empty, indicating
that you don’t want anything in the window initially.

The optional variable in the beginning is an identifier used to refer to the window in your
scripts, in contrast to the window’s name, which is used to refer to the window in HTML and
can be empty. For example, suppose you open a window for use as a dialog box with the fol-
lowing line of code:

winDialog = window.open(“”,”dialog”)

You want to put some data into it because you supplied no URL. You can use something such
as this in JavaScript:

winDialog.document.write(“<TITLE>Dialog Box</TITLE><P>This is a dialog box”)

Other Dynamic Techniques

You can also have a link somewhere in an HTML document that puts the URL it mentions in
the new window:

Dialog box contents

Following this link puts dialog1.html in the new window. Notice that the first example refers
to the new window as winDialog, which is the identifier you assigned to it, whereas the second
example refers to it as dialog, which is the name you gave it in the parameters of the open()
method.

Now I come to the interesting part: the window features.

As you saw in the brief example, you don’t have to supply any window features; they are purely
optional. However, what is the point of opening a new window if you can’t make it look good?

You can control many window features with the window.open() method. This chapter discusses
most of them, and Table 25.1 includes a complete list. These window features work in JavaScript
1.1 and in older versions of Navigator (and Explorer).

Feature Default Description

toolbar=yes|no No Controls the display of the toolbar.

location=yes|no No Controls the display of the location bar.

directories=yes|no No Controls the display of the directories bar (or
personal toolbar in Navigator 4.0).

status=yes|no No Controls the display of the status bar.

menubar=yes|no No Controls the display of the menu bar.

scrollbars=yes|no No Controls the display of scrollbars if the
document doesn’t fit in the window.

resizable=yes|no No Controls the capability to resize the new
window, whether manually or using
JavaScript methods.

width=pixels Parent The width and height of the new window.
height=pixels window size

Using Netscape Navigator's Canvas Mode

25

JavaScript 1.2 introduced the features in Table 25.2.

Feature Default Description

alwaysLowered=yes|no No If given a value of yes, the new window always
remains below all other windows.

alwaysRaised=yes|no No If given a value of yes, the new window always
remains above all other windows.

dependent=yes|no No If given a value of yes, the new window is a
dependent window of the previous one, much
like a dialog box. Like a dialog box, it closes if
the original window is closed, and if you’re
running Windows, it does not show on the
taskbar.

hotkeys=yes|no Yes If given a value of no and the new window has no
menu bar, the various hotkeys (for instance,
Alt+Left Arrow for Back, Ctrl+N for New
Window, and so on) do not work, except for the
security and Quit hotkeys, as well as any OS-
dependent hotkeys that Navigator can’t change
(such as Alt+Ctrl+Del in Windows).

innerHeight=pixels Parent Specify the dimensions of the canvas. The rest
innerWidth=pixels window of the window is sized so that the canvas has

size these dimensions. When a window is in canvas
mode, this is the same as the window size.

outerHeight=pixels Parent Specify the dimensions of the window. These
outerWidth=pixels window features replace the width and height features

size in JavaScript 1.1. When a window is in canvas
mode, this is the same as the canvas size.

screenX=pixels Arbitrary Specify the offset of the window’s top-left corner
screenY=pixels from the top-left corner of the screen.

titlebar=yes|no Yes If given a value of no, the new window is in
canvas mode, with only the document canvas
displayed.

z-lock=yes|no no If given a value of yes, the window does not rise
when given the focus.

Confused a bit? Don’t worry, an example in the section “Your First Canvas Mode Window”
later in this chapter will make everything clear.

Other Dynamic Techniques

Many of these properties can be security risks for the user and thus require the use of signed
scripts. The method for this is discussed in the section “Signing Your Scripts.” You can also
circumvent this requirement using the procedure described in the following section. The prop-
erties that require signed scripts are alwaysLowered=yes, alwaysRaised=yes, all the width and
height properties if they define a window smaller than 100×100 pixels, screenX and screenY if
they place the window outside the visible screen, titlebar=no, and z-lock=yes.

Although the Web pages you publish on the Internet must contain signed scripts, script sign-
ing is a long and tedious process that you cannot follow each time you change something in
your code. You can follow the procedure outlined in this section to make Navigator run your
scripts without signing them.

1. Quit all Communicator applications you are running.

2. In the directory that contains your Navigator user profile is a file called prefs.js or
preferences.js, depending on your platform. This is your Netscape Preferences
JavaScript file. Open it using a text editor, and you will find a number of lines
containing your user preferences.

3. Go to the end of the file and append the following line:

user_pref(“signed.applets.codebase_principal_support”, true);

-tb

Now Navigator will not require potentially dangerous scripts to be digitally signed. You will still
receive a warning and be able to choose not to execute the scripts. Note that others will not be
able to execute your scripts unless they make the same modification on their copies of Navigator.

Using Netscape Navigator's Canvas Mode

25

For a useful example of canvas mode, you create three HTML files: cmIndex.html (Listing 25.1),
which is the primary page, cmWindow1.html (Listing 25.2), which is the initial content of the
new window, and cmWindow2.html (Listing 25.3), which is shown in the window later.

cmIndex.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HEAD>
<TITLE>Canvas Mode Demo</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2">
function cmWindowOpen() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
 cmWindow=window.open(“cmWindow1.html”,”Canvas”,
➥ “titlebar=no,innerWidth=200,innerHeight=100,screenX=10,screenY=10”);
}
</SCRIPT>
</HEAD>
<BODY>
<P>Welcome to your first canvas mode demo!
<P>Click here to open the window
<P>Click here
➥to put file cmWindow2.html inside the window
<P>Click here
➥to put file cmWindow1.html back inside the window

open()

window.open(“”,””,innerHeight=100)

window.open(“”,””,100) innerHeight=100

window.innerHeight=100

cmWindow1.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HEAD><TITLE>Canvas Mode Window - 1</TITLE></HEAD>
<BODY BGCOLOR=white TEXT=black LINK=blue ALINK=red VLINK=purple>
<P>This is a Canvas Mode Window

cmWindow2.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HEAD><TITLE>Canvas Mode Window - 2</TITLE></HEAD>
<BODY BGCOLOR=white TEXT=black LINK=blue ALINK=red VLINK=purple>
<P>Links can be followed in this window.

Other Dynamic Techniques

Load cmIndex.html in Navigator. Clicking the top link creates a new square window contain-
ing cmWindow1.html, as shown in Figure 25.1.

Clicking the second link puts cmWindow2.html in the window. You can try hotkeys in the new
window; click inside it and then press Ctrl+LeftArrow. It will promptly move back in the his-
tory list and display cmWindow1.html.

You might have noticed a new piece of code in the cmWindowOpen() function:

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);

This line enables expanded Navigator privileges; you wouldn’t be able to access canvas mode
without it. This is the command that requires the script to be signed. UniversalBrowserWrite
is called a target. There are several targets, but UniversalBrowserWrite is the only one you need
to use for the examples in this chapter.

Your first canvas mode
window.

Using Netscape Navigator's Canvas Mode

25

The window.open() method tells Navigator to open a new window with the name Canvas and
the identifier cmWindow, containing cmWindow1.html in canvas mode at 200×100 pixels large and
10 pixels from the top and 10 pixels from the left of the screen.

By clicking the second link in cmIndex.html, you follow it to its tail (cmWindow2.html), which is
shown in the canvas mode window because it’s identified in the TARGET attribute. Clicking the
third link follows a link to cmWindow1.html, putting that file in the new window instead.

You may have noticed, if your original window overlapped with the canvas mode window, that
clicking the original window obscures the canvas window because the parent window is raised.
This is where the alwaysRaised feature comes into play. You also discovered that hotkeys work
in your new window, and this could have strange results in a finished application. Also, if you
close the original window, the canvas window is still there, confusing users who won’t know
how to close it without a menu bar. Change this behavior by augmenting cmMain.js. Change
the line that invokes window.open():

cmWindow=window.open(“cmWindow1.html”,”Canvas”,
➥”titlebar=no,alwaysRaised=yes,dependent=yes,
➥hotkeys=no,innerWidth=200,innerHeight=100,screenX=10,screenY=10");

Playing around with the new window, you notice the following:

■ The hotkeys don’t work. Try the Security hotkey and the Quit hotkey; they still work.
In fact, the Quit hotkey is the only way to actually close the window, unless your
platform doesn’t allow Navigator to capture all hotkeys. If you’re running UNIX,
Navigator will probably not be able to shut off your window manager’s hotkeys. If
you’re using Windows, you can press Alt+Ctrl+Del to invoke the Task Manager and
close the window.

■ The window is always raised above all other windows, no matter where you click.

■ If you’re running Windows, the window doesn’t show on the taskbar. Close the
original Navigator window, and the canvas mode window will close along with it.

You obviously don’t want people stuck figuring out how to close the window you just opened
because you’ve taken away their hotkeys, so make up for it. Add the following line to the end
of cmWindow1.html and cmWindow2.html:

Close this window

Other Dynamic Techniques

Try the demo again; clicking “Close this window” invokes the window.close() method, which
by default closes the current window. You can also do this from the main window; add the
following to cmIndex.html:

<P>Click here to close the window

Using the cmWindow identifier, you can close the window from anywhere. Now you have a re-
liable way of closing the window no matter what happens to it.

I hear you crying, however, that I was talking about increasing screen real estate while working
with a tiny 200×100 pixel window at one corner of the screen. When does that “taking over
the screen” propaganda achieve fruition?

The answer comes with the new screen object in Navigator 4.0. This object has several prop-
erties, and two of them are height and width, which return the height and width of the user’s
screen. I think you get the picture; here’s an updated script for cmIndex.html:

function cmWindowOpen() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
 cmWinFtrs=”titlebar=no,alwaysRaised=yes,dependent=yes,hotkeys=no”;
 cmWinFtrs+=”,screenX=0,screenY=0";
 cmWinFtrs+=”,innerWidth=”+screen.width+”,innerHeight=”+screen.height;
 cmWindow=window.open(“cmWindow1.html”,”Canvas”,cmWinFtrs);
}

This code is much “cleaner” than the previous example. All window features are concatenated
into a string, cmWinFtrs, which contains the same features as before with two exceptions: screenX
and screenY are 0, putting the window at the top left of the screen, whereas innerWidth and
innerHeight are equal to the screen.width and screen.height properties, giving the canvas the
same exact dimensions as the screen.

Run the demo. Your screen should be full of nothing but cmWindow1.html. You can close it by
clicking the “Close this window” link.

So far, you’ve learned how to open a window in canvas mode, resize it, give it the size of the
user’s screen, disable Navigator hotkeys, and keep it on top of other windows. Now it’s time to
put this into action and build an application. Before you can do that, you need to sign your
scripts.

Scripts that cause strange things to happen to your Navigator can be security risks because people
can use them to tamper with a user’s system. Before requesting expanded privileges, a script
must be signed with a digital certificate.

A digital certificate is issued by a certifying authority (or CA, for short), which verifies that the
owner of the certificate is who he claims he is. This way, if someone does something bad with
their signed scripts, they can be traced. Granted, it’s not foolproof, but it’s not up to you
either.

Using Netscape Navigator's Canvas Mode

25

CAs offer many kinds of certificates. What you need here is an object-signing certificate. Here’s
the problem with object-signing certificates: They cost money. Because the certificate authori-
ties have many expenses related to verifying the identities of certificate holders, they charge for
certificates to make a living.

To order a certificate, follow these steps:

1. Open the Security window by clicking the padlock icon on the Navigator toolbar or
selecting Window |Security Info.

2. Select Certificates |Yours.

3. Select Get a Certificate, which will take you to a page on one of Netscape’s Web
servers that lists current supported CAs. Pick one that matches your requirements and
follow their instructions. Remember, you’re looking for an object-signing certificate.
Many CAs also offer company certificates that cost more but can be used by anyone in
your organization.

4. After following all the required steps, you are given your certificate, and a dialog box
appears so you can import it to Navigator’s database. You can give it any name you
want.

Congratulations! You are now several bucks poorer and one digital certificate richer.

Script signing works by creating what is called a JAR archive, mainly because it has a file exten-
sion of .jar. A JAR archive is really just a Zip file that contains some special information.

First, it contains the public key to your certificate. If you’re familiar with PGP or public key
encryption in general, you’ll understand what this is; it’s the part of your certificate that identi-
fies you to others. It also contains information on the content of your scripts, so that if a script is
changed, it won’t match this information, preventing people from signing harmless scripts and
then changing them into malicious Trojan horses. It may also contain JavaScript .js script
files, which is practical if you want to create a library of signed scripts.

A JAR archive is accessed using the ARCHIVE attribute to the SCRIPT element. If I have a script
called myScript.js, which has been signed in archive myArchive.jar, you use code like this to
access it:

Other Dynamic Techniques

<SCRIPT ARCHIVE=”myArchive.jar” SRC=”myScript.js”>
</SCRIPT>

Note that myScript.js may be zipped in myArchive.jar or supplied separately. However, this
element indicates that myScript.js is signed in myArchive.jar.

It’s often useful to use inline scripts and almost essential to use inline event handlers. These
can also be signed. What you need to do is put an ARCHIVE attribute on a SCRIPT element in
your page. In fact, you need to include an ARCHIVE attribute only once in a page, unless you’re
using multiple archives, in which case you need multiple SCRIPT elements. Once you have an
ARCHIVE attribute that points to the archive containing your signatures, you need to include
unique ID attributes on every element that has an inline script or an event handler that refers
Navigator to the corresponding entry in the JAR archive.

javascript:

In other words, your HTML file will look something like this:

[...]
<SCRIPT ARCHIVE=”myArchive.jar” SRC=”myScript.js” LANGUAGE=”JavaScript1.2">
</SCRIPT>
<SCRIPT LANGUAGE=”JavaScript1.2" ID=”sign1">
... inline script commands ...
</SCRIPT>
<SCRIPT SRC=”myScript2.js” LANGUAGE=”JavaScript1.2">
</SCRIPT>
[...]

[...]

myArchive.jar is a JAR file that contains signatures for script files myScript.js and myScript2.js,
the inline script with the ID sign1, and the inline event handler with the ID sign2. As you
probably know, you can use any arbitrary string for an ID, as long as it is unique in a page.

Netscape currently offers two tools to sign your scripts. One is JAR Packager, a Java applica-
tion that is quite suited to the task because it is written in Java and is a cross-platform tool.
Unfortunately, it’s still in prerelease and hideously broken. The other is JAR Packager Com-
mand Line, also known as zigbert, which I briefly examine.

Using Netscape Navigator's Canvas Mode

25

Zigbert is written in Perl and is available for 32-bit Windows platforms (Windows 95 and NT)
and IRIX only. You need a working Perl interpreter on your system to make zigbert work.

You can download zigbert from Netscape DevEdge Online at

http://developer.netscape.com/software/signedobj/jarpack.html

and install it on your system. Remember that you need a functioning Perl on your system as
well.

Zigbert contains the zigbert executable, a pair of zip and unzip utilities that fit the require-
ments for the job, and a Perl script called signpages.pl, which is your main tool.

To sign a script, perform the following steps:

1. Create your HTML file as mentioned previously.

2. In your Netscape user profile directory are two files called cert7.db and key3.db,
which contain your certificates. Identify the directory where they are located.

3. Install zigbert and make sure Perl, zigbert, and zip and unzip are in your search path.

4. Execute the following command:

zigbert -d”dbdir” -l

dbdir is the directory where your cert7.db and key3.db files are, if it is not the default
~/.netscape. You get a list of all keys in your database. Zigbert will put a star beside
those that you can use to sign objects but will often be wrong about this. Identify the
key that you purchased for object signing.

5. Execute the following:

perl -- signpages.pl -d”dbdir” -k”keyname” myfile.html

You might have to point to the location of signpages.pl if it’s not in the current directory.
dbdir is the certificate database directory. keyname is the name of the certificate you plan to use
and myfile.html is the HTML file you prepared earlier.

Zigbert creates a JAR archive, named as you named it in your HTML file, containing signa-
tures for all your script files, inline scripts, and event handlers. As a bonus, it includes all script
files that are linked via SRC attributes in your document. In other words, you’re set! Give it a
try, and you can proceed to create your first application that uses canvas mode.

The “image gallery” is a popular kind of Web page, whether it’s displaying the paragons of
impressionism or your holiday snapshots. You must have seen the format; lots and lots of tiny
thumbnails that link to large versions of the images. Listing 25.4 contains a typical example.

Other Dynamic Techniques

index.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HTML>
<HEAD>
<TITLE>John Doe’s Image Gallery</TITLE>
<STYLE TYPE=”text/css”>
BODY {
 font: normal 12pt/14pt Verdana, sans-serif;
 color: black; background-color: white;
}
H1 { font-weight: bold; font-size: 150%; text-align: center }
H2 { font-weight: bold; font-size: 120%; }
I { font-style: italic }
B { font-weight: bolder }
U { text-decoration: underline }
P.links { font-size: smaller; text-align: center }
P.images { text-align: center }
</STYLE>
</HEAD>
<BODY>
<H1>John Doe’s Image Gallery</H1>
<P>Here are some pictures you might find interesting.
Follow the link on each Thumbnail to view the whole picture.
<P CLASS=”images”>

</P>
<HR>
<P CLASS=”links”>[Home] [Mail]</P>
</BODY>
</HMTL>

This page displays three thumbnails, thumb01.gif through thumb03.gif, with links to three full-
size images, image01.gif to image03.gif. Following each link gives you the image, making you
press the Back button to return to the thumbnails page (see Figure 25.2).

Enter the canvas mode script. This script uses event capturing, discussed in Chapter 17, “The
Communicator 4.0 Event Model: Event Capturing” (you might want to take a look in case
you don’t remember the details), to capture all clicks on this page and create canvas mode
windows with the images if the viewer clicks one of them.

The first thing you have to do is capture the mouseDown event in the document. You’ll redirect
it to a function called clicker, which will handle everything else from there. Before you do
this, you have to make sure only Navigator 4.0 browsers execute the script. The most reliable
way to do this at this time is to check for the existence of the document.layers object, which is
exclusive to Navigator 4.0:

Nav40 = (document.layers) ? 1 : 0;

Using Netscape Navigator's Canvas Mode

25

The Nav40 variable is true only if the Web page is being viewed with Navigator 4.0. Introduce
the event capturing as follows:

if (Nav40) {
 document.captureEvents(Event.MOUSEDOWN);
 document.onmousedown = clicker;
}

Non-Navigator 4.0 browsers behave normally because clicks are not captured; instead, click-
ing a thumbnail takes the user to the full-sized image. Navigator 4.0, on the other hand,
invokes the clicker function. As you may remember, the function called when an event is cap-
tured accepts a single argument, the event. It’s time to build the clicker function.

clicker
First, you need to check whether an image is already open because you don’t want the screen
filling up with zoomed images. You’ll introduce a global variable that keeps track of whether a
canvas mode window is open:

cmWinOpen = false;

Start the clicker function. First, it checks for an open window and, if there is one, closes it.
This way you can close any open window simply by clicking anywhere in the document:

function clicker(e) {
if (cmWinOpen) {
 cmClose();
 return false;
 }
}

John Doe’s (typically
boring) image gallery.

Other Dynamic Techniques

Notice the return false line that tells Navigator that the event was captured and dealt with so
it doesn’t pass the click onto the document and also exits the clicker function. cmClose() is a
function you define later that closes open windows.

Now you need to see whether the click event actually happened on an image or elsewhere in
the document. If it happened elsewhere, you release the event and let it execute its intended
function.

One of the properties of the event object is target. Netscape claims this returns the recipient
of the event. In fact, it doesn’t. It returns the target of the recipient, if the recipient is a hyperlink.
Otherwise, the property returns undefined.

Although it’s supposed to be a string, the target property doesn’t have string methods, so you
need to use the toString() method on it to convert it to a string:

imURL = e.target.toString();

Now, you use string functions to find the extension of the file indicated by the hyperlink, if
there is one:

imExt = imURL.substring(imURL.lastIndexOf(“.”) + 1, imURL.length);

What this line of code does is take the last occurrence of . in imURL, cut the rest of the charac-
ters after this occurrence, and put them into imExt, which is effectively the extension of the file
if it is an image. You then test it to see if it is equal to gif or jpg. You can add other image types
if you want:

isImage = (imExt == “gif” || imExt == “jpg”);

Now, if imExt is equal to any of the image types, you call the cmOpen function that opens the
window, passing to it the event:

isImage = (imExt == “gif” || imExt == “jpg”);
 if (isImage) {
 cmOpen(e)
 return false;
 }

The return false line exits the function and tells Navigator not to pass the event on to the
document. Now you add the return true that is executed only if isImage is false, releasing
the mouseDown event and making the rest of the page functional. Here’s the finished clicker
function:

function clicker(e) {
 if (cmWinOpen) {
 cmClose();
 return false;
 }
 imURL = e.target.toString();
 imExt = imURL.substring(imURL.lastIndexOf(“.”) + 1, imURL.length);

Using Netscape Navigator's Canvas Mode

25

 isImage = (imExt == “gif” || imExt == “jpg”);
 if (isImage) {
 cmOpen(e)
 return false;
 }
 return true;
}

That’s all for the clicker function. Move on to the actual window.

Now it’s time to actually open the window. The cmOpen() function, which you define for this
purpose, will look familiar because it is a lot like the one in the first canvas mode demo.

First, enable the UniversalBrowserWrite target:

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);

Now, open the window. Note the resizable=yes feature, without which you wouldn’t be able
to resize the window. Don’t worry about users resizing the window manually because it has no
border. You’ll use the screen.width and screen.height properties again, this time to place the
window conveniently offscreen:

cmWinProps=”titlebar=no,alwaysRaised=yes,dependent=yes”
cmWinProps+=”,hotkeys=no,resizable=yes”;
cmWinProps+=”,screenX=” + screen.width + “,screenY=” + screen.height;
cmWindow=window.open(“”,””,cmWinProps);

Now you write the HTML to the window. You use CSS positioning to place the image at the
top left of the canvas:

cmWindow.document.write(‘
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//
➥EN”><HTML><HEAD><TITLE>Image</TITLE>
<STYLE TYPE=”text/css”>
#divIm { position: absolute; top: 0; left: 0 }
</STYLE>
<BODY><DIV ID=”divIm”></DIV>’);
cmWindow.document.close;

This document has only one image. Note that it is included in a DIV (required for the CSS
positioning to work), so you get its width and height and assign them to the innerHeight and
innerWidth properties of the window. Note that the window is still off-screen, hiding all this
violent resizing from the user:

imWidth=cmWindow.document.divIm.document.images[0].width;
imHeight=cmWindow.document.divIm.document.images[0].height;
cmWindow.innerWidth=imWidth-4;
cmWindow.innerHeight=imHeight-4;

You may have noticed that you subtract 4 from the window’s size. This is because, even though
it should, Netscape doesn’t make the window small enough and creates an ugly border of the
background shining through around the edges if you don’t.

Other Dynamic Techniques

Now you need to move the window into view. A nice place to put it is centered around the
mouse pointer at the time of the click. You have the coordinates of the click and the size of the
image, so you can use the moveTo window method to move it to the right spot:

cmWindow.moveTo(e.screenX - (imWidth / 2) , e.screenY - (imHeight / 2));

Lastly, you need an easy way to close the window, other than clicking the original page (which
you already have taken care of at the beginning of the clicker() function). To do this, you use
the enableExternalCapture window method, which allows other windows (in this case, the
original window) to capture events in a window (here, the canvas mode window). Then you
capture the mouseDown event in the new window and point it to the cmClose() function, and
you shouldn’t forget the cmWinOpen boolean that should be updated to indicate that a window
is open:

cmWindow.enableExternalCapture;
cmWindow.captureEvents(Event.MOUSEDOWN);
cmWindow.onmousedown=cmClose ;
cmWinOpen = true;

Speaking of the cmClose() function, you should put it here somewhere:

function cmClose() {
 cmWindow.close();
 cmWinOpen = false;
}

That’s it! Take a look at Listing 25.5 for zoomer.js, the portable canvas mode image zoomer.

zoomer.js

//
// zoomer.js
// A Portable Canvas Mode Image Zoomer
//

// True if we’re using Navigator 4.0
Nav40 = (document.layers) ? 1 : 0;

// True if a zoomed window is open
cmWinOpen = false;

// Capture Click events
if (Nav40) {
 document.captureEvents(Event.MOUSEDOWN);
 document.onmousedown = clicker;
}

function clicker(e) {
 // If an image is already showing, close the window
 if (cmWinOpen) {
 cmClose();
 return false;
 }

 // If the user clicked on a hyperlink that was one of our images,

Using Netscape Navigator's Canvas Mode

25

 // open the image
 imURL = e.target.toString();
 imExt = imURL.substring(imURL.lastIndexOf(“.”) + 1, imURL.length);
 isImage = (imExt == “gif” || imExt == “jpg”);
 if (isImage) {
 cmOpen(e)
 return false;
 }

 return true;
}

// A function that opens the canvas mode window
function cmOpen(e) {
 // Enable universal write target
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);

 // Set window features for Canvas Mode
 cmWinProps=”titlebar=no,alwaysRaised=yes,dependent=yes
 cmWinProps+=”,hotkeys=no,resizable=yes”;

 // Put the window off-screen until it’s resized
 cmWinProps+=”,screenX=” + screen.width + “,screenY=” + screen.height;

 // Open the window
 cmWindow=window.open(“”,””,cmWinProps);

 // Write the document to the new window
 cmWindow.document.write(‘<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0
➥Transitional//EN”><HTML><HEAD><TITLE>Image</TITLE><STYLE TYPE=”text/css”>#divIm {
➥position: absolute; top: 0; left: 0 }</STYLE><BODY><DIV ID=”divIm”><IMG SRC=”’ +
➥e.target + ‘“></DIV>’);
 cmWindow.document.close;

 // Get the width and height of the image and resize the window
 imWidth=cmWindow.document.divIm.document.images[0].width;
 imHeight=cmWindow.document.divIm.document.images[0].height;
 cmWindow.innerWidth=imWidth-4;
 cmWindow.innerHeight=imHeight-4;

 // Now move it into view, centered on the mouse pointer
 cmWindow.moveTo(e.screenX - (imWidth / 2) , e.screenY - (imHeight / 2));

 // Capture all mousedown events in it, so that a click will close it.
 cmWindow.enableExternalCapture;
 cmWindow.captureEvents(Event.MOUSEDOWN);
 cmWindow.onmousedown=cmClose ;

 // Update cmWinOpen so that we know an image is being displayed
 cmWinOpen = true;
}
// A function that simply closes the canvas mode window
function cmClose() {
 cmWindow.close();
 cmWinOpen = false;
}

Other Dynamic Techniques

Now all you have to do is add the following to your HTML file’s HEAD:

<SCRIPT LANGUAGE=”JavaScript1.2" SRC=”zoomer.js” ARCHIVE=”zoomer.jar”>
</SCRIPT>

Run zigbert on the file so the scripts are signed, and off you go. The new page will look some-
thing like Figure 25.3.

John’s image gallery
now enhanced. Click
anywhere to hide the
image again.

Any link on the page that leads to a GIF or JPEG image is displayed in a nifty little canvas
mode window that disappears with a click, while keeping backwards compatibility for older
browsers.

In the last example, you create a “kiosk mode” application—a Navigator that occupies the whole
screen and is used for a specific reason, without all the normal trimmings. This can be useful
for a public access touch-screen terminal, a CD-ROM contents browser, or just for fun, to see
what you would make Navigator look like if you had designed it.

To start, you need a launchpad document that launches the new browser. What you do is cre-
ate two windows, one occupying the top 100 pixels of the screen (which contains the naviga-
tion tools) and another occupying the rest of the screen (which contains the actual documents
you browse).

Using Netscape Navigator's Canvas Mode

25

You might be thinking of using frames instead of separate windows, but this is not advisable
for several reasons. First, it is very easy for a link inside the documents you browse to have
TARGET=_top and break out of the frameset. Second, JavaScript 1.2 offers many methods for
windows that are difficult to replicate using frames. Our launchpad is described in Listing 25.6.

launchpad.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HTML>
<HEAD>
<TITLE>MyScape Navigator Launchpad</TITLE>
<STYLE TYPE=”text/css”>
</STYLE>
<SCRIPT LANGUAGE=”JavaScript1.2" ARCHIVE=”myScape.js” ID=”Launcher”>
function myLaunch() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
 navbarProps=”titlebar=no,alwaysRaised=yes,hotkeys=no,”;
 navbarProps+=”,outerWidth=” + screen.width + “,outerHeight=100”;
 navbarProps+=”,screenX=0,screenY=0";
 window.open(“navbar.html”,””,navbarProps);
}
</SCRIPT>
</HEAD>
<BODY>
<P><FORM><INPUT TYPE=SUBMIT VALUE=Click onClick=”myLaunch()”>
 to launch MyScape Navigator.</FORM>

You probably understand everything in Listing 25.6 by now. The navigation bar window is
opened at the top of the screen, with width equal to the screen and height equal to 100 pixels;
is always raised; and has hotkeys disabled. To open it, you click a button in the launchpad
document. Now you must build your Navigator, which you will call MyScape.

Create a nice-looking toolbar for MyScape, such as the one in Listing 25.7. It will have a lot of
the usual trimmings of a toolbar. You’ll use form buttons with onClick event handlers to access
the functions in this example, but you can make the navigation bar look like anything you want,
as long as it calls the same functions.

navbar.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HTML>
<HEAD>
<TITLE>Myscape Navigator</TITLE>
<STYLE TYPE=”text/css”>
BODY {
 background-color: black;
 color: white;
 font: 10pt Times,serif;
 text-align: center

continues

Other Dynamic Techniques

}
#Title {
 color: rgb(0%,100%,0%);
 font: bold 14pt Verdana,sans-serif
}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript1.2" SRC=”myScape.js” ARCHIVE=”myScape.jar”>
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”Nav”>
MyScape Navigator, a Custom Browsing Environment

<INPUT TYPE=”SUBMIT” VALUE=”<=” NAME=”Back” onClick=”myBack()”>
<INPUT TYPE=”SUBMIT” VALUE=”=>” NAME=”Forward” onClick=”myForward()”>
<INPUT TYPE=”SUBMIT” VALUE=”Home” NAME=”Home” onClick=”myHome()”>
<INPUT TYPE=”SUBMIT” VALUE=”Reload” NAME=”Reload” onClick=”myReload()”>
<INPUT TYPE=”SUBMIT” VALUE=”Stop” NAME=”Stop” onClick=”myStop()”>
<INPUT TYPE=”SUBMIT” VALUE=”Exit” NAME=”Exit” onClick=”myExit()”>

<INPUT TYPE=”TEXT” SIZE=10 VALUE=”Enter Search String” NAME=”String”>
<INPUT TYPE=”SUBMIT” VALUE=”Find” NAME=”Find” onClick=”myFind()”>
</FORM>

Now that you have everything set up, you will create the script that opens the canvas window
and handles all the click events.

First, you define your own home page. You can even read Navigator’s preferences for this, if
you want, but you’ll use Macmillan Publishing’s home page for now. Insert the following:

homePageURL=”http://www.mcp.com/”

Now you will open the canvas. It will start just below the navigation bar and occupy the rest of
the window:

openCanvas()

function openCanvas() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
 canvasProps=”titlebar=no,alwaysRaised=yes,dependent=yes”;
 canvasProps+=”,outerWidth=”+screen.width+”,outerHeight=”+(screen.height-100);
 canvasProps+=”,screenX=0,screenY=100";
 canwin=window.open(homePageURL,”Canvas”,canvasProps);
}

Now you have a page displaying; you can play around with it, follow links, scroll, and do any-
thing you usually do with a Web page. What you do next is define the functions that are called
by the click events in the navigation bar.

Remember that myScape.js is running from the Navigation bar window. Remember also that
you need to refer to the canvas window by its name, canwin. The forward and back functions
are covered by the similarly named window methods. Calling these methods is the same as
clicking the back and forward buttons on the Navigator toolbar:

Using Netscape Navigator's Canvas Mode

25

function myBack() { canwin.back() }
function myForward() { canwin.forward() }

For the Home and Reload functions, you’ll use the location property of a window. By setting it,
you can load any document in a window. Using its reload() method, you reload the document:

function myHome() { canwin.location=homePageURL }
function myReload() { canwin.location.reload() }

The Stop function is also a window method. For Exit, you will use the window close() method,
but remember, you must close the navigation bar window, not the canvas window. Because
the canvas window has dependent=yes, it will promptly close, too:

function myStop() { canwin.stop() }
function myExit() { parent.close() }

Finally, you need a function that reads a text string from the text input and performs a text
search in the document. This is done using the find() window method and reading the value
property of the element:

function myFind() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);
 searchString=document.Nav.String.value;
 canwin.find(searchString);
}

Notice that you use a new privilege target, UniversalBrowserRead. This is required because a
script in one window is making changes to a document in another window and has to have
this privilege granted. The procedure to enable this target is the same as for the
UniversalBrowserWrite target. The effect you expect (showcasing the previous example quite
admirably) is the one shown in Figure 25.4.

Listing 25.7 contains the complete myScape.js.

myScape.js

homePageURL=”http://www.mcp.com/”

openCanvas()

function openCanvas() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
 canvasProps=”titlebar=no,alwaysRaised=yes,dependent=yes”;
 canvasProps+=”,outerWidth=”+screen.width+”,outerHeight=”+(screen.height-100);
 canvasProps+=”,screenX=0,screenY=100";
 canwin=window.open(homePageURL,”Canvas”,canvasProps);
}

function myBack() { canwin.back() }
function myForward() { canwin.forward() }
function myHome() { canwin.location=homePageURL }
function myReload() { canwin.location.reload() }
function myStop() { canwin.stop() }

continues

Other Dynamic Techniques

function myExit() { parent.close() }
function myFind() {
 netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);
 searchString=document.Nav.String.value;
 canwin.find(searchString);
}

MyScape Navigator,
although not the latest
in design style, is almost
as functional as
Netscape’s design.

Congratulations! You have created a new Navigator, suited to your needs. If you want, you can
get rid of the buttons and create images that fit your liking, place the navigation bar anywhere
on the screen, or do anything else with the appearance of the window.

In this chapter, you’ve learned how to use canvas mode in Netscape Navigator 4.0 and created
windows without the usual trimmings. You also learned how to digitally sign your scripts us-
ing zigbert and use scripts that haven’t been signed yet. You then used canvas mode to create
pop-up windows for zoomed images, and created a useful replacement for Navigator’s inter-
face suitable for use in a public access terminal or similar application.

■

■

■

■

■

Creating a Site for the 4.0 Browsers

26

by Jeff Rouyer

■

■

Managing Dynamic HTML

For a moment, if you can, just look straight at the little light at the tip of my pen. In a few
seconds, you will see a flash and all your memories of past Web page meddling will be erased.
If only it could be that simple to clear your mind and start out fresh before you begin building
the next killer Dynamic HTML (DHTML) Web site. DHTML development requires a new
perspective—a perspective that can challenge your ability to tell a story or provide an atmo-
sphere to display information without bounds. One of the new and exciting aspects of DHTML
is the ability to build a site that exists in both time and space. You may be familiar with the
two-dimensional nature of standard HTML, as illustrated in Figure 26.1. Add to that the three-
dimensional nature of overlapping layers and the four-dimensional nature of timed events, and
you get a whole new world to deal with.

This diagram illustrates
the complexity of a
DHTML Web site,
which can contain two-
dimensional HTML
positioned in three-
dimensional overlap-
ping layers and can be
made to interact over
time.

In this chapter, I discuss my discoveries in building the cross-browser compatible DHTML
Guru Resource Web site located at http://www.htmlguru.com. The goal for the Guru Web site
is to incorporate many cool programming techniques that make DHTML so interactive and
immersive. I also want to introduce and inspire you to a new way of interface design and create
an interesting place to be.

I was asked how I dreamed up the DHTML Guru Web site. I answered just that I dreamed it.
Therein is the beauty of DHTML: It gives you the freedom to display your subconscious on
the Net for the world to see, if you so choose (be careful, though). Although I encourage un-
bounded creative expression, I do believe that it is important to follow a systematic approach.
The broad scope of DHTML, combined with cross-browser considerations, can conspire to
boggle the mind, especially if your are new to JavaScript and style sheets. For the Guru Web
site, I used a systematic approach to JavaScript coding combined with a multimedia metaphor
of a stage production. Together they helped me follow a logical flow in blending design and

Creating a Site for the 4.0 Browsers

26functionality. I considered two main processes in a DHTML stage production: staging and
choreography. These can simplify the planning and development of a highly interactive Web
site.

Using our stage production metaphor, staging is the first thing you need to consider in build-
ing a DHTML Web site. Staging involves positioning and layering backgrounds, text, images,
and navigational elements. Table 26.1 outlines six steps that can be used to stage a DHTML
site. Although these steps are specific to the Guru site, they can be applied to your DHTML
development project.

Description Programming Method Location

1. Create a canvas window JavaScript Home page window

2. Manage resolution-specific images JavaScript Canvas window

3. Layer HTML style sheets HTML Canvas window

4. Switch the document object model JavaScript Canvas window

5. Manage image loading JavaScript Canvas window

6. Position style sheet layers JavaScript Canvas window

The Guru Web site exists across two windows. The first window displays Web site informa-
tion and browser upgrade links for non-DHTML browsers. This poses the question: Do people
actually upgrade their browsers because they came to your site? The answer is yes. I have had
many people tell me that they did upgrade, but the trick is to include a screen shot so they get
to see what they are missing. The second window is the canvas window that contains the framed
DHTML page. There are considerations to make when displaying a new window, so it is up to
you if you want to create a new window for your site. I find it incredibly refreshing not to have
toolbar clutter all over my screen design, and for me, switching to the other window to browse
elsewhere isn’t a burden.

To begin, you need to pull out that well-worn browser sniffer routine. As shown in Listing
26.1, I get busy with a series of if...else statements to determine the visiting browser’s name
and version number. This is a cross-browser–compatible DHTML Web site, so I am only in-
terested in the browser version numbers equal to or higher than 4.0 for displaying the canvas
window. If the browser sniffer statement returns true for any of the 4.0 browsers, the nav vari-
able is set to ver4; otherwise, it is set to ver3. All non-DHTML browsers display upgrade and
site information text.

Managing Dynamic HTML

Script goals:

■ Determine browser version

■ Determine screen resolution

■ Open new canvas window based on screen resolution

■ Dynamically write a frameset HTML to the new canvas window

var nav = “”;

if(navigator.appName == “Netscape” && navigator.appVersion.indexOf(“X11”) == -1) {
 if(parseInt(navigator.appVersion) >= 4) {
 nav = “ver4”;
 } else if(parseInt(navigator.appVersion) == 3) {
 nav = “ver3”;
 }
} else if (navigator.appName == “Microsoft Internet Explorer”
➥&& navigator.appVersion.indexOf(“Macintosh”) == -1) {
 if(parseInt(navigator.appVersion) >= 4) {
 nav = “ver4”;
 } else if(parseInt(navigator.appVersion) == 3) {
 nav = “ver3”;
 }
}
function openGuru() {
 if(nav == “ver4”) {
 screen_width = screen.width-10;
 screen_height = screen.height-30;
 if (screen.height > 768) {
 screen_width = (1024-10);
 screen_height = (768-25);
 }
 var loading = ‘<HTML><BODY BACKGROUND=”images/sky.jpg” BGCOLOR=”#800000"
LINK=”#00FFFF”
➥ALINK=”#FFFF00" VLINK=”#00FFFF”>

<CENTER>
➥

<FONT SIZE=5
COLOR=”#ECD8AC”>Loading
➥Guru...</CENTER></BODY></HTML>’;

 var frames = ‘<HTML><HEAD><TITLE>Sams.net Dynamic HTML Guru Resource
</TITLE></HEAD>
➥<FRAMESET ROWS=”0,*” FRAMEBORDER=”0" FRAMESPACING=”0" BORDER=”0">’;
 frames += ‘<FRAME SRC=”about:blank” BORDER=”0" MARGINHEIGHT=”0"
MARGINWIDTH=”0"
➥NAME=”SNEAK” SCROLLING=”NO”>’
 frames += ‘<FRAME SRC=”about:blank” BORDER=”0" MARGINHEIGHT=”0"
MARGINWIDTH=”0"
➥NAME=”GURU” SCROLLING=”NO”>’
 frames += ‘</FRAMESET></HTML>’;

 var guruWindow =
➥window.open(‘’,’guruCanvas’,’width=’+screen_width+’,height=’+screen_height+’,top=0,
➥left=0');
 guruWindow.document.write(frames);
 guruWindow.document.close();

Creating a Site for the 4.0 Browsers

26 guruWindow.SNEAK.document.open();
 guruWindow.SNEAK.document.write(loading);
 guruWindow.SNEAK.document.close();

 guruWindow.GURU.document.open();
 guruWindow.GURU.document.write(loading);
 guruWindow.GURU.document.close();

 guruWindow.GURU.location.href = “interface/guru.htm”;
 }
}

The canvas window is opened by the openGuru() function, which is triggered when the home
page loads. This function also tests for the browser version by testing the nav variable with an
if...else statement. If the browser passes the DHTML version test, then the screen resolu-
tion statements are initiated next. The width and height of the user’s screen is determined by
the statements screen.width-10 and screen.height-30. I am subtracting a few pixels from the
screen dimensions to account for the space that the window borders and title field take up.
The Guru site uses images that are dependent on screen resolution, so I use a second if state-
ment—if(screen_height > 768)—to trap any screen resolutions higher than 768 pixels. Now
I know that the canvas window will not be greater than 768 pixels high, making the manage-
ment of resolution-specific images easier. The next goal of the openGuru() function is to create
a new window using the screen_width and screen_height variables in the window.open() state-
ment. With the canvas window now opened, I can dynamically write frameset HTML to the
window with the guruWindow.document.write() statement. The resulting framed page is shown
in Figure 26.2.

The Guru Web site in
canvas mode showing
the positioning of the
two borderless frames
making up the
interface.

Managing Dynamic HTML

Users whose browsers are not 4.0 compatible get the joy of viewing a browser upgrade and
Web site information page. To do this in a cross-browser and backward-compatible environ-
ment, place standard HTML between a pair of <NOSCRIPT></NOSCRIPT> tags. The <NOSCRIPT>
tags will prevent DHTML-aware browsers from reading the unnecessary site information. For
other JavaScript-aware browsers, the upgrade and site information has to be dynamically writ-
ten using the document.write() method. In Chapter 27, “Degrading DHTML Gracefully,” I
expand on the browser-sniffing function to make your Web site look and feel the same across
multiple browser technologies. In addition, I have included a backward-compatible DHTML
template that you can use and experiment with for yourself.

<LAYER>

Now it is time to take care of the DHTML pages directly. As shown in Listing 26.2, I start out
setting the screen resolution variables with the screen_height = screen.height and screen_width
= screen.width statements. Setting the screen resolution variables is repeated in the canvas win-
dow because the two open windows are totally independent of each other.

Script goals:

■ Use a chain of if...else statements to assign image URLs to resolution-specific image
variables

var screen_height = screen.height;
var screen_width = screen.width;

if (screen_height >= 768) {
 background_img = “images/horizon768.jpg”;
 sun_img = “images/sun768.jpg”;
 flare_img = “images/flare768.jpg”;
 screen_width = 1024;
 screen_height = 768;
} else if (screen_height >= 624) {

Creating a Site for the 4.0 Browsers

26 background_img = “images/horizon624.jpg”;
 sun_img = “images/sun624.jpg”;
 flare_img = “images/flare624.jpg”;
} else if (screen_height >= 600) {
 background_img = “images/horizon600.jpg”;
 sun_img = “images/sun600.jpg”;
 flare_img = “images/flare600.jpg”;
} else if (screen_height >= 480) {
 background_img = “images/horizon480.jpg”;
 sun_img = “images/sun480.jpg”;
 flare_img = “images/flare480.jpg”;
} else {
 background_img = “images/horizon600.jpg”;
 sun_img = “images/sun600.jpg”;
 flare_img = “images/flare600.jpg”;
 screen_width = 640;
 screen_height = 480;
}

The Guru Web site is heavily dependent on screen resolution due to the nature of the vertical
tiling desert background, sun, and sun flare images. Building images based on resolution al-
lows for increased flexibility in screen design and layout, but it requires you to build additional
images for each screen resolution supported. To set the image variables based on screen resolu-
tion, I use a chain of if...else statements to test the screen_height variable against known
screen resolutions. If one of the statements rings true, the background_img, sun_image, and
flare_img variables are set to the appropriate image URL. As you might guess, a consistent
naming convention for your images comes in handy here. If no match is made, then the final
else statement sets the image variables to a default screen solution of 640×480. Notice also
that I am trapping vertical screen resolutions higher than 768 pixels. This corresponds to the
maximum size of the window that I want to have opened. All image variables will be used later
in the HTML portion of the Web page. For example, to use the background image variable, I
use the following document.write() method to dynamically create the <BODY> tag using the
resolution specific background image variable:

<SCRIPT>
 document.write(‘<BODY BACKGROUND=’ + background_img + ‘ LINK=”#00FFFF”
ALINK=”#FFFF00"
➥ VLINK=”#00FFFF” onLoad=”preLoad()”>’);
</SCRIPT>

The predominant force in DHTML is JavaScript controlling the document object model. The
secondary force is that oddity of style sheets. Frankly, I find style sheets to be unintuitive by
any measurement, but they represent the only cross-compatible method of building a layered
site. Listing 26.3 shows all the layers that are used in the Guru interface page. All standard
HTML tags go between the <DIV></DIV> tags, and the style sheet parameters are set as attributes
of the <DIV> tag.

Managing Dynamic HTML

<DIV ID=”coreLyr” STYLE=”position: absolute; width: 303px; height: 101px; clip:
rect (0 101 101 0); z-index: 4; visibility: hidden;”>

</DIV>

<DIV ID=”guruLyr” STYLE=”position: absolute; width: 700px; height: 178px; clip:
rect (0 700 178 560); z-index: 5; visibility: hidden;”>

</DIV>

<DIV ID=”legsLyr” STYLE=”position: absolute; width: 140px; height: 120px; z-index:
7; visibility: hidden;”>

</DIV>

<DIV ID=”pageLyr” STYLE=”position: absolute; width: 400px; height: 48px; z-index:
9; visibility: hidden;”></DIV>

<DIV ID=”titleLyr” STYLE=”position: absolute; z-index: 10; visibility: hidden;”>
 <IMG NAME=”title_img” SRC=”../images/blank.gif” SUPPRESS=”TRUE” BORDER=”0"
WIDTH=”400" HEIGHT=”48">
</DIV>

There are three areas to note in the use of the style sheet parameters for the Guru site. The first
is the z-index ordering. If you have many layers, you will have a hard time finding out where
that layer is in relation to the others, so you should order the layers on the page based on their
z-index order. You might have noticed that all the visibility attributes of the layers are set to
hidden. This is done for the Guru site because the layers are dependent on the screen resolu-
tion for their positioning. When the layers are positioned, their visibility attributes will be turned
on and they will display in the right place at the right time. The third area of interest is the
ID=”layerName” attribute. Later I will refer to the ID names when I define the layer object vari-
ables, which will be used to dynamically position and animate the layers.

ID=”my_layer”

ID=”myLyr”

nameLyr

nameObj

Creating a Site for the 4.0 Browsers

26
This is it, the big deal—switching the Document Object Model (DOM). Listing 26.4 is all
that is needed to make the majority of functions in a DHTML Web site work across all 4.0
browsers.

if(navigator.appName == “Netscape”) {
 nav = “ns4”
 doc = “document”;
 sty = “”;
} else {
 nav = “ie4”
 doc = “document.all”;
 sty = “.style”;
}

The DOM is switched by using the if(navigator.appName == “Netscape”) statement to test
the presence of Netscape. If the statement returns true, the three document object variables
are set for Netscape; otherwise, they are set for Explorer. The nav variable is set with a string
identifying the browser in use: “ns4” for Netscape or “ie4” for Explorer. The nav variable will
be used later to differentiate the two browsers for dynamic clipping animations and referenc-
ing document objects in a framed window. The doc variable is set to reflect the differences of
how the two browsers refer to document objects. Netscape refers to a document object with
just document.ObjectName, whereas Explorer refers to the same document object as
document.all.objectName. The third variable is required by Explorer only when referring to
style sheet objects. Therefore, for Explorer, the variable sty is set to the string “.style”, whereas
for Netscape, it is set to nothing. The variables will be used later to construct object references
useable by both browsers.

With traditional HTML, it did not matter how and when images were loaded. In a DHTML
site, it matters a lot, especially if parts of the same images are scattered across multiple layers to
achieve a 3D effect. Listing 26.5 shows two functions that are called from a JavaScript onload()
event handler located in the <BODY> tag of the Guru interface document. JavaScript statements
in the preLoad() function will first create an image object for each image, and then assign an
image URL to the object. After each image is loaded, the onLoad event handler is triggered for
each image object and, in turn, calls the loadCheck() function.

Script goals:

■ Define an image object and assign the image URL to the object

■ Trigger the onload event handler and call the loadCheck() function to count the
images that have been loaded

■ Trigger the positionLayers() function when image count is reached

Managing Dynamic HTML

var count = 0;

function preLoad() {
 core = new Image();
 core.src = “../images/core.gif”;
 core.onLoad = loadCheck();

 closedeye = new Image();
 closedeye.src = “../images/closedeye.gif”;
 closedeye.onLoad = loadCheck();

 openeye = new Image();
 openeye.src = “../images/openeye.gif”;
 openeye.onLoad = loadCheck();

 flare = new Image();
 flare.src = flare_img;
 flare.onLoad = loadCheck();

 guru = new Image();
 guru.src = “../images/guru.gif”;
 guru.onLoad = loadCheck();

 legs = new Image();
 legs.src = “../images/legs.gif”;
 legs.onLoad = loadCheck();

 sun = new Image();
 sun.src = sun_img;
 sun.onLoad = loadCheck();

 guide_off = new Image();
 guide_off.src = “../images/guide_off.gif”;
 guide_off.onLoad = loadCheck();

 guide_on = new Image();
 guide_on.src = “../images/guide_on.gif”;
 guide_on.onLoad = loadCheck();
}

function loadCheck() {
 count++;
 if(count == 9) {
 positionLayers();
 }
}

The job of the loadCheck() function is to count the number of images loaded. The if(count
== 9) statement is used to check the state of the count variable. When the count variable reaches
the count value of 9, the positionLayers() function is initiated. Using this method, you can
control image loading and the flow of the next action from the time the page loads. For the
Guru site, I want to load the images first, then position them based on screen resolution, and
finally display them to the viewer.

Creating a Site for the 4.0 Browsers

26
You can position style sheet layers in many ways. You can inline their absolute or relative po-
sitions directly into the <DIV> tag, or position them using the <STYLE> tag reference. This type
of positioning is useless to anyone who needs to dynamically position elements based on screen
resolution. Again, JavaScript comes to the rescue, beating back the evils of the style sheets to
dynamically position layered elements. Listing 26.6 shows a segment of the positionLayers()
function, which does the entire style sheet layer positioning for the Guru site.

Script goals:

■ Create a layer object variable by constructing a layer object using the document switch
variables

■ Relocate the x and y screen position of a layer object in relation to screen resolution

■ Turn on the layer object’s visibility attribute

function positionLayers() {
 arrowImg = eval(doc + ‘[“arrowLyr”]’ + ‘.document’);
 arrowObj = eval(doc + ‘[“arrowLyr”]’ + sty);
 arrowObj.left = (screen_width-270);
 arrowObj.top = (screen_height-140);

 pageObj = eval(doc + ‘[“pageLyr”]’ + sty);
 pageObj.left = 10;
 pageObj.top = 10;

 coreObj = eval(doc + ‘[“coreLyr”]’ + sty);
 coreObj.left = (screen_width-180);
 coreObj.top = (screen_height-408);

 flareObj = eval(doc + ‘[“flareLyr”]’ + sty);
 flareObj.left = (screen_width/2);
 flareObj.top = (screen_height-280);

 logoImg = eval(doc + ‘[“pageLyr”]’ + ‘.document’);

 guruObj = eval(doc + ‘[“guruLyr”]’ + sty);
 guruObj.left = (screen_width-785);
 guruObj.top = (screen_height-338);

 infoObj = eval(doc + ‘[“infoLyr”]’ + sty);
 infoObj.visibility = “hidden”;
 infoObj.left = (screen_width-230);
 infoObj.top = (screen_height-430);

 legsObj = eval(doc + ‘[“legsLyr”]’ + sty);
 legsObj.left = (screen_width-165);
 legsObj.top = (screen_height-160);

continues

Managing Dynamic HTML

 mainmenuImg = eval(doc + ‘[“mainmenuLyr”]’ + ‘.document’);
 mainmenuObj = eval(doc + ‘[“mainmenuLyr”]’ + sty);
 mainmenuObj.left = (screen_width-258);
 mainmenuObj.top = (screen_height-375);

 submenuImg = eval(doc + ‘[“submenuLyr”]’ + ‘.document’);
 submenuObj = eval(doc + ‘[“submenuLyr”]’ + sty);
 submenuObj.left = (screen_width-125);
 submenuObj.top = 40;

 sunObj = eval(doc + ‘[“sunLyr”]’ + sty);
 sunObj.left = -120;
 sunObj.top = (screen_height-280);

 titleImg = eval(doc + ‘[“titleLyr”]’ + ‘.document’);
 titleObj = eval(doc + ‘[“titleLyr”]’ + sty);
 titleObj.left = (screen_width-600)/2;
 titleObj.top = (screen_height-95);

 coreObj.visibility = “visible”;
 flareObj.visibility = “visible”;
 guruObj.visibility = “visible”;
 legsObj.visibility = “visible”;
 sunObj.visibility = “visible”;

 lensFlare();
}

The first goal is to define the document object for each layer that will be dynamically posi-
tioned. This is where the document object variables doc and sty defined earlier will come into
play. Using the layerObj = eval(doc + ‘[“styleLyr”]’ + sty) expression, you can build the
document object variable based on the visiting browser. When the document object variable
has been defined, you can actually start doing cool stuff like positioning, animation, and tog-
gling visibility. For example, I am positioning the Guru image layer referenced by the guruObj
variable with the guruObj.left = (screen_width-785) statement. Notice the screen_width
variable coming into play. The same routine is used for positioning the Guru image layer’s top
position with the guruObj.top = (screen_height-338) statement. The numbers being sub-
tracted from the screen variables coincide with the width of the layers being positioned so that
they display onscreen correctly. The next portion of the positionlayers() function is to set
the layered object’s visibility attribute. Remember that all visibility attributes were initially set
to hidden. By this time, all the images have been loaded and the layers properly positioned, so
it is time to make them visible. The layerObj.visibility = “visible” statement will do that
in a snap. The last action of the positionLayers() function is to continue to manage program
flow by triggering the lens flare animation.

It is important to review how the document object switch works to maintain cross-4.0-browser
compatibility. Given a screen resolution of 800 × 600, Netscape will read the guruObj.left =
(screen_width-785) statement as document.guruLyr.left = (800-785), whereas Explorer will

Creating a Site for the 4.0 Browsers

26read the same statement as document.all.guruLyr.style.left = (800-785). All document object
variables defined here are used heavily in the next phase of DHTML development involving
choreography of movement.

Consider choreography as the process of making your DHTML Web site come alive with
interactivity and animation. As in a stage production, actors must wait for cues from others to
start their roles. This analogy applies very well to interactive DHTML development, where
flow control is very important. Table 26.2 lists six processes that can be used to choreograph
interactivity and movement in a DHTML Web site.

Steps Programming Method Location

1. Layer animation JavaScript Canvas window

2. Imagemap resurrection HTML/JavaScript Canvas window

3. Sprite animation JavaScript Canvas window

4. Toggling visibility JavaScript Canvas window

5. Changing DHTML content JavaScript Canvas window

6. Scrolling layers JavaScript Canvas window

Like animated GIFs of yore, an obligatory opening animation is almost a requirement for a
DHTML Web site. I do not know why, but it fills some sort of psychological need for the
Web developer. Opening animations can be practical, too, by keeping the eye busy as images
continue to load in the background. For the Guru site, I open with a lens flare animation. This
animation slides an image of a bright sun to the right while sliding an image of a lens flare in
the opposite direction.

Overall, doing any kind of DHTML layer animation is easy with only minor cross-browser
consideration. The general goal in a layer animation is to move a layer in a looping function so
many pixels at a time until a predefined limit is reached. If you are good at math, you can ex-
tend these animations to mimic bouncing, twirling, or curved paths. Listing 26.7 shows the
code for performing the lens flare animation, which starts out moving fast but slows at a linear
rate. For example, the first statement defines a local variable var sun_x_pos =
parseInt(sunObj.left) with the left position of the object you want to move. Before that hap-
pens, the object must be stripped of any text strings with the parseInt() function. This is only
a consideration for Explorer as it returns a layer object position as a string, such as 356px. This
makes it difficult to compare and set limits that are based solely on numbers. Netscape returns
the objects position as a real number.

Managing Dynamic HTML

Script goals:

■ Get the sun layer’s left position

■ Get the lens flare layer’s left position

■ Reposition the sun layer one pixel to the right for each loop cycle until the limit is
reached

■ Reposition the flare layer one pixel to the left for each loop cycle until the limit is
reached

var timer_0 = null;
var flare_delta = 1;

function lensFlare() {
 var sun_x_pos = parseInt(sunObj.left);
 var flare_x_pos = parseInt(flareObj.left);
 if(sun_x_pos < 60) {
 sunObj.left = sun_x_pos+1;
 flareObj.left = flare_x_pos-1;
 timer_0 = setTimeout(“lensFlare()”, flare_delta);
 flare_delta++;
 } else {
 gurulogoObj.visibility = “visible”;
 }
}

Layer animation is actually performed with methods defined within the if(sun_x_pos < 60)
statement. For as long as the sun_x_pos variable is less than 60 pixels, the sun layer object will
be moved to the right by one pixel with the sunObj.left = sun_x_pos+1 statement. The inverse
happens for the lens flare object, which is moved to the left by one pixel with the flareObj.left
= flare_x_pos-1 statement. The function will continue to loop with the timer_0 =
setTimeout(“lensFlare()”, flare_delta) statement until the pixel limit is reached. Notice
that the incrementing global variable flare_delta++ is in the setTimeout() function where static
time in milliseconds would normally be. This is a cheap way of slowing the animation down as
it gets closer to its predefined limit.

You might have disliked imagemaps in the past, but they take on a new life in DHTML. In-
stead of using imagemaps to define areas of a large graphics and having them disappear as soon
as you click, you can use them now for a precise navigational aid. In the Guru site, I use an
imagemap exclusively to control the actions of the Guru’s navigational system. It is accom-
plished by building a style sheet layer covering the same area and position of your navigational
widget. Within that layer, you link a small transparent blank GIF image to an imagemap. The

Creating a Site for the 4.0 Browsers

26result is a clear surface of predefined hot spots that can act to capture onMouseOver, onMouseOut,
and onClick JavaScript events. In Listing 26.8, I have created a style sheet layer named guruLyr.
Contained in the layer is a transparent GIF image positioned over the Guru interface. The GIF
is linked to the guru_map imagemap. You can see the outline of the transparent imagemap
superimposed over the Guru interface in Figure 26.3.

<DIV ID=”mainmenuLyr” STYLE=”position: absolute; width: 230px; height: 120px;
z-index: 12;
➥visibility: hidden;”>
 <IMG NAME=”mainmenu_img” SRC=”../images/guide_off.gif” WIDTH=”230" HEIGHT=”120"
➥USEMAP=”#guru_map” BORDER=”0">
</DIV>

<MAP NAME=”guru_map”>
 <AREA SHAPE=CIRCLE COORDS=”17,103,13" HREF=”JavaScript://”
➥onClick=”getPage(‘../home/welcome.htm’); return false”;
➥onMouseOver=”mouseOver(‘down’,’<FONT FACE=\’ARIAL, HELVETICA, COURIER’
COLOR=#EEDD8E>
➥Welcome
<FONT FACE=\’ARIAL, HELVETICA, COURIER’ COLOR=#FFFFFF
SIZE=-1>
➥What Guru is all about’)”;
➥onMouseOut=”mouseOut()”; ALT=””>

 <AREA SHAPE=CIRCLE COORDS=”47,63,13" HREF=”JavaScript://”
➥onClick=”getPage(‘../books/books.htm’); return false”;
➥onMouseOver=”mouseOver(‘up’,’<FONT FACE=\’ARIAL, HELVETICA, COURIER’
COLOR=#EEDD8E>
➥Our Books
<FONT FACE=\’ARIAL, HELVETICA, COURIER’ COLOR=#FFFFFF
SIZE=-1>
➥Books from Sams.net’)”;
➥onMouseOut=”mouseOut()”; ALT=””>

 <AREA SHAPE=CIRCLE COORDS=”86,29,13" HREF=”JavaScript://”
➥onClick=”getPage(‘../ask/ask.htm’); return false”;
➥onMouseOver=”mouseOver(‘left’,’<FONT FACE=\’ARIAL, HELVETICA, COURIER’
COLOR=#EEDD8E>
➥Ask A Guru
<FONT FACE=\’ARIAL, HELVETICA, COURIER’ COLOR=#FFFFFF
SIZE=-1>
➥Answers to your DHTML questions’)”;
➥onMouseOut=”mouseOut()”; ALT=””>

 <AREA SHAPE=CIRCLE COORDS=”131,14,13" HREF=”JavaScript://”
➥onClick=”getPage(‘../tutorials/tutorials.htm’); return false”;
➥onMouseOver=”mouseOver(‘center’,’<FONT FACE=\’ARIAL, HELVETICA, COURIER’
COLOR=#EEDD8E>
➥Tutorials
<FONT FACE=\’ARIAL, HELVETICA, COURIER’ COLOR=#FFFFFF
SIZE=-1>
➥Get started with tutorials & templates’)”;
➥onMouseOut=”mouseOut()”; ALT=””>

continues

Managing Dynamic HTML

 <AREA SHAPE=CIRCLE COORDS=”167,32,13" HREF=”JavaScript://”
➥onClick=”getPage(‘../resources/resources.htm’); return false”;
➥onMouseOver=”mouseOver(‘right’,’<FONT FACE=\’ARIAL, HELVETICA, COURIER’
COLOR=#EEDD8E>
➥Resources
<FONT FACE=\’ARIAL, HELVETICA, COURIER’ COLOR=#FFFFFF
SIZE=-1>
➥Additional information to aid in your quest’)”;
➥onMouseOut=”mouseOut()”; ALT=””>
</MAP>

Using an imagemap editor, I defined five hot spot areas that control the Guru interface. For
each area, I have added JavaScript events that react to either an onMouseOver, onMouseOut, or
onClick event. For the imagemap HREF parameter, I use the JavaScript:// URL. You might
be unfamiliar with the JavaScript URL, which is used in place of an HTML file reference to
allow for pure JavaScript control.

Outline of the
transparent imagemaps
used to capture mouse
events over predefined
hot spots for the Guru
Web site interface.

HREF=”JavaScript://” onClick

return false

Creating a Site for the 4.0 Browsers

26
There are three ways to do cross-browser animation with DHTML. You can use animated GIFs,
dynamic image replacement, or dynamic clipping. Animated GIFs are hard to manage, because
you cannot start or stop them programmatically. Dynamic image replacement is the process of
replacing an image with another in real time without refreshing the whole browser page. This
is fine for swapping a few images but is a burden if you want to animate many images. Dy-
namic clipping animation is the process of rapidly displaying a frame at a time from a single
graphic. The advantage to this type of animation is that you only need to load a single image
containing multiple frames, as shown in Figure 26.4.

Dynamic clipping
animation can take a
strip of images and
display one frame at a
time. This screen shot
shows the Guru site
with dynamic clipping
turned off.

The difficulty of using dynamic clipping animation is keeping track of all the changing clip-
ping regions over time. In Listing 26.9, there are two functions that control the rotation of the
spinning interface using dynamic clipping animation. The first function, coreAction(), uses
setTimeout commands to call the spinCore() function. The spinCore() function is passed five
variables that define the new position of the image and its new clipping region.

var rotation = true;

function coreAction() {
 if(rotation == true) {
 spinCore(screen_width-281, 0, 202, 101, 101);
 setTimeout(“spinCore(screen_width-382, 0, 303, 101, 202)”, 150);

continues

Managing Dynamic HTML

 setTimeout(“spinCore(screen_width-180, 0, 101, 101, 0)”, 300);
 setTimeout(“coreAction()”, 450);
 }
}
function spinCore(left, cTop, cRight, cBottom, cLeft) {
 coreObj.left = left;
 if(nav == “ns4”) {
 coreObj.clip.left = cLeft;
 coreObj.clip.right = cRight;
 } else {
 coreObj.clip = “rect(“ + cTop + “ “ + cRight + “ “ + cBottom + “ “ + cLeft
+ “)”;
 }
}

The left variable is used to move the image position along its x-axis. The cTop variable sets a
new top boundary of the image’s clipping region. The cRight variable sets a new right bound-
ary of the image’s clipping region. The cBottom variable sets a new bottom boundary of the
image’s clipping region. The cLeft variable sets a new left boundary of the image’s clipping
region. Here’s how it works: The image is moved left the distance of a single frame. It then
changes the clipping region from the first frame to the second frame, so only the second frame
is displayed. It continues to move and clip until the last frame is reached. The clipping process
is repeated in a looping function.

Dynamic clipping does have some cross-browser constraints that are best met by separating
the browser-specific clipping methods between the two browsers. Netscape can dynamically
clip a style sheet object by adding clip.left, clip.right, clip.top, or clip.bottom to the layer
object, as in coreObj.clip.right = cRight. Explorer can only dynamically clip a layer object
by assigning the whole clipping string, such as coreObj.clip = “rect(0 140 100 0)”.

I have used the simplest of possible functions to perform a dynamic image clipping animation.
The functions can easily be extended to do complex image manipulation in both the x- and y-
axes of direction and can include clipping regions that are stored into a data array.

Although DHTML has opened the floodgates to advanced Web development, it has some early-
bird pitfalls. The biggest is the inability to load HTML content directly into an existing style
sheet layer. This can destroy a plan of having a single interface that does not suffer from con-
stant page refreshing. For the Guru site, I chose to use borderless frames to manage the loading
of external HTML content in one hidden frame while the Guru interface stays put in another.
The cool trick here is to manipulate HTML content in the main Guru interface frame by re-
trieving HTML stored in the hidden frame. For this to work, the HTML in the hidden frame
is stored in the JavaScript variable message. To load new HTML into the hidden frame, the
getpage() function is used as shown in Listing 26.10.

Creating a Site for the 4.0 Browsers

26
function getPage(page) {
 if(page != “”) {
 parent.SNEAK.location.href = page;
 }
}

The getpage() function is passed a Web page’s URL by the Guru interface and loads that page
into the hidden frame named SNEAK. After new HTML is loaded, the displayPage()function is
initiated by an onLoad() event contained in the new page. The displayPage() function will
read the HTML stored in the JavaScript variable message, and then dynamically display its
content into the main content layer, pageLyr (see Listing 26.11). The displayPage() function
does other interesting things before displaying the page. It first repositions the main content
layer to its default starting point with the statement pageObj.left = 10 and pageObj.top = 10.
Next an if...else statement is used to separate the two browsers from each other because they
have entirely different ways of dynamically displaying HTML in a style sheet layer.

function displayPage() {
 pageObj.left = 10;
 pageObj.top = 10;
if(nav == “ns4”) {
 document.pageLyr.document.open();
 document.pageLyr.document.write(parent.SNEAK.message);
 document.pageLyr.document.close();
 pageObj.clip.top = 0;
 pageObj.clip.right = (screen_width-205);
 pageObj.clip.bottom = (screen_height-90);
 pageObj.clip.left = 0;
 } else {
 var cTop = 0;
 var cRight = screen_width-205;
 var cBottom = screen_height-90;
 var cLeft = 0;
 document.all.pageLyr.innerHTML = parent.SNEAK.message;
 pageObj.clip = “rect(“ + cTop + “ “ + cRight + “ “ + cBottom + “ “ + cLeft
+ “)”;
 }
 titleImg.title_img.src = parent.SNEAK.title;
 submenuImg.submenu_img.src = parent.SNEAK.submenu;
}

For Netscape, the document.pageLyr.document.write(parent.SNEAK.message) statement is used
to write new HTML content to the main content layer. In addition, the dynamic clipping regions
for the main content layer are also created. This keeps the page from overlapping Guru inter-
face graphics. In Explorer, writing to the main content layer is accomplished by the
document.all.pageLyr.innerHTML = parent.SNEAK.message statement. As it is for Netscape,
dynamic clipping is achieved by Explorer-specific JavaScript methods. After new content has

Managing Dynamic HTML

been loaded, clipped, and displayed into the Guru interface, it can be manipulated like any
other DHTML object.

The Guru site is set up to have the main content page scrollable by using the scroll page wid-
get. When the scroll arrow widget is clicked, it passes a direction variable of either up or down to
the scroll() function, as shown in Listing 26.12.

Script goals:

■ Get the content layer’s top position

■ Move the content layer position up or down depending on the direction variable
passed to the function

function scroll(dir) {
 var y_pos = parseInt(contentObj.top);
 if(dir == “up”) {
 contentObj.top = (y_pos-60);
 } else {
 contentObj.top = (y_pos+60);
 }
}

The first portion of the script sets the local y_pos variable with the current top position of the
content layer object. The contentObj.top is wrapped in the parseInt() statement to weed out
the “px” string that Explorer will return. I only want the numerical value of the layer’s posi-
tion. Next, the if...else statement is used to check whether the content layer is to be scrolled
up or down. The “up” or “down” variable is passed to this function by the scroll arrow widget
imagemap. To move the content layer up, the top position of the content layer is relocated
with the statement contentObj.top = (y_pos-60). Essentially, I am subtracting 60 pixels from
the layer’s current top position and resetting its location. To move the layer down, I am adding
60 pixels to the layer’s current top position and repositioning to the layer. Extensions to this
function can include a timed loop to automatically scroll the layer.

My adventures in building a cross-4.0-browser DHTML site took me along many interesting
paths. Surprisingly, I found little difficulty in making the Guru site work the way I envisioned
it, let alone function identically across both browsers. The basic philosophy I kept in my re-
search was to look for the common denominator among both browsers and ignore the propa-
ganda that either side of the browser war spits out. In the future, some of the minor pitfalls—
such as the inability to dynamically load HTML content into style sheet layers—should be
things of the past. In the meantime, please look to the Guru at http://www.htmlguru.com for
the latest in cross-browser DHTML developments.

Degrading DHTML Gracefully

27
by Jeff Rouyer

■ index.html

■

Managing Dynamic HTML

The path to building a backward-compatible Dynamic HTML site is strewn with stinging
nettles, broken glass, pitfalls, and dead bodies. Understandably, it is a path not many Web
developers care to take. As a result, many Web sites are crippled to cater to the most primitive
Web technology or bisected into duel Web site development. These drawbacks were enough
to motivate many Web developers through the path of degradability, and they were thought-
ful enough to leave some crumbs in their wake for the rest of us to follow.

This chapter describes techniques on how to build a cross-browser backward-compatible Dy-
namic HTML Web site. Accompanying this chapter is a fully functional Web template to use
as an example. The template is not a cheap set of basic HTML code, but a collection of ad-
vanced features built to be practical for most Web development applications. The template as
shown in Figure 27.1 includes the following features:

■ Cross browser Dynamic HTML functionality.

■ Graceful backward compatibility across three generations of Web browser
technologies.

■ The ability to make single page edits viewable in all supported browsers.

The template is free for you to use any way you want, but please read the Terms of Use con-
tained on the template pages. You can access the template from the Dynamic HTML Guru
Web site at http://www.htmlguru.com . To make things complete and wholesome, the original
Photoshop 4.0 source graphics are included for you to customize the template to your needs.
So put on your best shoes and travel down the path of Web page degradation—and you may
pick up a few crumbs along the way.

The initial planning stage of building a backward-compatible Web site involves the process of
grouping browsers in order of their support of Web technology. Table 27.1 shows the brows-
ers grouped based on their support of HTML tables, borderless frames, and JavaScript.

Browser Tables Frames JavaScript Grouping

Netscape 4.0 Yes Yes Yes (DHTML) Group 4.0

Explorer 4.0 Yes Yes Yes (DHTML) Group 4.0

Netscape 3.0 Yes Yes Yes Group 3.0

Explorer 3.0 Yes Yes Yes Group 3.0

Netscape 2.0 Yes Yes* Yes Group 2.0

Opera 2.12 Yes No No Group 2.0

* Does not support borderless frames.

Degrading DHTML Gracefully

27

The home page of the
backward-compatible
Dynamic HTML Web
site template as shown
across six browsers.
(a) Netscape 4.0,
(b) Explorer 4.0,
(c) Netscape 3.0,
(d) Explorer 3.0,
(e) Netscape 2.0,
(f) Opera 2.12.

Managing Dynamic HTML

Degrading DHTML Gracefully

27

The first grouping, Group 4.0, contains the browsers that support advanced Dynamic HTML
as well as tables and borderless frames.

The second grouping, Group 3.0, contains the browsers that support tables, borderless frames,
and JavaScript, but the JavaScript support has limited Dynamic HTML capabilities.

The third group contains the browsers that support HTML tables only. Although Netscape
2.0 supports JavaScript and frames and can be added to the Group 3.0 browsers, it doesn’t
support borderless frames and, therefore, it’s too ugly to use, so it is thrown to the dogs in the
Group 2.0 category. Many other browsers not listed qualify to go under Group 2.0 based on
their capability to support the full HTML spec for table formatting. With the grouping infor-
mation, we can enter the next phase of development, which is to formulate a development flow.

Establishing a good development flow is crucial for building backward-compatible Web sites.
With all the differing features and functionality of the various Web browsers, it can become
confusing quick. The following list outlines the development flow used for the template site.
The general rule is to build for the high-end browsers first and then work your way down to
the low-end bottom-dwelling browsers.

A. Build the Control Page (index.html)

Step 1: Add Document Object Switch JavaScript code for Group 4.0 and 3.0
browsers.

Step 2: Add Dynamic Frame Setting JavaScript code for Group 4.0 and 3.0
browsers.

B. Build the Main Menu Page (menu.htm)

Step 1: Add the Main Menu HTML and graphics for Group 4.0 and 3.0 browsers.

Step 2: Add JavaScript event handlers to the Main Menu buttons for button
animation and other mouse-over events for Group 4.0 and 3.0 browsers.

Step 3: Add the corresponding JavaScript functions to the Control document to
handle the Main Menu events for Group 4.0 and 3.0 browsers.

C. Build the Tab Menu Page (tabs.htm)

Step 1: Add the Tab Menu HTML and graphics for Group 4.0 and 3.0 browsers.

Step 2: Add JavaScript event handlers to the Tab Menu buttons for button
animation and other mouse-over events for Group 4.0 and 3.0 browsers.

Step 3: Add the corresponding JavaScript functions to the Control document to
handle the Tab Menu events for Group 4.0 and 3.0 browsers.

D. Build the Main Content Page (page.htm)

Step 1: Add JavaScript header event handlers for Group 4.0 and 3.0 browsers.

Step 2: Add Main Menu and Tab Menu HTML and graphics code contained in
<NOSCRIPT> tags for Group 2.0 browsers.

Managing Dynamic HTML

Step 3: Add standard HTML body code for all browser groups.

Step 4: Add the Style Sheet layer code to all content pages for Group 4.0 browsers.

In the development flow for the template site, there are four essential areas. These areas in-
clude building a control document page first, the main menu page second, the tabs menu page
third, and finally, the main content page. As you can see from the list, building a backward-
compatible Web site is not a linear process. That means you will come back to the control page
to add corresponding JavaScript that reflects events you added to other documents. This non-
linear process continues for each step of the development flow. Making the site suitable for
Group 2.0 browsers is handled in the last phase of the development flow as you build the main
content page.

The idea behind this whole scheme is to have the template show up as frames for Group 4.0
and 3.0 browsers and as only table formatting for Group 2.0 browsers. A motivating force to
building a site this way is that you only have to edit a content page once to have it show up
nicely across six or more different browsers.

index.html
The job of the Control document is to serve as the mother to all other Web pages by filling
three major roles. The first role of the control page is to dynamically create a <FRAMESET> and
load the menu.htm, tabs.htm, and blank.htm pages.

The second role of the control page is to display a standard table formatted page for the Group
2.0 browsers.

The third role of the control document is to serve as the central source of all JavaScript func-
tions. The next few sections focus on this central role beginning with setting up browser-
specific variables.

The document object switch is used to smooth out some of the major JavaScript differences
between the 4.0 browsers and the way Netscape and Explorer display frames. The object switch
is built by combining the standard browser sniffing code and setting variables for each browser,
as shown in Listing 27.1. The switching code will be used through all JavaScript functions to
separate code between browsers or allow the ability to write a single line of JavaScript that will
work for both 4.0 browsers.

Script goals:

■ Determine browser version.

■ Set browser-specific variables for building frames.

■ Set browser-specific variables differing document object models.

Degrading DHTML Gracefully

27

if(navigator.appName == “Netscape” && parseInt(navigator.appVersion) == 2) {
 nav = “ns2”;
} else if (navigator.appName == “Netscape” && parseInt(navigator.appVersion) == 3){
 nav = “ns3”;
 scroll = “AUTO”;
 rowSpace = 50;
} else if (navigator.appName == “Netscape” && parseInt(navigator.appVersion) >= 4){
 nav = “ns4”;
 scroll = “NO”;
 rowSpace = 50;
 doc1 = “document”;
 doc2 = “.document”;
 sty = “”;
 screen_height = screen.height;
 screen_width = screen.width;
} else if (navigator.appName == “Microsoft Internet Explorer” &&
➥parseInt(navigator.appVersion) == 2) {
 nav = “ie3”;
 scroll = “AUTO”;
 rowSpace = 46;
} else if (navigator.appName == “Microsoft Internet Explorer” &&
➥parseInt(navigator.appVersion) >= 4) {
 nav = “ie4”;
 scroll = “NO”;
 rowSpace = 46;
 doc1 = “document.all”;
 doc2 = “”;
 sty = “.style”;
 screen_height = screen.height;
 screen_width = screen.width;
}

The script used five if else statements to test the presence and version of Netscape and Ex-
plorer. If the statement returns true for a particular browser, then several variables are set. The
nav variable is set with a string identifying the browser type and version, such as ns2 for Netscape
2.0 or ie3 for Explorer 3.0. The nav variable will be used extensively to differentiate JavaScript
code among browsers.

The scroll variable will be used to turn on or off frame scrolling when we dynamically create
a <FRAMESET>. Similarly, the rowSpace variable will be used in the <FRAMESET> to adjust the row
height to account for display differences between Netscape and Explorer.

The doc1 variable is set to reflect the differences of how the two 4.0 browsers refer to style sheet
layers. Netscape refers to a style sheet layer with the document.layerName statement, while Ex-
plorer refers to the same document object as document.all.layerName.sty. The sty variable is
set to the string “style” for Explorer only.

The doc2 variable is similar to the doc1 variable but it is used to differentiate how the 4.0 browsers
access named objects within a style sheet layer. Netscape refers to document image objects in a

Managing Dynamic HTML

style sheet layer by the document.layerName.document.imageName.src statement, while Explorer
refers to the same document image object, as document.all.layerName.imageName.src.

The variables defined in the object switch script will be used to construct single JavaScript state-
ments useable by both browsers for DHTML manipulation. In the next section, you will see
how the scroll and rowSpace variables are used for dynamically creating a <FRAMESET>.

The dynamic frame setting technique is the first culling of browser technology. It separates the
browsers that support borderless frames from browsers that only support HTML table layout.
Listing 27.2 shows the frame setting code used in the template site. Once the code is initiated
by the browsers, it will create a new <FRAMESET> and load the appropriate pages into it.

Script goals:

■ Test the nav variable and allow browsers that support borderless frames to execute the
code.

■ Dynamically create a <FRAMESET> using the scroll and rowSpace variables.

if (nav == “ns3” || nav == “ns4” || nav == “ie3” || nav == “ie4”) {
 var frames = ‘<HTML><FRAMESET COLS=”124,*” FRAMEBORDER=”0" FRAMESPACING=”0"
 ➥BORDER=”0">’;
 frames += ‘<FRAME SRC=”interface/menu.htm” BORDER=”0" MARGINHEIGHT=”0"
 ➥MARGINWIDTH=”0"
 ➥NAME=”MENU” SCROLLING=”NO”>’;
 frames += ‘<FRAMESET ROWS=”’ + rowSpace + ‘,*”>’;
 frames += ‘<FRAME SRC=”interface/tabs.htm” BORDER=”0" MARGINHEIGHT=”0"
 ➥MARGINWIDTH=”0"
 ➥NAME=”TABS” SCROLLING=”NO”>’;
 frames += ‘<FRAME SRC=”interface/blank.htm” BORDER=”0" MARGINHEIGHT=”0"
 ➥MARGINWIDTH=”0"
 ➥NAME=”MAIN” SCROLLING=”’ + scroll + ‘“>’;
 frames += ‘</FRAMESET>’;
 frames += ‘</FRAMESET></HTML>’;
 document.write(frames);
 document.close();
}

In the frame setting code, the nav variable is used to filter out browsers that do not support
borderless frames. The scroll variable is used to turn off window scrolling for the 4.0 browsers
or turn on window scrolling for the 3.0 browsers. The rowSpace variable is used to set the row
height to account for differences in how Netscape and Explorer render frame dimensions. The
variables are inserted in the frame setting HTML code, which is stored in the variable frames.
The statements document.write(frames) and document.close() write the HTML stored in the
frames variable to the window.

Degrading DHTML Gracefully

27

Notice that one of the pages loaded is named blank.htm and contains no content. This is done
to allow for the correct synchronization of page loading.

The synchronization of the framed Web pages is important, especially if you use DHTML. It
is possible for a page to load in one frame that calls a function in another frame that does not
exist. The Preload Manager routine tries to manage the loading of pages as well as preload images
for real-time image animation. Listing 27.3 shows the two functions that comprise the Preload
Manager routine.

Script goals:

■ Create an image object and assign an image URL to it.

■ Use the image object’s onLoad event handler to update the loadCheck() function.

■ Once a specified count is reached in the loadCheck() function, initiate the loading of
the final page.

preLoad() loadCheck()

var count = 0;
if(nav == “ie4” || nav == “ns3” || nav == “ns4”) {
 btn1_up = new Image();
 btn1_up.src = “images/btn1_up.gif”;
 btn1_up.onLoad = loadCheck();

 btn1_dn = new Image();
 btn1_dn.src = “images/btn1_dn.gif”;
 btn1_dn.onLoad = loadCheck();

 btn2_up = new Image();
 btn2_up.src = “images/btn2_up.gif”;
 btn2_up.onLoad = loadCheck();

 btn2_dn = new Image();
 btn2_dn.src = “images/btn2_dn.gif”;
 btn2_dn.onLoad = loadCheck();

 btn3_up = new Image();
 btn3_up.src = “images/btn3_up.gif”;
 btn3_up.onLoad = loadCheck();

 btn3_dn = new Image();
 btn3_dn.src = “images/btn3_dn.gif”;
 btn3_dn.onLoad = loadCheck();
}
function loadCheck() {
 if(nav == “ie4” || nav == “ns3” || nav == “ns4”) {
 count++;
 if(count == 8) {

continues

Managing Dynamic HTML

 parent.MAIN.location.href = “../page1/page1_a.htm”
 }
 } else if (nav == “ie3”) {
 count++;
 if(count == 2) {
 parent.MAIN.location.href = “../page1/page1_a.htm”
 }
 }
}

As with most of the functions used at the template site, the nav variable is used again in the
preLoad() function to filter out Web browsers that do not support the JavaScript image object
required for preloading images. The first statements in the preLoad() function will create an
image object for each image and then assign an image URL to the object. After each image is
loaded, the onLoad event handler is triggered and in turn, calls the loadCheck() function.

The job of the loadCheck() function is to count the number of images loaded. The if(count
== 8) statement is used to check the state of the count variable. When the variable reaches the
count value of eight, the parent.MAIN.location.href=”../page1/page1_a.htm” statement is
initiated to load the final page replacing the blank page. The count variable is only incremented
to eight when the menu.htm and tabs.htm pages are loaded. On each of these pages resides the
onLoad=”top.loadCheck()” event handler that calls the loadCheck() function directly. To fur-
ther complicate the Preload Manager process, Internet Explorer has to be filtered out with the
nav variable because it does not support the JavaScript image object, but it does support borderless
frames. The count variable for Explorer 3.0 is incremented to two by the menu.htm and tabs.htm
pages before loading the first content page.

index.html

top.functionName()

parent.windowName.function()

index.html

Dynamic image replacement is the process of replacing an image with another in real time with-
out having to refresh the whole Web page. In the template site, it is used to animate the main

Degrading DHTML Gracefully

27

menu buttons as well as the scroll arrow images for the 4.0 browsers. For browsers that support
the image object, it is an easy JavaScript solution. For browsers that do not support the image
object, such as Explorer 3.0, it can be simulated with dynamic page creation. Listing 27.4 shows
the code used in the template site, which is responsible for the toggle effect used for the main
menu button animation.

Script goals:

■ Filter out the browsers that support the image object.

■ Reset all button images to their up position using the preloaded image variables.

■ Filter for Explorer 3.0 and assign images to variable names used to build the dynami-
cally created menu page.

■ Display the dynamically created page every time the button is selected in Explorer 3.0.

toggle()

var selected = “btn1_img”;
function toggle(imageName, fileName) {
 if(nav == “ie4” || nav == “ns3” || nav == “ns4”) {
 parent.MENU.document.btn1_img.src = btn1_up.src;
 parent.MENU.document.btn2_img.src = btn2_up.src;
 parent.MENU.document.btn3_img.src = btn3_up.src;
 parent.MENU.document.images[imageName].src = eval(fileName + “.src”);
 selected = imageName;
 } else if(nav == “ie3”) {
 var btn1 = “btn1_up.gif”;
 var btn2 = “btn2_up.gif”;
 var btn3 = “btn3_up.gif”;
 if(imageName == “btn1_img”) {
 btn1 = “btn1_dn.gif”;
 } else if(imageName == “btn2_img”) {
 btn2 = “btn2_dn.gif”;
 } else if(imageName == “btn3_img”) {
 btn3 = “btn3_dn.gif”;
 }

 var menuPage = ‘<HTML><BODY BACKGROUND=”../images/menu.jpg”
 ➥BGCOLOR=”#D9C9B5">
➥<TABLE BORDER=”0" CELLPADDING=”0" CELLSPACING=”0" WIDTH=”115" HEIGHT=”300">’;

 menuPage += ‘<TR><TD ALIGN=RIGHT><A HREF=”../page1/page1_a.htm”
 ➥TARGET=”MAIN”
➥onClick=”top.toggle(\’btn1_img\’, \’btn1_dn\’)”><IMG NAME=”btn1_img”
➥SRC=”../images/’ + btn1 + ‘“ SUPPRESS=”TRUE” WIDTH=”108" HEIGHT=”53"
➥BORDER=”0">
➥</TD></TR>’;

 menuPage += ‘<TR><TD ALIGN=RIGHT><A HREF=”../page2/page2_a.htm”
 ➥TARGET=”MAIN”

continues

Managing Dynamic HTML

➥onClick=”top.toggle(\’btn2_img\’, \’btn2_dn\’)”><IMG NAME=”btn2_img”
➥SRC=”../images/’ + btn2 + ‘“ SUPPRESS=”TRUE” WIDTH=”108" HEIGHT=”53"
➥BORDER=”0">
➥</TD></TR>’;

 menuPage += ‘<TR><TD ALIGN=RIGHT><A HREF=”../page3/page3_a.htm”
 ➥TARGET=”MAIN”
➥onClick=”top.toggle(\’btn3_img\’, \’btn3_dn\’)”><IMG NAME=”btn3_img”
➥SRC=”../images/’ + btn3 + ‘“ SUPPRESS=”TRUE” WIDTH=”108" HEIGHT=”53"
➥BORDER=”0">
➥</TD></TR>’;

 menuPage += ‘</TABLE></BODY></HTML>’;
 parent.MENU.document.write(menuPage);
 parent.MENU.document.close();
 }
}

Image replacement for browsers that support the image object is simple. It just requires JavaScript
to point to an image object’s name on the Web page and then replace it with a preloaded im-
age as shown in the parent.MENU.document.btn1_img.src = btn1_up.src statement. You can
simulate image replacement for Explorer 3.0 by dynamically writing a new Web page to the
frame every time a button is clicked. To do this, you use the nav variable to isolate the JavaScript
code for Explorer 3.0. Next, you set a local variable with several if else statements to the name
of the image being selected, such as btn1 = “btn1_dn.gif”. Once set, the variables containing
the image names are used to build HTML representing the menu.htm page and stored in the
menuPage variable. The statements parent.MENU.document.write(menuPage) and
parent.MENU.document.close() are used to write the HTML stored in the menuPage variable to
the MENU window. For Explorer 3.0, a dynamically created page is written to the MENU window
every time a main menu button is clicked. It is not as smooth as dynamic image replacement,
but it’s better than loading a new menu page to represent a button being pushed down. The
Dynamic image replacement process is repeated for the changing tab menu also.

If you view the template in the 4.0 browsers, you will notice the pop-up info box describing
where your mouse is as you float over a menu item. Using the pop-up text box is a way to help
your audience navigate the site as they have more information on what a particular link is about.
Creating the info box is easy, but it requires JavaScript code separation between Netscape 4.0
and Explorer 4.0 as shown in Figure 27.5.

Script goals:

■ Filter for the 4.0 browsers and query the windowStatus variable to see whether it is
okay to execute the pop-up code.

Degrading DHTML Gracefully

27

■ Create a style sheet layer object to reference the style sheet layer by both browsers.

■ Dynamically write the HTML to the style sheet layer named info layer.

var windowStatus = false;
function displayInfo(info) {
 if(nav == “ie4” || nav == “ns4” && windowStatus == true) {
 infoObj = eval(“parent.MAIN.” + doc1 + ‘[“infoLyr”]’ + sty);
 infoObj.left = screen_width-350;
 infoObj.top = 50;

 infoMsg = eval(“parent.MAIN.” + doc1 + ‘[“infoLyr”]’ + doc2);

 var msg = ‘<TABLE BORDER=”0" BACKGROUND=”../images/screen1.gif”
 ➥CELLPADDING=”4"
➥CELLSPACING=”0" WIDTH=”200"><TR><TD VALIGN=”TOP”>’ + info + ‘</TD></TR></TABLE>’;
 if(nav == “ns4”) {
 infoMsg.open();
 infoMsg.write(msg);
 infoMsg.close();
 } else if(nav == “ie4”) {
 infoMsg.innerHTML = msg;
 }
 infoObj.visibility = “visible”;
 }
}

function hideInfo() {
 if(nav == “ie4” || nav == “ns4” && windowStatus == true) {
 infoObj.visibility=”hidden”;
 }
}

The first process in the displayInfo() function is to filter out all non–4.0 browsers using the
nav variable. In addition to the browser sniffing, the && windowStatus == true statement is
used to test the state of the windowStatus variable. If true, the rest of the function is initiated.
The windowStatus variable is set to true or false by an onLoad event handler found on every
content page. Since the info box is a style sheet layer found on each content page, it is impor-
tant to prevent the pop-up script from working until the content page is fully loaded. The info
box style sheet layer is described in more detail later is this chapter.

The next step of the displayInfo() function is to define the style sheet layer object. Using the
doc1, and sty variables set earlier in the browser switch routine, you can build an object vari-
able that points to the style sheet layer using the infoObj = eval(“parent.MAIN.” + doc1 +
‘[“infoLyr”]’ + sty) statement. Once the layer object variable has been defined, its position
can be manipulated with the infoObj.left = 50 statement. The layer’s visibility attribute can
be turned on or off with the infoObj.visibility = “visible” method.

Managing Dynamic HTML

As noted earlier, Explorer and Netscape have two different ways of writing HTML to a style
sheet layer. Netscape uses the statement, infoMsg.document.write(msg), whereas Explorer uses
the statement infoMsg.innerHTML = msg. To account for these document object model differ-
ences, you have to create another style sheet layer object using the doc1 and doc2 variables, as
shown in the statement infoMsg = eval(“parent.MAIN.” + doc1 + ‘[“infoLyr”]’ + doc2).
Once defined, you can use the new style sheet object reference to repeatedly write HTML to
the info box layer.

The page scroller widget can be seen only in the 4.0 browsers. It replaces the standard scrolling
window bar you turned off in the dynamic frame setting code. Depending on what part of the
cursor you click, the widget will either scroll the main content window up or down. As with
the info box pop-up, the page scroller widget is contained in a hidden layer on every content
page. Figure 27.6 shows the JavaScript code responsible for moving the content window up,
down, or returning it to its top position.

Script goals:

■ Test for browser compatibility and test the windowStatus variable.

■ Define the style sheet page object used for positioning the main content layer.

■ Set the pageTop variable with the current top position of the style sheet layer.

■ Use if else statement to control whether the page should be scrolled up, down, or
returned to top of the screen.

pageScroll()

function pageScroll(dir) {
 if(nav == “ie4” || nav == “ns4” && windowStatus == true) {
 var pageObj = eval(“parent.MAIN.” + doc1 + ‘[“pageLyr”]’ + sty);
 var pageTop = parseInt(pageObj.top);
 if(dir == “up”) {
 pageObj.top = (pageTop-50);
 } else if(dir == “down”) {
 if(pageTop >= 0) {
 pageObj.top = 0;
 displayInfo(‘You are at the top
 ➥’);
 } else {
 pageObj.top = (pageTop+50);
 }
 } else if(dir == “top”) {
 pageObj.top = 0;
 }
 }
}

Degrading DHTML Gracefully

27

The first part of the pageScroll() function uses the nav variable to isolate the DHTML spe-
cific code for the 4.0 browser. The next step in the function is to define the style sheet layer
object using the var pageObj = eval(“parent.MAIN.” + doc1 + ‘[“pageLyr”]’ + sty) state-
ment. The next action of the function is to assign the main content page’s top position with
the var pageTop = parseInt(pageObj.top) statement. With the pageObj and the pageTop vari-
ables defined, you can move the layer up or down using a series of if else statements that
match the command being passed to the function. For example, the page layer is moved up 50
pixels with the pageObj.top = (pageTop-50) statement.

Up until now, we have been discussing how the template’s navigational buttons, tabs, and ar-
rows are made to function across multiple browsers, but the real backward compatibility starts
here with the main content page. The main content page includes all the HTML pages that
display content in a framed environment, as well as in a nonframed environment. Every con-
tent page is divided into seven sections consisting of JavaScript code, NOSCRIPT HTML code,
standard HTML code, and style sheet code. Depending on the visiting browser, these seven
sections are either revealed or hidden enabling the page to be viewed across multiple browsers.
Each content page includes three style sheet layers. The first layer displays the main text area of
the page. The second layer displays the pop-up info box, and the third layer displays the page
scroller widget. The functionality of the style sheet layers is only visible to the 4.0 browsers.

At the top of every content page is a JavaScript header that contains code that can be executed
only in browsers that support borderless frames. As shown in Listing 27.7, the header script is
responsible for setting a window status variable and dynamically writing the <BODY> tag.

Script goals:

■ Set the windowStatus to false.

■ Dynamically write the <BODY> tag for a browser supporting borderless frames.

■ Initiate an onLoad event handler that will call a function to change the tab menu
button items as well as set the windowStatus variable to true.

<HEAD><SCRIPT LANGUAGE=”JavaScript”><!--
top.windowStatus = false;
// --></SCRIPT></HEAD>
<SCRIPT LANGUAGE=”JavaScript”><!--
if(navigator.appName == “Netscape” && parseInt(navigator.appVersion) != 2 ||
➥navigator.appName == “Microsoft Internet Explorer” &&

continues

Managing Dynamic HTML

 ➥parseInt(navigator.appVersion) != 1) {
 document.write(‘<BODY BACKGROUND=”../images/main.jpg” TEXT=”#000000"
 ➥LINK=”#0000FF”
➥VLINK=”#0000FF” ALINK=”#FF0000" onLoad=”top.pageManager(1, \’a\’);
➥top.windowStatus = true”; onUnload=”top.windowStatus = false”>’);
}
// --></SCRIPT>

In the header script, the windowStatus variable is first set to false before anything else is loaded.
This is done to prevent the info box widget from popping up before the page is loaded. The
next step of the header script is to filter out browsers that don’t support borderless frames and
then dynamically write the <BODY> tag for those that do. The script also creates the onLoad event
handler that is triggered when the page is fully loaded. The event handler calls the
top.pageManager(1, \’a\’) function, passing to it two variables. The variables tell the
pageManager() function what page is being loaded, in this case, page1_a. The pageManager()
function takes that information and displays the appropriate tab menu graphic and hyperlinks.
The second part of the event handler sets the windowStatus variable to true, making it safe for
the info box and page scroller widget to appear.

A second onUnload event handler resets the windowStatus variable to false with the statement
onUnload=”top.windowStatus = false” when the page is replaced by another. This trick seems
to work most of the time, except in Internet Explorer, which is slow at triggering onUnload
events.

The main content page style sheet layer is used to encapsulate the HTML of the content page
and separate it from the info box and page scroller layers. It takes a single tag to create a style
sheet layer, as shown in Listing 27.8.

<DIV ID=”pageLyr” STYLE=”position: absolute; left: 0; top: 0; z-index: 2;
➥visibility: visible;”>

The first attribute of the style sheet layer is the ID label, which is used to identify the layer by
name. All functions that will manipulate this layer will refer to the layer’s name.

The second style attribute of significance to the template site is the layer’s z-index order. This
tells the browser what order in three-dimensional space to place the layer relative to the other
layers. With a z-index of 1, the main content layer is placed farthest away from the viewer, so
any subsequent layers will float on top of it. The third style sheet layer attribute of importance
is the layer’s visibility setting. This setting either enables the layer to be viewed or not. For
the main content page, the layer is set to visible by default.

Degrading DHTML Gracefully

27

The JavaScript table header is used to avoid a nonframes browser from displaying a table back-
ground such as the Opera 2.12 browser. As shown in Listing 27.9, the JavaScript table header
is a standard document.write() statement that writes the opening <TABLE> tag to the main con-
tent page.

Script goal:

■ Dynamically write the opening <TABLE> tag for browsers supporting borderless frames.

document.write

<SCRIPT LANGUAGE=”JavaScript”><!--
if(navigator.appName == “Netscape” && parseInt(navigator.appVersion) != 2 ||
➥navigator.appName == “Microsoft Internet Explorer” &&
➥parseInt(navigator.appVersion) != 1) {
 document.write(‘<TABLE BACKGROUND=”../images/page.jpg” BGCOLOR=”#CAD2BB”
 ➥BORDER=”0"
➥CELLPADDING=”10" CELLSPACING=”0" WIDTH=”90%”>’);
}
// --></SCRIPT>

The table being created in this script is nearly identical to the table header used for 2.0 brows-
ers, but it includes the BACKGROUND=”../images/page.jpg” attribute to create a background for
the table viewable in a framed window.

<NOSCRIPT>
Consider the <NOSCRIPT> tag your savior in building backward-compatible sites. Any HTML
contained in the <NOSCRIPT> tag is automatically ignored by the 3.0 and 4.0 browsers. This
means you can load an alternative interface suitable for viewing in a no-frames environment.
As shown in Listing 27.10, the <NOSCRIPT> tag is used to set up a table with vertical main menu
buttons as well as a horizontal tab menu to come as close as possible to the navigational scheme
in the framed page environment.

<NOSCRIPT>

<NOSCRIPT>
<BODY BACKGROUND=”../images/menu_bg2.jpg” TEXT=”#000000" LINK=”#0000FF”
➥VLINK=”#0000FF”
➥ALINK=”#FF0000">
<TABLE BORDER=”0" CELLPADDING=”10" CELLSPACING=”0" WIDTH=”90%”>
<TR>
<TD ALIGN=LEFT VALIGN=TOP ROWSPAN=”10">
<IMG SRC=”../images/btn1_dn.gif” WIDTH=”108"
➥HEIGHT=”53"
➥BORDER=”0">

continues

Managing Dynamic HTML

<IMG SRC=”../images/btn2_up.gif” WIDTH=”108"
➥HEIGHT=”53"
➥BORDER=”0">

<IMG SRC=”../images/btn3_up.gif” WIDTH=”108"
➥HEIGHT=”53"
➥BORDER=”0"></TD>
</TR>

<TR>
<TD COLSPAN=”3" VALIGN=TOP><IMG SRC=”../images/
➥tab1a_up.gif”
➥WIDTH=”94" HEIGHT=”46" BORDER=”0">
➥
➥<IMG SRC=”../images/tab1c_dn.gif” WIDTH=”94"
➥HEIGHT=”46"
➥BORDER=”0"><IMG SRC=”../images/option1.gif” WIDTH=”216" HEIGHT=”46"
➥BORDER=”0"></TD>
</TR>

</NOSCRIPT>

Notice that the <BODY> and the header <TABLE> tags are included in the <NOSCRIPT> zone. These
tags are there to hide from the 3.0 and 4.0 browsers. The 3.0 and 4.0 browsers use the JavaScript
document.write() method to hide their version of the <BODY> and <TABLE> tags from the 2.0
browsers.

<DIV></DIV>

<P>

 <DIV>

Use the standard HTML syntax to create table rows and table data cells that can be viewed in
all browsers supporting tables. As shown in Listing 27.11, the standard HTML table syntax is
used to build a table row containing an image.

<TR>
<TD COLSPAN=”3" VALIGN=TOP><IMG SRC=”../images/freefall.gif” SUPPRESS=”TRUE”
➥WIDTH=”480"

Degrading DHTML Gracefully

27

➥HEIGHT=”60" VSPACE=”20" BORDER=”0"></TD>
</TR>
...
</TABLE>

</DIV>

When you are done with the main content page, you then need to close the layer container
with the closing </DIV> tag.

The page scroller widget layer is used to display the scroll arrow image on top of the main con-
tent page. As shown in Listing 27.12, the scroller layer uses the same style sheet parameters as
in the main content layer.

<DIV ID=”arrowLyr” STYLE=”position: absolute; z-index: 2; visibility: hidden;”>
 <IMG NAME=”arrow_img” SRC=”../images/blank.gif” USEMAP=”#arrow_map”
 ➥SUPPRESS=”TRUE” WIDTH=”90" HEIGHT=”66" BORDER=”0" ALT=””>
</DIV>

<MAP NAME=”arrow_map”>
 <AREA SHAPE=POLY COORDS=”0,27,89,7,90,0,0,0,0,27"
➥HREF=”JavaScript:top.pageScroll(‘up’)”;
➥onMouseOver=”top.arrowToggle(‘up’); top.displayInfo(‘
➥Scroll Page Up’)”; onMouseOut=”top.hideInfo(); top.arrowToggle(‘center’)”;
➥ALT=””>

 <AREA SHAPE=POLY COORDS=”0,28,90,8,90,30,0,50,0,28"
➥HREF=”JavaScript:top.pageScroll(‘top’)”;
➥onMouseOver=”top.arrowToggle(‘center’); top.displayInfo(‘<FONT COLOR=#FFFFE1
➥SIZE=4>
➥Return Page’)”; onMouseOut=”top.hideInfo(); top.arrowToggle(‘center’)”;
➥ALT=””>

 <AREA SHAPE=POLY COORDS=”0,51,90,31,89,68,0,68,0,51"
➥HREF=”JavaScript:top.pageScroll(‘down’)”;
➥onMouseOver=”top.arrowToggle(‘down’); top.displayInfo(‘<FONT COLOR=#FFFFE1
SIZE=4>
➥Scroll Page Down’)”; onMouseOut=”top.hideInfo();
➥top.arrowToggle(‘center’)”; ALT=””>
</MAP>

The scroll arrow image is linked to an imagemap that triggers several functions depending on
whether the mouse is clicked, moved over an imagemap hotspot, or moved out of an imagemap
hotspot. On a mouse click event, the top.pageScroll(‘top’) function is called and is passed
the direction command ‘top’. The pageScroll() function evaluates the direction command
and either scrolls the page up, down, or returns the page to its top position.

Managing Dynamic HTML

On an onMouseOver event, two functions are called. The first function, top.
arrowToggle(‘center’) is passed the position variable “center”, which the arrowToggle() func-
tion uses to dynamically swap out the current arrow image with the one being specified by the
position variable. This gives the arrow the appearance of movement depending on where your
mouse falls on the imagemap. The second function called by the onMouseOver event is the
top.displayInfo(‘Return Page function and is passed
the HTML string that will be displayed in the pop-up window.

On an onMouseOut event, two more functions are called. The first function, top.hideInfo(), is
used to hide the pop-up window when the mouse leaves the imagemap hotspots. The second
function is the top.arrowToggle(‘center’) function, which resets the arrow image back to the
center image when the mouse leaves the imagemap.

As you can see, the use of image maps to trigger a JavaScript event can be a powerful DHTML
interface tool.

The info box layer is used to provide space to display Dynamic HTML as created by the
displayInfo() function. Because all content will be dynamically written to the info box layer,
the layer is created as an empty style sheet layer, as shown in Listing 27.13.

<DIV ID=”infoLyr” STYLE=”position: absolute; z-index: 3; visibility: visible;”>
➥</DIV>

The main consideration to this layer is its z-index order. In the template site, the info box layer
should float on top of all other layers, therefore it has a z-index order of 3.

Making a cross browser, backward-compatible Dynamic HTML Web site can be a killer. In
the process of building such a beast, you will undoubtedly end up with glass in your feet, and
you will have fallen in a few pitfalls. Have faith. After you accomplish this art form the first
time, it will get easier, especially when someone builds a free template for you to exploit any
way you want. Soon it will become second nature to build a fully backward-compatible Web
site for every Web project you do. However, please continue to harass people who refuse to
upgrade their old world, flat earth society browsers.

Netcasting Your DHTML Site

28

by Brian Gallagher and Jeff Rouyer

■

■

■

■

■

Managing Dynamic HTML

In this chapter, we will walk through the processes involved in creating a Netcaster channel,
what exactly a channel is, and why you would want one. Perhaps more importantly, we will
illustrate how to modify an existing cross-browser DHTML Web site into an effective chan-
nel. Our trials of making a Netcaster channel are made real as we use the Dynamic HTML
Guru Resource Web site as an example throughout this chapter. Before we go any further, be
aware this technology is Netscape specific and as such may be victim of a volatile life span.
Given the potential benefits associated with “push” technology and the current bandwidth limi-
tations likely to persist for the foreseeable future, it is likely that Netcaster-type or channel-
type content will endure in one form or another as the Web matures.

In a nutshell, a Netcaster channel is a form of Web content that is downloaded to a cache on
the client machine and can be accessed online or offline. Channels are supposed to contain a
timely collection of information such as business briefs, stock quotes or profiles, tutorials, or
other timely, interactive material necessitating frequent viewing. One of the biggest complaints
about the infantile Netcaster channels available today is that they remain little more than glo-
rified, interactive spam. When you build your channel, strive to make it not only enticing, but
also worthwhile, and by all means, keep it up-to-date.

To keep up on the latest updates to the Dynamic HTML Guru Resource Web site, you can
subscribe to the Guru Netcaster channel. Simply log in to the Guru site at http://
www.htmlguru.com and navigate to the Guru channel section. Remember that you must have
the Netcaster component installed on your system. The Netcaster interface shown in Figure
28.1 requires you to be running Communicator version 4.02 or later.

The Netcaster
component showing a
list of predefined
channels.

Netcasting Your DHTML Site

28

The Guru channel is updated every Monday at 12:00 a.m. The channel offers the DHTML
developer community the latest updates to the Guru Web site, including weekly DHTML tips,
weekly DHTML tutorials, a listing of new DHTML questions answered by a gaggle of Web
gurus, and the latest collection of valuable links and literature available for high-end Web de-
velopers today.

Channels are just what the name implies, a channel for the flow of information. They contain
HTML and JavaScript and are delivered to subscribers at predefined intervals. Channels can
be delivered as standards-based Web-server channels or Castanet channels. We will focus on
the easy-to-build, standards-based HTML and JavaScript channels for this introduction.

Channels allow subscribers to personalize the information delivered to their desktop and can
be viewed in window mode or in the Netcaster-specific Webtop mode.

Simply put, a Webtop is a means for displaying content that covers the entire screen of a user’s
display—fixed to what would be the wallpaper in the Windows OS. Because Webtops are the
interface for a user’s interaction with your channel, and as such will be viewed for hours at a
time, be sure to make your Webtop as uncluttered and as elegant as possible so as not to fatigue
users. Webtop links should open windows, not change the backdrop of the Webtop itself, and
a Webtop display should not require scrolling. (However, text within the Webtop may be
scrolled.)

Also, because a Webtop is the interface through which you display information to users, you
need to be sure to include full navigational controls in the Webtop itself and make those con-
trols standout. For example, you can use the highlight effect on buttons when the mouse passes
over them. The Guru Webtop, as shown in Figure 28.2, uses many multimedia features of
Dynamic HTML such as layer animation, sprite animation, dynamic content, and audio.

Because downloads are presumably done in the background, and therefore more content can
be transferred to a client than in traditional Web sites, adding sound (including audio files in
your channel “crawl” or download) is acceptable and effective. Be careful not to overdo it.

In the Windows OS, cached or crawled files are downloaded to a client machine here:

C:\Program Files\Netscape\Users\userName\

In the Macintosh OS, cached or crawled files are downloaded to a client machine here:

System Folder/Preferences/Netscape/

Upon completion of crawling a channel’s content, Netcaster creates a file listing the URLs of
the channel files that were downloaded and cached successfully. The file can be opened by any
text editor and is titled N.dat where N is a number. Each line in the file represents a URL des-
ignated by either an L for a link, I for an image, or R for anything else.

Managing Dynamic HTML

Channels are built of the same building blocks used to create Dynamic HTML pages; they
include HTML, JavaScript, style sheets, and Java applets. To convert an existing Web site, such
as the Guru Web site, to provide channel content, you must take into consideration several
factors. First of all, users need a way to add your channel to the Netcaster channel finder, and
you as a developer need to be sure that their subscription will contain all the files, and only the
files, the subscriber requests. Keep in mind that Netcaster channels are designed to be viewed
online or offline and as such require some special design considerations.

Adding a Netcaster channel involves the following three steps:

■ Creating an Add Channel button

■ Creating the Channel Definition function

■ Optimizing existing HTML and JavaScript code in your channel page’s site to work in
the Netcaster environment

The first step is necessary when a user subscribes to a Netcaster channel. He or she “adds” the
channel through the Netcaster channel finder or more likely through an Add Channel button.
The second step is building the JavaScript Channel Definition function that describes the pa-
rameters of the channel. The third step involves optimizing JavaScript and HTML formatting
to best fit in the Netcaster performance model.

The Guru channel in
Netcaster Webtop
mode.

Netcasting Your DHTML Site

28

One of the first steps you need to take toward getting your Web site channel ready is one of the
obvious steps: You need to make a control enabling a user to add the channel. For the Guru
Web site, you do this by calling the defineChannel() function with the HTML and JavaScript
code shown in Listing 28.1. The script’s goal is to use an onClick event to call the defineChannel
function within a form button.

<FORM>
<INPUT TYPE=”BUTTON” VALUE=”Add Channel” onClick=”defineChannel(\’DHTML Guru
➥Resource\’, \’http://www.iex.net/rouyer/channel/index.html\’)”>
</FORM>

The Add Channel button is a form with the input type equal to “BUTTON.” Within the FORM
element is the JavaScript onClick event handler that triggers the defineChannel() function when
the button is clicked. Passed to the defineChannel() function are two variables. The first vari-
able is the name of the Netcaster channel because it appears in the channel finder. The second
variable is the URL to the HTML source of the channel itself. The onClick event handler is
not restricted to a FORM element because it can be applied to image and text links as well.

Now that you have a way to get the channel to your users, called “subscribers” in Netcaster
lingo, you have to tell Netcaster what to expect. To do this, you need to identify the channel
components, one of the cornerstones of what makes a channel work.

Identifying the channel to the channel finder is accomplished through the Channel Definition
function. Listing 28.2 shows the defineChannel() function used to set up the Guru channel.
The function is called from the Add Channel HTML element and passed the channel name
and channel URL.

Script goals:

■ Create a channel object nc using the Netcaster component and make it active.

■ Test the active state of channel object and if it’s true, continue to define the channel.

■ Import two Netcaster component methods.

■ Define channel attributes and initiate the Add Channel method.

Managing Dynamic HTML

defineChannel()

function defineChannel(name, url) {
 var nc = components[“netcaster”];
 nc.activate();
 if(nc.active == true) {
 import nc.getChannelObject;
 import nc.defineChannel;
 channel = getChannelObject();
 channel.url = (url || “URL”);
 channel.name = (name || “Name”);
 channel.desc = name;
 channel.intervalTime = -6;
 channel.absoluteTime = 1440;
 channel.estCacheSize = -1;
 channel.maxCacheSize = 1024000;
 channel.depth = 2;
 channel.active = 1;
 channel.topHint = screen.availTop;
 channel.leftHint = screen.availLeft;
 channel.widthHint = 600;
 channel.heightHint = 391;
 channel.mode=”webtop”;
 channel.type=1;
 channel.cardURL = ‘’;
 addChannel(channel);
 }
 }
}

The first action of the function is to create and activate the channel object nc with the var nc
= components[“netcaster”] and nc.activate() statements. Once activated, the nc channel object
is assigned two Netcaster specific methods, getChannelObject and defineChannel, which ac-
cess the Netcaster component. The next step of the function is to use the if(nc.active ==
true) statement to ensure the Netcaster component is active. Once the component is active, it
is safe to import the Netcaster-specific methods with the following two statements:

Import components[“Netcaster’].getChannelObject;
Import components[“Netcaster”].defineChannel;

Now that you have access to the channel, you must define the channel object attributes. The
first three attributes define the channel URL of the top channel page, the channel name, and
the channel description that is shown in the channel finder list. The channel name is used as
the description for the channel.

The second set of channel attributes deal with the page refresh request times. As with program-
ming a VCR, the interval time refers to the minute, hourly, daily, or weekly schedule on which
the channel is updated. Values include any positive integer representing minutes. Special negative
integers serve as default schedule times as follows:

-2 Every 15 minutes

-3 Every 30 minutes

Netcasting Your DHTML Site

28

-4 Every hour

-5 Every day

-6 Once a week

In a Netcaster channel, time is represented in minutes by an integer value that starts at mid-
night Sunday and is used to set the absolute time attribute. Adding 1440 minutes for each day
from Sunday, a developer who wants to download on Wednesday at 1:00 a.m. would use the
value 4260 (3 × 1440 + 60) for the channel channel.absoluteTime.

For the Guru channel definition, the Interval attribute is set to -6 for a daily schedule and the
absolute time is set to 1440, representing Monday. The channel is programmed to seek new
updates every Monday at 12:00 a.m.

The next set of attributes deal with the caching parameters that may be required for the chan-
nel. The estimated cache size attribute channel.estCacheSize = -1 is your guess about how
much cache space Netcaster should allocate for storing your channel. If you don’t know how
much to estimate, use -1; otherwise, you enter a value in bytes between the range of 1 and
1,047,527,424.

The maximum cache size attribute indicated by the channel.maxCacheSize = 1024000 state-
ment represents the largest amount of space Netcaster will cache for the channel. For the Guru
channel, you request the maximum cache size to be 1MB; otherwise, you use an integer value
between the range of 1 and 1,047,527,424.

The last attribute dealing with caching system is the channel depth attribute represented by
the channel.depth = 2 statement. The channel depth property refers to the levels of link hier-
archy to be downloaded into the client cache. Although channel depth is not used in Netcaster
1.0, it is important to build Netcaster channels with no more than two layers. When channels
are cached on a client machine, they are downloaded through a process called “crawling,”
whereby successive links from the top-level HTML pages are downloaded to a user-specified
depth.

The remaining attributes of the channel definition set the width and height of the channel
window. Because the Guru channel uses Webtop mode, the width and height values are ig-
nored. Alternatives to the Webtop mode are window mode and full mode. Window mode is
defined by the top, left, width, and height hints. Full mode is similar to Webtop mode in that
it occupies the whole display area, but it is not anchored to the screen, and it does not show the
Netcaster toolbar. The final method of the channel definition triggers the addChannel method
using the channel attributes in the addChannel(channel) statement.

After all HTML pages are cached, the images in those pages are cached in the same manner,
and the embedded objects such as Java applets and individually referenced JavaScript scripts
are downloaded. By caching information in this manner, you can preserve much of the func-
tionality and information in a channel if the connection is terminated for whatever reason.

Managing Dynamic HTML

Although you have defined your Netcaster channel and added it to the channel finder, you
might still have some details to manage. With the Guru channel, we had to clean up the code
to make sure we had no external links while the channel is in Webtop mode, as well as make
sure that all animated images were preloaded. Listing 28.3 shows the preLoad() function we
used to preload all images into cache before they are used by DHTML in the channel. The
script’s goal is to create an image object and assign an image URL to it to store the image into
cache.

function preLoad() {
 bloom = new Image();
 bloom.src = “../images/bloom.jpg”;

 core = new Image();
 core.src = “../images/core.gif”;

 flare = new Image();
 flare.src = flare_img;

 guru = new Image();
 guru.src = “../images/guru.gif”;

 legs = new Image();
 legs.src = “../images/legs.gif”;

 sun = new Image();
 sun.src = sun_img;

 guide_off = new Image();
 guide_off.src = “../images/guide_off.gif”;

 guide_on = new Image();
 guide_on.src = “../images/guide_on.gif”;
}

The first statements in the preLoad() function create an image object for each image with the
guide_on = new Image() statement. The next step is to assign an image URL to the object such
as guide_on.src = “../images/guide_on.gif”. Once loaded into cache, the images can be ref-
erenced by their object names and used for dynamic animations.

Netcasting Your DHTML Site

28

Netcaster channels especially in Webtop mode tend to be developed as a full-fledged multimedia
experience. The Guru channel uses layer animation, dynamic content, music, and sound to make
exploring the channel a bit more interesting. You must consider several design options to develop
a channel in Webtop mode. The biggest consideration is resolution-specific images. The Webtop
will adjust to the size of the screen and so must the accompanying images and positional HTML
elements. The code in Listing 28.4 is used in the Guru channel to switch between different sizes
of background images to match the screen resolution. The script’s goal is to use a chain of if...else
statements to assign image URLs to resolution-specific image variables.

var screen_height = screen.height;
var screen_width = screen.width;

if (screen_height >= 768) {
 background_img = “../images/horizon768.jpg”;
 sun_img = “../images/sun768.jpg”;
 flare_img = “../images/flare768.jpg”;
 screen_width = 1024;
 screen_height = 768;
} else if (screen_height >= 624) {
 background_img = “../images/horizon624.jpg”;
 sun_img = “../images/sun624.jpg”;
 flare_img = “../images/flare624.jpg”;
} else if (screen_height >= 600) {
 background_img = “../images/horizon600.jpg”;
 sun_img = “../images/sun600.jpg”;
 flare_img = “../images/flare600.jpg”;
} else if (screen_height >= 480) {
 background_img = “../images/horizon480.jpg”;
 sun_img = “../images/sun480.jpg”;
 flare_img = “../images/flare480.jpg”;
} else {
 background_img = “../images/horizon600.jpg”;
 sun_img = “../images/sun600.jpg”;
 flare_img = “../images/flare600.jpg”;
 screen_width = 800;
 screen_height = 600;
}

To set the image variables based on screen resolution, we use a chain of if...else statements
to test the screen_height variable against known screen resolutions. If one of the statements
rings true, the background_img, sun_image, and flare_img variables are set to the appropriate

Managing Dynamic HTML

image URL. As you may have guessed, you have to create a separate image for each resolution
support. It is actually not a difficult task when you are dealing with backgrounds and a few
images. For the browser to display the dynamically chosen images, the image can use the
document.write() method as shown in displaying the background image for the Guru site:

<SCRIPT>
 document.write(‘<BODY BACKGROUND=’ + background_img + ‘ BGCOLOR=
➥”#B56A6A” LINK=”#00FFFF” ALINK=”#FFFF00" VLINK=”#00FFFF”
➥onLoad=”preLoad()” TEXT=”#FEE4B6">’);
</SCRIPT>

The clean canvas is ready for creative minds to manipulate. Webtop designers need to use the
full breadth of tools available to them, including style sheets, Dynamic HTML, and the
JavaScript event model, allowing for drag-and-drop functionality and dramatic animations.

Go for it! The user has downloaded all the images to your channel a while ago, so why not treat
him or her to a show with the obligatory intro animation? Listing 28.5 shows the code for
performing the opening sequence lens flare animation for the Guru channel. The sun and lens
flare start out moving fast toward each other but slow at a linear rate.

Script goals:

■ Get the sun layer’s left position.

■ Get the flare layer’s left position.

■ Reposition the sun layer one pixel to the right for each loop cycle until the limit is
reached.

■ Reposition the flare layer one pixel to the left for each loop cycle until the limit is
reached.

var timer_0 = null;
var flare_delta = 1;

function lensFlare() {
 var sun_x_pos = parseInt(sunObj.left);
 var flare_x_pos = parseInt(flareObj.left);
 if(sun_x_pos+125 < flare_x_pos) {
 sunObj.left = sun_x_pos+2;
 flareObj.left = flare_x_pos-2;
 timer_0 = setTimeout(“lensFlare()”, flare_delta);
 flare_delta++;
 } else {
 upCore();
 }
}

Netcasting Your DHTML Site

28

The first statement defines a local variable var sun_x_pos = parseInt(sunObj.left) with the
left position of the object you want to move. Layer animation is actually performed with meth-
ods defined within the if(sun_x_pos < 60) statement. As long as the sun_x_pos variable is less
than flare_x_pos, the sun layer object will be moved to the right by two pixels with the
sunObj.left = sun_x_pos+2 statement. The inverse happens for the lens flare object, which is
moved to the left by two pixels with the flareObj.left = flare_x_pos-2 statement. The func-
tion will continue to loop with the timer_0 = setTimeout(“lensFlare()”, flare_delta) state-
ment until the right edge of the sun image reaches the left edge of the lens flare image. Using
the incrementing global variable flare_delta++ in the setTimeout() function is a cheap way of
slowing the animation down as the two moving images come close to each other.

Audio is used two ways in the Guru channel. It is first used to play the 2001: A Space Odyssey
theme song with an embedded MIDI file. It is then used to play mouse-over and mouse-click
sounds as the user investigates the Guru interface. The following script in Listing 28.6 shows
the two JavaScript routines we used for controlling audio using the LiveAudio multimedia plug-
in. The script’s goal is to use an onClick event to call the defineChannel function within a form
button.

function audioEnabled(plug_in) {
 for (var i = 0; i < navigator.plugins.length; i++) {
 if (navigator.plugins[i].name.toLowerCase() == plug_in.toLowerCase()) {
 for (var j = 0; j < navigator.plugins[i].length; j++) {
 if (navigator.plugins[i][j].enabledPlugin) {
 return true
 }
 }
 return false
 }
 }
 return false
}

function playAudio(cmd) {
 if (audioEnabled(“LiveAudio”)) {
 if (cmd == “2001”) {
 document.MIDI.play(false);
 }
 }
}

All audio is controlled by the playAudio() function. JavaScript event handlers triggered by
onMouseOver and onClick events pass to this function a command variable such as “2001”. A
series of if...else statements is used to match the command and execute the LiveAudio play
method. Before any command is initiated, the if (audioEnabled(“LiveAudio”)) statement is
used to test the presence of the LiveAudio plug-in. If it’s true, the LiveAudio methods are free
to run.

Managing Dynamic HTML

To play an audio file, it is necessary to use the <EMBED> tag as shown for the MIDI file 2001.mid.
Referring to an embedded audio file using LiveAudio methods is done by referencing the NAME
attribute of the embedded sound file in the document.MIDI.play(false) statement.

Because Netcaster caches channels on a client’s hard drive, you must consider serious security
concerns whenever a Netcaster channel is added (or subscribed to) by a user. To accommodate
the very understandable concerns involved with push, or server-initiated, technology, the
Netcaster designers created the object-signing protocol. This protocol steps the user through
various levels of requested access to potentially harmful actions by a typical Netcaster caching
operation. At each interval, the user is prompted to either grant or deny the requested Netcaster
operation.

The key strengths of the object-signing protocol are

■ Provides a sequential interface for access privileges

■ Limits the code under its jurisdiction

■ Locks access to the duration of the call in which access was granted

Some actions requiring user approval include writing to the hard disk, providing the uncondi-
tional capability to close browser window, setting a property on an event, getting data from a
DragDrop event, and submitting a form to a mailto or news URL.

An information channel such as a news service with a broad spectrum of material is a great
place for a Web search engine robot to visit. Robots visit Web sites on a scheduled basis and
busily index all the pages in Web sites. Lycos and Hotbot are two major search engine robots
that do this. In many cases, it is a bad idea for a robot crawler to index Web pages associated
with a Netcaster channel due to the fact these pages may be unreadable by a browser accessing
the pages via a robot search engine, thereby circumventing the Netcaster software. You can
control how the robot search engines index your site by creating a simple robot.txt file. When
encountered by a crawler the robot.txt file is read first, delivering instructions to the crawler
as to which files are cached and which are not. The following code provides a good idea of
what a robot.txt file looks like:

/robot.txt for http://www.htmlguru.com/
User-agent: CAST
Disallow: /channel/index.html

This robot instructs the crawler to not cache index.html in the /channel folder. In the event a
crawler does not encounter a robot.txt file, it proceeds to crawl and index all pages in the site
with no restrictions.

Netcasting Your DHTML Site

28

Despite the fact that casting technology at this point is largely referred to as “push” technology
and sometimes referred to as “pull” technology, the reality is that it is “scheduled” content—
updating, crawling, caching, downloading, whatever you want to call it, only at predefined,
scheduled times.

You cannot really talk about new technology and Web advances without addressing the
Microsoft question. Currently Microsoft supports what it calls Webcasting, using the Channel
Definition Format, or CDF. The Microsoft effort is similar to Netcaster in many aspects, in-
cluding file caching, offline viewing, pursuing enriched content through “push” or “pull” con-
tent, and even providing a Webtop equivalent–theater mode. However, like many other
Microsoft-based Web initiatives, Microsoft channels carry the Active prefix and along with it
the baggage of proprietary licensing and incompatibility with currently accepted standards. As
of this writing, the software giant maintains that it supports a “pending HTML standard.”

Much of what makes Netcaster and the Webtop interface work has to do with the new exten-
sions built into JavaScript 1.2 and supported by Netscape Communicator. A good resource for
JavaScript 1.2 and Netcaster extensions can be found at http://developer.netscape.com.

Numerous other nuances involved with Netcaster channels have yet to be implemented in the
current iteration of the software, but some things are clear even at this stage. The Webtop in-
terface is truly a new medium to be explored by the best and the brightest the Web has to offer.
Tailor-made newspapers, tutorial programs, and even university-accredited courses become more
of a reality.

Combined with the ongoing advancements in processor speed and memory capacity, Netcaster
content is likely to become some of the richest and most interactive the Net has to offer. Al-
though the technology evolves, we have some suggestions that can make “casting” as popular a
method of information retrieval as browsing. For starters, integrating the dialer with Netcaster
for modem users would allow those with serial access to the Net to enjoy the benefits of casting
technology. As it is, the home user with modem access to the Internet must first log on and
start a channel crawl before he can view the channel content he desires. Also, to make it easier
to download, real-time compression on the server end would be nice; it would allow more chan-
nels to be cached faster, while leaving more room on a hard drive for additional channel content.

We wait, watch, and work through yet another of the latest features the Web has to offer. At
this stage, we are still on top of the iceberg, casting our nets into the ether of ocean that is the
Web, always wondering what it is we will catch tomorrow.

Managing Dynamic HTML

Debugging Your Dynamic HTML

29

by William Royere

■

■

■

■

■

■

■

Managing Dynamic HTML

In previous chapters, you learned how to create powerful and dynamic Web content using
DHTML. In this chapter, you will learn how to debug that content.

Debugging is both a diagnostic and problem-solving process. With it, you identify and elimi-
nate errors within your code that produce unpredictable or undesirable behavior. The program-
ming community refers to these errors as bugs. The following are good examples of bugs:

■ Pages fail to load correctly

■ The user’s browser crashes

■ The user’s monitor explodes (just kidding)

In this chapter, you will learn to avoid these problems by writing clean code. An inherent part
of that process is debugging, or the art of getting the bugs out.

This chapter is broken into three sections:

■ Basic concepts of debugging

■ Common tools and techniques

■ Hands-on debugging

Debugging is important because without it, your site might not function correctly. To under-
stand why, consider the major difference between DHTML and standard HTML: DHTML
relies heavily on scripting languages. Such languages enforce certain limitations on how you
can express your code, called language conventions. If you fail to observe these language con-
ventions, your code could malfunction. To understand how this climate differs from standard
HTML development, consider the following example.

Standard HTML can be written any way you like. In all but the most extraordinary circum-
stances, it will still execute cleanly. For example, consider the following code:

<HTML>
<HEAD>
</HEAD>
<BODY bgcolor = #FFFFFF>

<center>
<form>
<input type = “button”
Value =
“Any Problems?”
onClick = “alert(‘No Problems Here’)”>
</form>
</center>
</BODY>
</HTML>

Debugging Your Dynamic HTML

29

Note that elements within the FORM structure have been broken into separate lines:

<form>
<input type = “button”
Value =
“Any Problems?”
onClick = “alert(‘No Problems Here’)”>
</form>

This code is poorly written. Elements within the form structure should have been written on
one continuous line. However, because of the way most browsers work, it doesn’t really matter
(see Figures 29.1 and 29.2).

As you can see, the code works just fine despite the haphazard style in which it was written.

In contrast, when you incorporate complex scripting into your Web pages, your style cannot
be so laid-back. To demonstrate why, I will expand (and slightly complicate) the previous ex-
ample.

Suppose that when the user clicks the button, you want to display a message window instead
of an alert. To do so, you employ a scripting language. (I will use JavaScript.)

The resulting page loads
without error.

Managing Dynamic HTML

I start with a function called sams_pop_up_window(). This function will draw my message win-
dow. Here is the code:

<script language = JavaScript>
function sams_pop_up(){

//First, define the window’s attributes and dimensions
msg=open(‘’,’NewWindow’,’toolbar=no,location=no,directories=no,
➥status=no,menubar=no,scrollbars=yes,resizable=no,copyhistory
➥=yes,width=255,height=150');

//Next, define the document’s general characteristics
msg.document.write(‘<HEAD><TITLE>Nope!...Everything is Fine
➥Here!</TITLE><HEAD><BODY BGCOLOR =
➥#ffffff></BODY>’);

//Lastly, write the message
msg.document.write(‘<font face = arial,
➥helvetica size = -1><center>The Script Works Well</center><ul
➥type = square>We see no error messagesThe browser did
➥not freezeThe monitor did not blow
➥up

<center><form><input type = button value =
 ➥Okay! onClick = window.close();></form></center></p>’); } //JavaScript
➥Ends -->
</script>

Next, I add an event handler to trigger it, like this:

<form>
<input type = “button” Value = “Any Problems?” onClick =
➥sams_pop_up(this.form);”>
</form>

The results are shown in Figure 29.3.

The alert box executes
without error.

Debugging Your Dynamic HTML

29

Take another look at the sams_pop_up_window() code. Note that the script is broken into three
sections. Each section is segregated from the next, and each is expressed as a continuous, un-
broken line of code. The code is therefore clean and well organized.

Suppose, however, that I had written this code in the same haphazard fashion as the HTML
you saw in the first example. Would my message window still launch correctly? Let’s look at
Figures 29.4 and 29.5.

The message window
loads without error.

The message window
script fails in Netscape
Navigator.

As you can see, something went terribly wrong. Both Netscape Navigator and Internet Ex-
plorer spawned error windows, telling us that the script was flawed. What could have happened
and how can we find out? Answer—we apply the first and most important rule of debugging:
Carefully review any error message you receive.

Managing Dynamic HTML

Error messages are tremendously helpful. For example, in this case, the error message began as
follows:

unterminated string literal

This tells us that code expressed within the second msg.document.write instruction (part 3 of
the script) was not a continuous line. Instead, it was broken where the FONT attributes were set.
We know this because the error message identifies the precise point at which the line was bro-
ken. But it tells us much more than this. We simply have to interpret the information.

To demonstrate how to interpret error messages, I want to break one down, line by line. For
this, I will use the error message example shown in Figure 29.4. Here again is the full message,
reproduced from Netscape Communicator:

unterminated string literal
msg.document.write(‘font face =
. ^

This error message is composed of three lines. Each relates something different about the
error:

■ Line 1 reports that the error was caused by a broken line. In other words, it reports
why the error occurred.

■ Line 2 explains that the error occurred within the msg.document.write instruction.
Thus, it identifies where the error occurred.

■ Line 3 reports that the error occurred immediately after the code font face = ap-
peared. It thus tells us when the error occurred during execution of the code.

In the debugging process, these are questions you must continually ask: Why, where, and when
did your code go wrong? In most instances, error messages will answer these questions.

Important points made so far, then, are these:

The message window
script fails in Internet
Explorer.

Debugging Your Dynamic HTML

29

■ Debugging is the art of finding and eliminating errors in your code.

■ DHTML must be debugged because it relies on scripting languages.

■ When you debug your DHTML, you want to know why, where, and when the code
went wrong.

■ Error messages will generally assist you in this process.

If you remember these points, debugging will soon become second nature. That said, we now
explore the options available to you.

There are two methods of debugging your DHTML:

■ Debugging by hand—This involves using a text-based editor or other rudimentary
editing tool. When employing this technique, you work exclusively in text-only mode.

■ Debugging with special tools—This involves using software designed specifically for
debugging DHTML. Those few tools that exist can be enormously helpful.

Debugging by hand is a formidable task. For example, the only clues you receive about errors
in your script come from the browser. At a minimum, therefore, you must know how to inter-
pret these error messages.

Nevertheless, debugging by hand does not have to be an unpleasant experience. There are plain-
text HTML editors that can streamline the process. On the Microsoft Windows platform, I
prefer to use Acadia Infuse (see Figure 29.6). In fact, I use Infuse for the hands-on example in
the section “A Staff Directory Example.”)

Acadia Infuse provides DHTML authors with several amenities:

■ Syntax color-coding—Infuse identifies functions, variables, and statements by text
color. By default, for example, function and variable declarations appear in blue text,
whereas script closing tags appear in red. This feature enables you to instantly identify
blocks of code. (You can also customize the color scheme.)

■ Script navigation—When Infuse starts, two panels are displayed on the left side of the
screen (see Figure 29.7). One houses the Script Navigator, which graphically displays
functions and objects within your document. To go to one such function or object,
simply double-click its icon. This will immediately position the cursor at the code in
question.

Managing Dynamic HTML

■ Prefabricated language components—Infuse also provides prefabricated language
components, including operators, loops, and conditional statement blocks. This
feature is located at the second tab on the lower panel (see Figure 29.8). You can place
these components by either dragging them to your document or double-clicking
them.

Together, these features provide a powerful debugging environment. To demonstrate why, let’s
review the sams_pop_up_window() function. This time, we will look at a screen capture of it in
Acadia Infuse, as shown in Figure 29.9.

The Acadia Infuse
opening screen: Starting
a new document.

The Acadia Infuse
panel: Script Navigator
and other tools.

Debugging Your Dynamic HTML

29

As noted, the flaw in the sams_pop_up_window() function was an unterminated string literal,
beginning with the code font face =. As you look at Figure 29.9, you can see that the line is
broken. The broken line appears as follows:

msg.document.write(‘<font face =

The instruction is truncated. Its remaining statements are continued (erroneously) on the next
line:

arial, helvetica size = -1>

In Acadia Infuse, this is immediately clear because string literals by default appear in gray text.
Thus, the beginning of the instruction appears in gray while the remaining text (erroneously

The Acadia Infuse
panel: The language
components tool.

The
sams_pop_up_window()

code in Acadia Infuse.

Managing Dynamic HTML

positioned on the next line) appears in black. This warns you that there is a truncated line. The
main value of color coding, therefore, is that it trains you to quickly spot common errors.

Another approach is to use tools specifically designed for debugging DHTML. These are rare,
largely because DHTML is a new technology. However, two such tools do exist, and both are
superb: Microsoft’s Script Debugger and Netscape Communications’ JavaScript Debugger.

There is no point in speculating about which is the better product. Each is the best in its class;
they are simply designed to serve different purposes. Microsoft’s product is geared chiefly to-
ward debugging JScript and VBScript, and Netscape’s product is for debugging JavaScript. Be
that as it may, the products do share certain characteristics. For example, both are finely inte-
grated with their corresponding browser. Both also have the look and feel of traditional debug-
ging environments.

Microsoft Script Debugger was released in July 1997 and is available as freeware. (The license
never expires.) It can be downloaded at http://www.microsoft.com/intdev/scriptIE/
ie302dbg.exe.

After you have installed Microsoft Script Debugger, perform these steps:

1. Open Microsoft Internet Explorer.

2. Open the page containing the script you intend to debug.

3. Choose View |Source on the menu bar.

These steps will launch Microsoft Script Debugger (see Figure 29.10).

Debugging Your Dynamic HTML

29

On examining Figure 29.10, you might recognize similarities between Microsoft Script
Debugger and Acadia Infuse. By default, one window panel holds the source to be debugged.
The other (the Project Explorer Window) graphically displays objects contained within the
source document. This approach is valuable because it trains you to visualize the components,
logic, and program flow of your code.

Microsoft’s Script Debugger has other amenities. One is that you can debug scripts by steps, a
common feature in debuggers for many programming languages. It allows you to set breakpoints
in the script, or areas where particular functions occur. Think of a breakpoint as a bookmark.
When you set a breakpoint, you can later return to it on demand. This allows you to selectively
test different blocks of code, independently of one another. In this way, you can incisively identify
problems, without having to run all functions within the page.

HEAD

onLoad

Starting the Microsoft
Script Debugger on the
page to debug.

Managing Dynamic HTML

In closing, Microsoft Script Debugger is an excellent tool, particularly for power users. If your
JScript or VBScript project entails numerous functions of high complexity, this tool is perfect
for you.

Netscape’s JavaScript Debugger is a new product, available for download at http://
developer.netscape.com/software/jsdebug_license.html.

JavaScript Debugger is tightly integrated with (and can be launched directly from) Netscape’s
Visual JavaScript. Like Microsoft Script Debugger, Netscape’s JavaScript Debugger is a bona
fide debugging environment. Figure 29.11 shows Netscape’s JavaScript Debugger.

Starting the Netscape
JavaScript Debugger.

The Netscape JavaScript Debugger is geared mainly toward professional Web developers. Its
features are endless. (It even has support for manipulation of JavaBeans and other complex
components.) In short, it contains everything you will need to debug your DHTML, provided
that JavaScript is your preferred language.

Debugging Your Dynamic HTML

29

Both Microsoft’s Script Debugger and Netscape’s JavaScript Debugger are powerful applica-
tions. Both employ the use of breakpoints and watchpoints, devices that can streamline debug-
ging from an organizational and procedural point of view.

In this chapter, however, we will debug our DHTML by hand. My reason for this is simple: I
want you to fully understand each step. Later, when you develop sites with complex DHTML,
you will appreciate this experience.

It is now time to put these tools and concepts to work. To do so, we will make use of a fictional
situation.

This morning, we were contacted by a company called Knuckleheads, Incorporated. The com-
pany has a Web site but no shell account access. Therefore, it is unable to employ traditional
CGI to serve data to its Web site visitors. This poses a unique problem.

It wants to publish a staff directory on its site. At present, only a handful of employees have e-
mail addresses, but that is expected to change. Therefore, the company wants a user-friendly
DHTML routine that can accommodate this ever-expanding list. They suggest a “pop-up box”
in which visitors can browse staff e-mail addresses. What do we do?

We begin by visualizing the Staff Directory. We want the interface to look like the Staff Direc-
tory window in Figure 29.12.

Managing Dynamic HTML

To create the interface, we use two separate layer objects. The first will house the scrolling list.
The second will dynamically display vital information about each employee, including their
name, function, location, telephone number, e-mail address, and Web URL.

Here is the code for the interface:

<HTML>
<TITLE>Knuckleheads, Inc. Staff Directory</TITLE>
<HEAD>
</HEAD>

<BODY BGCOLOR = “#33CCFF”></BODY>
<layer name = “formlayer” top = “5” left = “5” bgcolor = #33ccff>

The Knuckleheads, Inc. Staff Directory
<hr>
<form name = “thelist”>
<select name=”telename” size = “5”>
<option>Susan in Systems</option>
<option>Dave in Development</option>
<option>Paul in Production</option>
<option>Tammy in Testing</option>
<option>Martin in Manufacturing</option>
<option>Richard in Repairs</option>
<option>Laura in Legal</option>
</select>
</form>

<form>
<input type = button value = Close onClick=window.close()>
</form>

</layer>

<layer name=”username” top=”55" left=”200" bgcolor = “#33ccff”>

Please Choose a Name

from the list
</layer>

</BODY>
</HTML>

The Staff Directory
visual interface.

Debugging Your Dynamic HTML

29

We then test the code to ensure that the positioning of our layers is correct (see Figure 29.13).

The positioning appears to be correct, so we continue. We define a function on the client’s
Web page that will launch the Staff Directory window. The page from which the code will
launch is displayed in Figure 29.14.

The positioning of the
layers appears to be
correct.

The page that will load
the Staff Directory.

Managing Dynamic HTML

At a minimum, the new loading function must have the following elements:

■ The attributes of the new window

■ The dimensions of the new window

Suppose, then, that we write our function like this:

<script language = javascript>
function directory(form){
msg=open(‘’,’NewWindow’,’toolbar=no,location=no,directories=no,
➥status=no,menubar=no,scrollbars=yes,resizable=no,
➥copyhistory=yes,width=420,height=210');
}
</script>

Then suppose we add the appropriate event handler:

Launch the Directory

We then save the document and launch the Staff Directory. Did everything work as planned?
See Figure 29.15.

No error message
appears, but the
window is empty!

Something has gone wrong. What could have happened? Because there is no error message (a
contingency that sometimes arises), we must discover on our own what caused the problem.
To find out, we must reexamine our code and all relevant language references.

The script uses the open() method of the window object. To double-check that all options and
values were included, we refer to the JavaScript Object Model Reference in Acadia Infuse (see
Figure 29.16).

Debugging Your Dynamic HTML

29

Here, we review syntax and options for the open() method. On closer examination, the prob-
lem immediately becomes clear. When using the open() method, we provided a series of op-
tions and values. Most of these defined visual attributes of the window being opened. In this
case, the script was perfect with the exception of one minor detail: The URL of our Staff Di-
rectory document was missing. Armed with this knowledge, we reopen the document and in-
sert the URL. The updated code looks like this:

<script language = javascript>
function directory(form){
msg=open(‘tele.htm’,’NewWindow’,’toolbar=no,location=no,directories=no,
➥status=no,menubar=no,scrollbars=yes,resizable=no,
➥copyhistory=yes,width=420,height=210');
}
</script>

Next, we save the document and try again. This time, the code executes perfectly. The result-
ing window looks exactly like the one in Figure 29.12. Excellent. The DHTML that generates
the visual interface of the Staff Directory has just been debugged.

The JavaScript Object
Model Reference pop-up
in Acadia Infuse.

Managing Dynamic HTML

Let’s return to the Staff Directory. We now have a clean visual interface that loads without
error. What remains is to dynamically display a staff member’s information when his or her
name is selected from the list. The first step is to decide where that data will be stored. In this
example, we will store it in the select object telename. That way, we can access our data through
the select object’s options array.

select

The first step is to embed each staff member’s data within the value of their corresponding
option. Here is an example:

<option value = “
➥Susan in Systems
Room 204
555-0204

➥
➥Suzie@knuckleheads.com
➥

➥http://www.knuckleheads.com
➥>Susan in Systems</option>

After we have completed this task, we save the document and reload the Contacts at Our Com-
pany page. Again, we launch the directory, hoping that no errors occur. For the results, exam-
ine Figure 29.17 closely.

Bad news. We encountered problems with our visual interface again. Apparently, the HTML
code we inserted between the option tags is flawed. To identify the error, we trace our steps
back, examining each character within our code. Take a moment now to do just that. Do you
see the problem? It occurred near the end:

>Susan in Systems</option>

Debugging Your Dynamic HTML

29

There is no closing quotation mark following the closed font tag. Because of this, the option’s
value absorbed excess HTML. In fact, it absorbed everything up until the next closed quota-
tion mark! Note that this error did not affect the output of the JavaScript function that opened
the window. All window parameters remained intact. However, this error severely distorted
the contents of that window. In any event, it is a small problem. If we add the quotation mark
and reload, our visual interface returns to normal.

Now comes the interesting part. Our next task is to transplant the option’s value into the sec-
ond layer of the document. We do this with JavaScript, employing a function called
report_name(). To clarify this process, I graphically illustrate its components in Figure 29.18.

From Figure 29.18, You can see the relationships of objects to one another. Our task is a simple
one: Drill down into the select object, capture the value of the current option, and print it.
The report_name() function will take three steps to perform this task:

■ Find the data stored within the option value

■ Open the document and write the data to Layer 2

■ Close the document

The results of
embedding each staff
member’s data in the
value of their
corresponding option:
Our once perfect visual
interface is now
mangled.

Managing Dynamic HTML

Before we actually draft the report_name() function, we first assign an event handler to it. (We
do this so we can test it from the start. After all, we might write the script perfectly the first
time around.) Because we have used a select object, we choose the onChange event handler.
Our code looks like this:

<select name=”telename” size = “5” onChange=”report_name
➥(this.form, this.form.telename.selectedIndex)”>

Next, we write the function:

<script language = javascript>
function report_name(form, i) {
document.username.document.write(form.telename.options[i].text);
document.username.document.close();
}
</script>

Finally, we test it. Again, we load the Contacts at Our Company page and launch the Staff
Directory. We then choose the first name on the list (Susan in Systems). Did our script work?
See Figure 29.19.

Again, we encounter problems. This time, however, the error is of a different character. In-
stead of an error message (or a deformed visual interface), we are confronted with the wrong
information. In other words, the script works fine, it just does something different from what
we had intended. Can you guess why the wrong information was displayed? Let’s take another
look at our code:

<script language = javascript>
function report_name(form, i) {
document.username.document.write(form.telename.options[i].text);

The relationship of
objects and data in this
example.

Debugging Your Dynamic HTML

29

document.username.document.close();
}
</script>

The wrong information
has been displayed.

The error relates only to what information was displayed, so we can discard the rest of the code.
Instead, we examine only one line:

document.username.document.write(form.telename.options[i].text);

We travel along that line, looking for mistakes. First, we know that the initial method (write)
is correct, because data (albeit the wrong data) was written to Layer 2. Our problem, then, is
clearly related to the variable we used to represent that data. So, we can even discard the begin-
ning of the line. Our problem code, therefore, is this:

form.telename.options[i].text

We continue our process of elimination, looking for the error point. As we do so, keep in mind
the results we had when we first tested the script. We know, for example, that when we chose
Susan in Systems, the following information was displayed:

Susan in Systems

This text string is indeed part of the select object telename, so we can be certain that we called
the right object. (The right object in this case being telename.) We even know that we are reach-
ing the right area of telename, because we grabbed a value within its options array. Therefore,
we can discard all the code except this snippet:

options[i].text

Managing Dynamic HTML

We now have a definitive answer. The problem is that we pulled the wrong value from the
options array. We instructed JavaScript to grab the text value from the options array when
what we really need is the value value. So, we update our code accordingly:

<script language = javascript>
function report_name(form, i) {
document.username.document.write(form.telename.options[i].value);
document.username.document.close();
}
</script>

We save our document, reload, and launch the Staff Directory. Did everything work properly?
See Figure 29.20.

Susan’s data is
displayed in Layer 2.

Everything worked perfectly. Susan’s name, department, room number, telephone number,
e-mail address, and Web URL are displayed. Moreover, her e-mail address and Web URL are
hyperlinks. Therefore, visitors can now travel to Susan’s Web page or even send her e-mail.

Before we move on, let’s summarize the important points of this example. First, we review points
that relate to technique:

■ Debugging is a refining process that should be performed procedurally. Take it one
step at a time.

■ To streamline this process, read your code in a hierarchical fashion. Eliminate from
your search any code that appears to have executed cleanly.

■ Always have your preferred language’s object model on hand. Without it, you are lost.

Debugging Your Dynamic HTML

29

Moreover:

■ When debugging DHTML, you might encounter errors not only in your scripting
language but also in your HTML.

■ When errors occur within HTML, you might not be notified. (In other words, the
browser might not catch the error.)

■ In such situations, examine the code character by character. It could be the only way
to find the error.

Now, it is time to expand our view. In this section, we examine common errors that you will
encounter. There are three basic types of error, explained in Table 29.1.

Type of Error Explanation

Errors on Load Errors on load occur when the document loads and before the
page is drawn. These can be fatal (the page fails to load) or
serious (the page loads but content and functions fail). You saw
such an on-load error in Figure 29.14.

Errors at Runtime Runtime errors occur only when the script is active. Generally,
unless the entire document is dependent on the script, runtime
errors are fatal only to functions within the script. You saw such a
runtime error in Figure 29.16.

Errors in Logic Errors in logic are seldom identified by a browser. They occur
when the script works but does something different from what
you intended. You saw such a logic error in Figure 29.18.

Now that we have established the types of errors you will encounter, I want to discuss com-
mon reasons for them.

On-load errors most commonly occur for two reasons:

■ You called a function or script using the onLoad event handler. The target function or
script is not defined, the language is not supported, or the target function or script is
flawed. Check that the target function actually exists and that you spelled its name
correctly. If this is not the problem (and the language is supported), examine the
function itself, character by character.

■ The browser does not support the function you called. You have been a naughty, lazy
programmer. Go back and design a script that first identifies the user’s browser and
then conditionally loads (or does not load) your opening script, depending on the
browser type.

Managing Dynamic HTML

Runtime errors most commonly result for the following reasons:

■ You made a typographical error. Somewhere in the script, you have misspelled the
name of a function, variable, or object. Go back and check your spelling.

■ You erroneously assigned an incompatible type. For example, you tried to convert a
string literal to an object value that does not support this type of assignment. Com-
pare this assignment with those provided in your language reference.

■ You omitted a vital portion of a script’s structure, such as a closing bracket, parenthe-
sis, quotation mark, comma, semicolon, operator, or closing </script> tag. Examine
the code, find the error, and insert the missing element.

Logic errors typically occur for the following reasons:

■ You used an improper operator. Review your language reference to see whether what
you are trying to do is even possible. If it is possible, review the operators necessary to
do it. Are all of them present? If so, did you implement them properly? If not, find the
flawed implementation and repair it.

■ You wrote a loop that provides no break or exit. Go back and examine the loop. Is
there a condition that you did not provide for? If so, write some code to cover that
contingency.

■ You coupled the right logic with the wrong object. For example, you wrote a script
that validates form data. If the user does not enter his or her name before pressing the
button to continue, an alert pops up. If that button is of the type submit, the empty
form data will be submitted anyway, even though the alert is displayed. Change the
button type and write a small routine that conditionally submits the data.

The only way to become proficient at debugging your DHTML is by experience. And if you
plan to do heavy DHTML development, you will get more experience than you bargained for.
For example, for purposes of clarity, I took you through errors in the Staff Directory one by
one. However, in practice, you could encounter load, runtime, and logic errors all at once. This
is quite an experience. Depending on your browser or scripting language, you may be con-
fronted with as many as ten error message windows.

What remains is to discuss advanced techniques. The rules of how you write your code can
change under special circumstances. One such special circumstance is where your DHTML is
integrated with CGI. I will not kid you about this. Integrating DHTML with CGI is probably
the most difficult task you will ever face. In the following section, I demonstrate why.

CGI is commonly performed using the Practical Extraction and Report Language (Perl), cre-
ated by Larry Wall. I will therefore use Perl in the following example.

Debugging Your Dynamic HTML

29

When using Perl, user input is stored within variables declared in your HTML. Here is an ex-
ample:

<form name = “myform” action = “get_user_input.cgi”>
<input type = “text” name = “user_input”>
</form>

This code makes two statements:

■ User input will be encased in the variable user_input.

■ The value of user_input will be passed to a Perl script named get_user_input.cg.

That is on the client side. On the server side, the Perl script would look something like this:

#!/usr/bin/perl
if ($ENV{‘REQUEST_METHOD’} eq ‘POST’) {
read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});
@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {
($name, $value) = split(/=/, $pair);
$value =~ tr/+/ /;
$value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack(“C”, hex($1))/eg;
$value =~ tr/,/ /;
$FORM{$name} = $value;
 }
}

print “$FORM{‘user_input’}\n”;

This Perl script performs three relevant functions:

■ It reads the user_input value into STDIN.

■ It strips any illegal characters from this input.

■ It prints the value of user_input on a new page.

In essence, you are using Perl to write the resulting page. For several years now, this has been
the standard way of doing things. However, when you add DHTML into this equation, the
process becomes more complicated. To understand why, consider the following hypothetical
example.

Suppose a client requests that you write a help system for its Web site. This help system will
employ DHTML, JavaScript, pop-up windows, and more. Suppose further that your client
wants this help system to be available on every viewable page. (Including those that are written
by CGI processes.) You now have a problem.

Here is why: I explained in the section “Why Is Debugging Important?” that programming
languages impose certain conventions. These conventions dictate the way your code can be
written. Perl, despite its amazing text-formatting capabilities, is no exception to this rule. If
you instruct Perl to print data received from a Web page, that data must be encased within
quotation marks, like this:

print “$FORM{‘user_input’}\n”;

Managing Dynamic HTML

This technique is not problematic when employing standard HTML. However, with DHTML
(or any HTML carrying scripts), this introduces a unique situation: Your scripting language
might also require that certain elements be enclosed in quotation marks. Hence, you could
find yourself encasing quoted JavaScript or JScript inside an already quoted print() instruc-
tion in Perl.

On the surface, this does not seem to be a particularly menacing problem. For example, you
could perform this quoting in a hierarchical fashion. Using this approach, you would employ
double quotes to open and close the Perl print() instruction and single quotes around quoted
script elements. But, what if within your script—inside already double-quoted Perl and single-
quoted script elements—you must again encase something in either single or double quotes?
Clearly, you run out of permissible quotation marks. This is fatal both to your Perl CGI script
and your embedded DHTML script. The result will be a “Server Has Encountered an Error”
message.

A similar situation arises when you use WYSIWYG HTML development tools in conjunction
with CGI. A good example would be Fusion by NetObjects, often referred to as the PageMaker
of the World Wide Web. Such tools write the code for you, allowing you to construct Web
pages as precisely as you would construct a word processing document. The problem is, these
tools make liberal use of quotation marks to define properties and values. Therefore, your code
could look like this:

<TR VALIGN=”top” ALIGN=”left”>
<TD COLSPAN=3></TD>
<TD COLSPAN=2 ROWSPAN=2 WIDTH=221>
<P>This is the plain text</TD>
<TD COLSPAN=3 HEIGHT=3></TD>
</TR>

Notice that values are assigned using quotation marks. Alas, when you use Perl to write this
out, the quotation marks must be removed. If they are not removed, Perl will exit on error. It
is therefore an immutable rule that when integrating DHTML with CGI, all quotation marks
around HTML elements be removed.

Therefore, if you intend to incorporate your DHTML with CGI, observe these rules:

Debugging Your Dynamic HTML

29

■ Eliminate quotation marks in scripts wherever possible. Where this is not possible,
always use single quotation marks.

■ If using a WYSIWYG HTML editor, eliminate all quotation marks within the
resulting source.

■ In eliminating these quotation marks, use an editor that does not line wrap.

■ Debug your DHTML thoroughly before embedding it within any CGI script.

This chapter is a short introduction to debugging DHTML; as such, the examples are rudi-
mentary. However, they are designed to illustrate the theory and practice of debugging. Armed
with these concepts, you can now experiment with various techniques and tools.

What remains is to explore the final step in deploying your DHTML: publishing and manag-
ing your content. Chapter 30, “Publishing and Managing Your Content,” covers these issues.

Managing Dynamic HTML

Publishing and Managing Your Content

30

by William Royere

■

■

■

Managing Dynamic HTML

In previous chapters, you learned how to create stunning Web sites by using DHTML. In this
chapter, you will learn how to publish and manage those sites.

This chapter is broken into three sections. These sections cover the following topics:

■ Publishing concepts

■ Management concepts

■ Tools

Web publishing has changed radically since HTML was first developed. What began as a method
of displaying simple text and graphics has blossomed into an art form. Indeed, few activities
demand such a peculiar mix of technical expertise, imagination, and creativity. Although this
brave new world is a virtual paradise for the user, it has presented the Web author with many
practical problems.

The craft of Web authoring is constantly evolving. In that evolutionary process, new technolo-
gies sometimes demand that publishing techniques are changed. In this chapter, you will ex-
plore how DHTML will influence your publishing technique.

You might think that DHTML publishing differs little from standard HTML publishing. After
all, the mechanical process is the same: You write your code and upload it. Indeed, in this lim-
ited way, DHTML publishing and regular HTML publishing are quite similar. However, that
is where the similarity ends.

DHTML (with its scripting languages, layers, and other amenities) demands not only greater
organization, but also a more generic style of publishing. To demonstrate why, let’s examine
how Web publishing has changed over the years.

A poem can sum up this section:

In days of old
when authors were bold
and WYSIWYG wasn’t invented,
they wrote their code
in plain text mode
and this is how it was presented.

I am a horrible poet, true, but that little bit of poetry expresses the situation perfectly. Tradi-
tional Web publishing was bare-bones, requiring only minimal organization on the author’s

Publishing and Managing Your Content

30

part. Text and graphics were often kept in the same directory, for example. Because these were
the only types of media to display, this technique was sufficient. Advanced publishing theory
had not yet emerged because it wasn’t needed.

Similarly, the tools required to publish Web content were primitive. (I refer to those dark years
as the Stone Age of Web publishing). HTML was written in a plain text editor, validation was
performed by viewing the result, and publishing was achieved via classic FTP. For those of us
that favor UNIX, these were the good old days.

Alas, those good old days are now long gone. As the Internet grew in popularity, this climate
changed drastically. Commercial developers discovered the Web and sought to maximize its
potential. To that end, they created new forms of media and new techniques of data manipu-
lation. In the face of these emerging technologies, traditional Web publishing quickly became
outmoded. The final result was a double-edged sword.

On one hand, the Web became a more functional medium for distributing information. On
the other hand, the process of publishing that information became infinitely more complex.
Thus, it wasn’t long before developers realized that a more intelligent approach was needed.

To satisfy this demand for a more intelligent approach, developers created a new generation of
HTML editors. These new tools were more powerful than their predecessors and streamlined
the publishing process. I am referring here to the birth of WYSIWYG HTML editors.

WYSIWYG HTML editors enable you to construct a Web page in precisely the same manner
as you would construct a word processor document. You can drop and drag objects (such as
images) on a page. You can specify page size, color, and resolution with a click of the mouse. In
essence, you draw the page and the editor writes the code—the underlying HTML.

These new editors also solved a multitude of formatting problems. Prior to their introduction,
for example, you could not perform absolute positioning of objects. To solve this problem,
these new editors employed invisible table structures to manipulate object placement. The
process worked as follows: you dropped an image on the page and dragged it to the desired
position. For each image (or other object) that you positioned this way, the HTML editor
wrapped invisible table structures around it (see Figure 30.1).

Note the shaded areas marked as invisible tables. These hem in the picture of Spot and the
accompanying text. At view time, these tables (though invisible), still occupy the space allo-
cated for them. The invisible tables, therefore, form an invisible barrier around the visible objects.
In this way, they force the objects to an absolute position on the page, as shown in Figure 30.2.

Managing Dynamic HTML

Although the finished result looks neat and clean, the code is complex and unwieldy. Take a
look:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>
<HTML>
<HEAD>
<TITLE>Home</TITLE>
</HEAD>

Invisible table
structures surround
visible objects.

The objects are forced to
an absolute position on
the page.

Publishing and Managing Your Content

30

<BODY BGCOLOR=”#FFFFFF” LINK=”#0000FF” VLINK=”#800080" TEXT=”#000000">
 <TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH=602><TR VALIGN=”top”
 ➥ALIGN=”left”>
 <TD COLSPAN=1 WIDTH=37><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=37 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=1><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=1 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=267><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=267 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=2><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=2 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=23><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=23 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=225><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=225 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=47><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=47 HEIGHT=1 BORDER=0></TD>
 <TD COLSPAN=1 WIDTH=0><IMG SRC=”./assets/images/dot_clear.gif”
➥WIDTH=0 HEIGHT=1 BORDER=0></TD>
</TR>

 <TR VALIGN=”top” ALIGN=”left”>
 <TD COLSPAN=1></TD>
 <TD COLSPAN=3 ROWSPAN=1 WIDTH=270 ALIGN=”center” VALIGN=”middle”>
<IMG HEIGHT=222 WIDTH=270 SRC=”file:///C:/chapter2/spot.GIF”
➥BORDER=0 ALT=”Picture” ></TD>
 <TD COLSPAN=1></TD>
 <TD COLSPAN=1 ROWSPAN=2 WIDTH=225>
<P ALIGN=”CENTER”>My Dog Spot
➥</P>
<P>This is my dog Spot.
➥Spot may not be the most intelligent dog in the world,
➥but he loves me. Spot enjoys eating, sleeping, chasing
➥cars and howling. I should also mention that Spot is a
➥Chess champion. He has challenged Deep Blue to a match.
➥Spot believes that he can beat the new supercomputer.
➥This web site is devoted to that challenge. Check back
➥often for updates. </TD>

 <TD COLSPAN=2 HEIGHT=222></TD>
 </TR>
 <TR VALIGN=”top” ALIGN=”left”>
 <TD COLSPAN=5></TD>
 <TD COLSPAN=2 HEIGHT=2></TD>
 </TR>
 <TR VALIGN=”top” ALIGN=”left”>
 <TD COLSPAN=8 HEIGHT=1></TD>
 </TR>
 <TR VALIGN=”top” ALIGN=”left”>
 <TD COLSPAN=2></TD>
 <TD COLSPAN=1 ROWSPAN=1 WIDTH=267>
<P ALIGN=”CENTER”>
Spot</TD>
 <TD COLSPAN=5 HEIGHT=16></TD>
 </TR>
 <TR VALIGN=”top” ALIGN=”left”>
 <TD COLSPAN=8 HEIGHT=284></TD>
 </TR>

Managing Dynamic HTML

 <TR VALIGN=”top” ALIGN=”left”>
 <TD COLSPAN=8 HEIGHT=0></TD>
 </TR>
 </TABLE></BODY>
</HTML>

This seems like a lot of code just to place a picture and two blocks of text. However, before
DHTML emerged, this was the only way to perform absolute positioning.

The preceding example brings you to an important point. Using such an editor to generate
DHTML is very difficult. To understand why, consider this: One major advantage of DHTML
is that you can employ layers. Take another look at the previous code. Suppose that you wanted
to isolate Spot in one layer and his story in another. Where, within the code, would you insert
your layers? This presents a serious problem. The values of the invisible tables were generated
for a page without layers. If you attempt to incorporate layers into this code, the results turn
ugly (see Figure 30.3).

When layers are
incorporated,
positioning changes.

Thus, under certain conditions, features in WYSIWYG editors that once streamlined Web
authoring may now inhibit it. If you have been using such a WYSIWYG tool to generate your
Web pages, you may want to reconsider. In many instances, arbitrarily inserting DHTML
routines into auto-generated code produces disastrous results.

Publishing and Managing Your Content

30

That said, we will now explore available publishing options.

You can publish your DHTML in two ways:

■ By using integrated publishing tools

■ By using nonintegrated publishing tools

The method you choose depends on your personal situation. In the following section, I will
look at the advantages and disadvantages of each.

Integrated publishing tools are typically large, powerful packages. These may range from a few
megabytes in size (Netscape’s Composer) to almost 30 megabytes (Microsoft FrontPage 98).
All such tools share these common characteristics:

■ Support for scripting languages

■ Support for at least minimal debugging

■ A means of publishing your data

These tools are often touted as complete solutions because they provide a graphical environ-
ment for design, object model-based language support, and some degree of logical directory
mapping. In addition, many such applications enable you to update your Web site selectively.
(For example, you can update only those components that have changed since your last edit.)
These are all key advantages.

Integrated publishing tools also have disadvantages. These tools often incorporate proprietary
tags or code into your project. Thus, in certain situations, you can use these tools only to gen-
erate and upload a rough draft of your site. After completing this process, you may be forced to
apply more incisive, hands-on techniques to achieve the desired result (removing quotation
marks, eliminating proprietary code, altering paths and so on).

Managing Dynamic HTML

At day’s end, the chief value of integrated publishing tools is this: They offer you a holistic
development environment. Within this environment, you can access most of the tools you need
to create and deploy a site. Three good examples of integrated publishing tools follow:

■ Fusion by NetObjects

■ Microsoft FrontPage 98

■ Macromedia Backstage

These integrated publishing tools have become extremely advanced. Some, such as FrontPage
and Backstage, even offer Web servers and management utilities. In this way, they offer an
integrated solution to authoring, viewing, debugging, publishing, and managing Web content.

Nonintegrated publishing tools are specialized tools, often designed to serve a single purpose.
Good examples of nonintegrated tools are

■ An FTP client

■ A link validator

■ A script authoring application

When using nonintegrated tools, you may have to employ as many as 10 applications to com-
plete your published Web site. On first examination, it may seem that using integrated pub-
lishing tools is a more desirable approach. For example, why use 10 applications when you can
use just one? By using nonintegrated tools, you can perform changes more incisively. You, there-
fore, gain greater control over your code.

Remember the example with my dog Spot? In that case, the code was generated automatically
in a WYSIWYG editor. Building that page took only seconds. However, the time gained by
using a WYSIWYG tool was later lost, when the layers couldn’t be integrated into the code.

Perhaps a combination of these tools is the best choice. By combining the best attributes of
each, you can employ an assembly-line approach to development. This assembly-line approach
can dramatically streamline your work and can also help you prepare for management of your
site.

Publishing and Managing Your Content

30

The easiest way to explain this assembly-line approach is to describe it in stages. At each stage
of the process, you will be introduced to one or more tools or concepts that can help you. As-
sume that you are about to build a site with DHTML, but you have not yet written your first
line of code.

DHTML projects are usually complex. This complexity—unless coupled with strict organization—
can make maintenance a difficult task. Therefore, tools that help you visualize the logic and
structure of your site are extremely valuable.

In fact, visualization is a requisite when developing complex sites because human beings can
only remember so much. By applying visualization to your site, you can easily identify snares
in logic, common coding mistakes, and other problems. Thus, at the inception of your project,
you must conceive (and visualize) two important elements:

■ The logic of your site

■ The structure of your site

These two qualities are quite different, but each reveals something important about the project.

The logic of your site reveals how the user will interface with it. In reviewing site logic, you seek
to determine the relationship of objects along a given data path. For an example, examine Fig-
ure 30.4.

A help data path
illustrated.

Managing Dynamic HTML

Figure 30.4 illustrates a help data path. The beginning of that path is the initial Help option.
The end of that path (where the user runs out of links) is the Tech Support page. In complex
DHTML sites, you may have data paths composed of 20 pages or more. Remembering their
logical relationship is difficult unless you employ visualization.

If you map the logic of your site prior to building it, management will be very easy. This is the
first rule of advanced Web publishing theory.

Two types of tools can help you with visualization. The first type is used before any code has been
written. The second type is employed when a site already exists (where you inherit a site and are
charged with updating it). For the first type, something such as Web Modeler works effectively.

Manufacturer: Web Modeler Corporation
Location: http://www.webmodeler.com/
Status: Commercial ($499.00) Demo Version is Available
System Requirements: Windows 95, Windows NT 4.0

Web Modeler is an extraordinary tool, which can assist you in storyboarding your site.
Storyboarding is the process of logically laying out the site, page by page. Employing this method,
you can visualize data paths that a user can take. Web Modeler helps you do this within a graphi-
cal environment (see Figure 30.5).

When you start a new Web Modeler project, you are presented with an empty screen. Using
your mouse, you can place blank, unnamed pages on the drawing area. You label each page
(assigning its properties, including name, purpose, and so on) and position it on the drawing
canvas.

As you add pages to the canvas, you can draw links between them. These links can be either
normal links (page to page) or sequential links. Use sequential links to lock the user into a series
of sequential pages; for example, if you are displaying an article that has four pages. Sequential
links enable the user to move forward (next) or backward (previous) through the article.

The amazing thing is that Web Modeler doesn’t just perform layout so you can visualize the
site; it actually writes the pages and links to disk. Thus, before you even start coding your
DHTML, you can lay out the general logic of the site. Having done this, you can then inci-
sively add your DHTML scripts to each page.

Publishing and Managing Your Content

30

You might need to work with a site that has already been built. If so, storyboarding tools will
not help you (at least, not in the short run). Instead, you need something that can scan the
current site and build a model of the logic already there. For this, try Astra SiteManager or
PowerMapper.

Manufacturer: Mercury Interactive Corporation
Location: http://www.merc-int.com/
Status: Commercial ($495.00) Demo Version is Available
System Requirements: Windows 95, Windows NT 4.0

Astra SiteManager is probably the most comprehensive site visualization tool currently avail-
able. It has several key advantages over its competitors, including the following:

■ Support for all objects, including CGI scripts, Java applets, images and more.

■ Comparison maps (before and after) of changes in the site.

■ Recognition and indexing of external links.

The Web Modeler
graphical interface.

Managing Dynamic HTML

This information can display in several ways, the most useful of which is a graphical, relational
layout, as shown in Figure 30.6.

Astra SiteManager
maps the logic of your
site.

The top of the screen sports a detailed map of the site. Each object (file, link, and so on) can be
examined separately. Each is identified by its file type, the protocol used, and whether it has
been accessed by users. This information is further supplemented by important statistics, such
as the number of incoming and outgoing links, number of broken links, date of last modifica-
tion, and more. Finally, you can view the site link logic in a number of ways, focusing on a
single page or file and examining the rest of the site in relation to that object.

Manufacturer: Electrum Multimedia
Location: http://www.electrum.co.uk/
Status: Commercial ($99.00) Demo Version is Available
System Requirements: Windows 95, Windows NT 4.0

PowerMapper is easy to use. You simply specify a site (either local or remote) and let the appli-
cation do its job. PowerMapper opens each file on the target site, analyzes the links there, and
builds a graphic illustration of data paths (see Figure 30.7).

Using this utility, you can quickly identify logic flaws. You can also observe the relationship of
each page to all others on the site. In addition, PowerMapper reveals malformed or dead links,
as long as these links are local. When bad links are found, the missing page is represented as a
page with a large, red X in the middle.

Publishing and Managing Your Content

30

By visualizing site logic, you can understand how the user will interface with the project. This
will help enormously in preparing your site for management. Next, you must address the struc-
ture of your site.

The structure of your site refers to the logical organization of objects within it. As you will learn
momentarily, you should group similar file types together, depositing all images of a given type
into one directory. This way, you can quickly find them—as opposed to searching frantically
through a directory that also houses video, audio, HTML, scripts, and other file objects.

If you properly organize your site, you can use any garden-variety FTP tool to visualize site
structure. Some tools, such as Fusion by NetObjects, automatically map site structure for you.
By briefly examining how Fusion maps directory structure, you can understand the process.
Examine Figure 30.8.

PowerMapper maps the
logic of your site.

Managing Dynamic HTML

Fusion operates much like an advanced word processor. You can perform absolute positioning
of objects, integrate Java applets, and even draw freehand, all with a click of the mouse. Fusion
is a powerful Web development environment; however, the real intelligence built into Fusion
operates behind the scenes.

Fusion creates an organized directory structure to house your work. This structure isolates dif-
ferent objects and media types. To see this technique in action, examine Figure 30.9.

The Fusion opening
screen—a graphical
HTML editor.

Notice that each data type has been assigned its own directory; therefore, you can easily under-
stand the site’s structure. Table 30.1 explains the significance of each directory.

Directory Purpose

assets The top-level directory. Data elements (such as images and
applets) are referred to as assets.

The typical directory
structure of a Fusion
project.

Publishing and Managing Your Content

30

applets Houses Java applets.

auto_generated_images Houses image map transparencies, rectangles, and other
generic images automatically generated by Fusion.

cgi-bin Houses CGI scripts.

images Houses image files.

multimedia Houses video and sound files.

html Houses all HTML pages (except index.html).

Upon completing your project, you instruct Fusion to publish the site. During this process,
Fusion imposes the preceding directory structure on the remote server. From that point on,
even when you are using a rudimentary FTP client, you can easily recognize data types and
their locations. This is important, because as your project grows, it becomes more difficult to
manage.

In this respect, the folks at NetObjects (and other companies selling similar software) were on the
right track. Good site organization is the key to successful HTML publishing and management.

DHTML publishing, however, demands even greater organization. To understand why, think
back to our Staff Directory example in Chapter 29, “Debugging Your Dynamic HTML.” In
that example, the script function was embedded within the Web page; the code was written
that way to simplify the example. However, in practice, you may often employ server-side scripts
as well. If so, these scripts will be housed in external source files.

To manage a site designed this way, you must seriously consider the organization and struc-
ture, even prior to building the site.

Following are some suggestions to help you begin:

■ Isolate external source files so that their logical relationship to the project is obvious.
Thus, external source files called from sales.html should be placed in a /sales
directory hierarchy.

■ Group similar objects together. You might place scripts in a /scripts directory
hierarchy, for example. In this way, you can quickly identify their location.

■ Group server-side scripts by language. Consider placing JavaScript source files in a
directory named /my_javascript. In this way, you can quickly ascertain a script’s
language dependencies.

■ Script names should reflect their purpose. Thus, a JavaScript source file containing the
function report_status() should be named report_status.js. This way, you can
easily determine a script’s function.

Directory Purpose

Managing Dynamic HTML

When you build your site, you should do it in a manner that will make future management as
simple as possible. By adhering to the suggested rules, you ensure that you can instantly exam-
ine any object and know the following:

■ The object’s logical relation to the project.

■ The type of object at which you are looking.

■ If the object is a script, the language in which it is written.

■ What the script does.

For instance, examine the following path:

/sales/scripts/my_javascript/report_status.js

This path immediately tells you everything you need to know about the object:

1. This object was called from a sales presentation.

2. This object is a script.

3. This script is written in JavaScript.

4. This script reports the status of the company’s sales.

These measures will greatly enhance your ability to automate management and updating, es-
pecially if you develop large sites that are compatible with multiple browsers. (Or where your
client requests that the site support a wide variety of technologies, for example, a Java version,
a DHTML version, a plain text version, and so on.)

Important points of this section are the following:

■ DHTML publishing demands that you carefully organize your project, even from its
inception. Visualization can greatly assist you in doing this, enabling you to see your
site’s logic.

■ By grouping data, language, and file types, you achieve better structural organization.

■ Better organization means easier management.

After you determine the generic structure of your site, your next step is to place reusable code
or components. These are snippets of code that you probably use on all your sites. Good ex-
amples of reusable code are

■ A pop-up help function

■ A scrolling status bar

■ Links to a credits page

Some of these reusable components may appear in (or be embedded within) all viewable pages;
for example, in a menu bar. Perhaps this menu bar highlights each menu choice as the user’s

Publishing and Managing Your Content

30

mouse passes over it. Manually dropping this routine into all viewable pages is time-consuming.
For this task, I recommend HTML Sniplets by IslandSoft.

Manufacturer: IslandSoft
Location: http://www.lava.net/~islesoft/
Status: Shareware ($14.95)
System Requirements: Windows, Windows 95, Windows NT

HTML Sniplets enables you to store and index blocks of reusable code. Code snippets can be
as large as 3,277 characters in length. Each can be given a unique name (for example,
Highlight Button Script). These can be instantly retrieved and pasted into your current project.
(See Figure 30.10.)

The usefulness of this little application is not apparent at first glance. However, suppose that
you are designing a site in which each page must have the same header, footer, timestamp, mail
link, and pop-up help routine. Suppose further that of these same pages, a handful will also
have links to an index, bibliography, sitemap, and members area. You, therefore, have two tasks.
First, you have to impose certain links on all pages. Second, you must go back and insert spe-
cial links on just a few. Doing this by hand would take a long time; Doing this with HTML
Sniplets will take seconds.

After having placed reusable code, your next step is to write some DHTML. However, it is
now time to review an obscure point in Chapter 29.

During the process of debugging your DHTML, you can easily recognize when your scripts
fail to work properly. The browser usually warns you by hurling a series of errors windows across
your screen. (Subtleness is not an issue when an error is caught by a browser). However, errors

HTML Sniplets.

Managing Dynamic HTML

in HTML syntax may not be so obvious. Thus, after mapping the logic and structure of your
site, placing reusable code, and writing DHTML, you should follow by checking HTML syn-
tax and links. As you probably suspect, this process can also be automated (just another step in
the assembly-line process).

During HTML validation, you subject both syntax and links to quality control. On sites em-
powered with DHTML, doing this by hand is too difficult. Instead, you should employ auto-
mated tools. For this, I recommend either HTML PowerTools or CSE 3310 HTML Validator.

Manufacturer: OppoSite Software
Location: http://www.opposite.com/
Status: Commercial ($59.95) Demo is Available
System Requirements: Windows, Windows 95, Windows NT

HTML PowerTools is a suite of applications that manipulate and validate HTML. It includes
many useful programs, such as

■ An image scanner

■ An HTML validator (HTML 3.2, IE 3.0, and Netscape 3.0 extensions)

■ An HTML to plain-text converter

■ A powerful search-and-replace application

Here, you are concerned only with the HTML PowerAnalyzer, the validation tool. HTML
PowerAnalyzer is fast, compact, and hearty. The program is simple but effective. Check out
Figure 30.11.

To start a new project, choose Select Project. This prompts you for a project name and code. (The
code is arbitrary; you can make it anything you like.) You then specify a directory or list of files, and
the program does the rest. It begins by analyzing the target files for errors (see Figure 30.12).

The HTML
PowerAnalyzer opening
screen.

Publishing and Managing Your Content

30

After the analysis is complete, HTML PowerAnalyzer reports the number of errors and invalid
links. To get a comprehensive report, choose Launch Report Viewer. This causes HTML
PowerAnalyzer to load a comprehensive report within your browser, as shown in Figure 30.13.

HTML PowerAnalyzer
analyzes the code.

HTML PowerAnalyzer
loads a comprehensive
report in your browser.

The report produced by HTML PowerAnalyzer is extremely detailed. It reports the line at which
the error occurred, the type of error it was, and prints the code that contains the error. A typi-
cal error report follows:

(52) Line 449: Invalid use of quote marks in parameter value:
➥<font size=4 face=”Tahoma,Arial,Helvetica,Geneva,
➥Bookman,Times” color=$black”>

Managing Dynamic HTML

This error message reports that in line 449 of the file, a quotation mark has either been omit-
ted or misused. The errant code is this:

color=$black”

Think of HTML PowerAnalyzer as a debugging utility for HTML.

Manufacturer: AI Internet Solutions
Location: http://www.htmlvalidator.com/htmlval/orderinfo.html.
Status: Commercial ($39.95) Demo is Available
System Requirements: Windows, Windows 95, Windows NT

CSE 3310 HTML Validator is for the DHTML author who wants to control every aspect of
the validation process. The program offers a rules editor that probably contains every HTML
tag, escape sequence, and character notation ever devised. You can manipulate how these val-
ues are treated during the validation process by using the HTML Configuration Editor. (See
Figure 30.14.)

CSE 3310 HTML
Validator’s HTML
configuration editor.

Most important, this application also addresses all tags used in generating DHTML. The fol-
lowing are a few of the extensions with which this application can work:

■ Microsoft Internet Explorer 4.0

■ Netscape Navigator 4.0

■ Cold Fusion

■ Style Sheets

Publishing and Managing Your Content

30

Using CSE 3310 HTML Validator, you can tailor your HTML debugging to the extreme. I
highly recommend this application.

http://www.fal.de/cgi-bin/WeblintGateway

Moving along through the assembly-line process, we have thus far covered the following
subjects:

■ Visualizing site logic and structure

■ Generating site logic and structure

■ Placing reusable code or objects

■ Validating URLs and syntax

As you can see, this is a graded process. You first address the big picture—for example, the
concept, logic, and structure of your site. To handle this big picture, you use a tool that per-
forms generalized functions (such as imposing the desired directory structure system-wide).
Such a tool could be likened to a shotgun. The blast is wide and covers a lot of ground. Gradu-
ally, you use tools that perform more and more incisive tasks, until you reach the debugging
process. (At that stage, your tools are more like scalpels.) Finally, you will be ready to publish
your site.

To perform this publishing, you can use any FTP client. (Or equally, perhaps you use an inte-
grated package that uploads the entire work automatically.) Thus, it’s not necessary to cover
that aspect of the publishing process. However, somtimes it might be necessary to use special-
ized tools. This section addresses one such situation: the three-party FTP transfer.

Whether you’re a professional Web developer or hobbyist, sooner or later you will be faced
with a grueling task: moving a complete and functional Web site from one remote server to
another (or perhaps, to several others). This can be time-consuming. The following tools can
automate that process.

Managing Dynamic HTML

Manufacturer: H. Sean Hu
Location: http://tucows.tierranet.com/files/Cupertino.zip
Status: Beta
System Requirements: Windows 95, Windows NT

Cupertino allows transfers between one or more remote hosts, which means that you can transfer
files from Site A to Sites B, C, and D. It is not required that the files be located on your local
drive. As illustrated in Figure 30.15, Cupertino’s interface is quite intuitive. It fully supports
drag-and-drop transfers among multiple FTP hosts.

One word of caution: Cupertino performs this practical task by transparently downloading
the files to your hard disk drive and then back up to the target hosts. Therefore, if you transfer
a very large site to several other servers, be sure you have adequate disk space.

Manufacturer: Dave Ragones, Joe Ross and Dr. Fred Douglis
Location: http://tucows.tierranet.com/files/Cupertino.zip
Status: Freeware
System Requirements: Any Platform with full-fledged Java support

A platform-independent FTP client, JavaFTP is intriguing for several reasons. First, the source
code is available with the distribution. Second, it runs on any platform with a Java virtual ma-
chine. Third (and most importantly), it can handle FTP transfers across multiple servers.

The Cupertino FTP
client.

Publishing and Managing Your Content

30

JavaFTP accomplishes this task through the use of a tabbed interface (see Figure 30.16). The
program is fast and efficient. Perhaps most incredible of all, however, this application takes
very little disk space.

The JavaFTP client.

JavaFTP.class

CLASSPATH autoexec.bat

SET CLASSPATH=.;C:\javaftp;%CLASSPATH%

SET SETENV SET

CLASSPATH=/classdirectory/

Manufacturer: Alastair Rankine, Progmatics Pty Ltd
Location: ftp://progmatics.seagull.net/mirror-10.sit.bin
Status: Free for non-commercial use
System Requirements: System 7.0+, MacTCP, Open Transport

This utility was created for the purpose of mirroring Web sites. As such, it has the capability to
transfer files between two remote sites. Management of such transfers is easy and intuitive (see
Figure 30.17).

Managing Dynamic HTML

This application is very well coded, providing support for either partial automation (from within
Mirror itself) or full automation (using AppleScript). You can not only use this utility to per-
form mirroring, you can also automate the entire process.

Mirror for Macintosh.

Earlier in this chapter, you learned that good site organization leads to easier management. This
section proves it.

Most management tasks involve changing or updating information. Often, this process de-
mands that you make global changes to a certain class of file. Perhaps you want to include
additional functionality to one of your DHTML routines. If you are a dedicated author, you
probably created code that will work with multiple browsers. These routines are almost
certainly written in different languages. If you organized your site as previously explained,
updating or changing that code is easy; your source files are indexed by their language depen-
dency and function.

Changing the information can now be automated. To do so, you must take three steps:

■ Write the new routine (or include additional functionality to an existing routine).

■ Identify the files that contain the old routine.

■ Replace the old routine with the new one.

This process sounds easy enough, and it is, as long as your approach to publishing is well orga-
nized. For example, you should have stored your scripts somewhere. If you were truly orga-
nized, you already have these scripts stored in HTML Snippets or a similar indexing tool. If so,
you can immediately call up the old script. After you have the text for both the old and new
scripts, you can perform a global search and replace, as explained in the next section.

Publishing and Managing Your Content

30

In Web publishing, you will often face the task of updating URLs or scripts. On a small site,
this is not a problem. However, sites that employ DHTML may contain many URLs or scripts.
Worse still, these may be embedded in files with different extensions, including

■ HTML, HTM, CSS, ASP, and SHTML

■ JS, PL, and CGI

If you are a Perl or shell language guru, this is no problem; you simply write a script to scan
directories recursively. The script opens each file fitting the criteria and changes the informa-
tion. However, what if you have no UNIX programming experience? The following utilities
solve this problem.

Manufacturer: Funduc Software Inc.
Location: http://ourworld.compuserve.com/homepages/funduc/
Status: Shareware
System Requirements: Windows, Windows 95

Search and Replace will open files across multiple directories and replace text strings. Figure
30.18 shows the opening screen.

Search and Replace has several important features. It supports multiple file masks. Therefore,
you can simultaneously update URLs in files bearing different extensions. Also, the applica-
tion ships with a script language, which is implemented with a script editor (see Figure 30.19).

The script editor enables you to store automated search and replace functions for later use. No
Web developer should be without such a tool.

Manufacturer: Ellipse Data Systems
Location: http://www.ellipse-data.com/freestuff.shtml
Status: Freeware
System Requirements: Windows, Windows 95

SR-HTML32 is a simple but powerful application. It does not sport the scripting functional-
ity of Search and Replace, but it is extremely fast. Also, all functions are available from a single
screen (see Figure 30.20).

Managing Dynamic HTML

Sometimes, you create a page that contains time-based information, or information that will
eventually expire. Sites of this nature require your constant attention because when such infor-
mation does expire, it should either be removed or marked as dated. To perform this process
by hand is unpleasant and time-consuming. For this, you need Xpire Plus.

The Search and Replace
script editor.

Search and Replace
opening screen.

Publishing and Managing Your Content

30

Manufacturer: Bungalow Systems, Chris Lindell
Location: http://www.kagi.com/bungalow/
Status: Shareware ($20.00)
System Requirements: Windows, Windows 95, Windows NT

Xpire Plus is a tool that will find and replace old information with new information and is
designed specifically for Web developers. (See Figure 30.21.)

SR-HTML32 main
screen.

The Xpire Plus main
screen.

Managing Dynamic HTML

Xpire Plus can dramatically reduce the time you spend performing searching and replacing; in
fact, it can automate the entire process. Xpire Plus also can recursively scan directories, so you
can perform update procedures on an entire Web site with the click of a button.

One major aspect of management is the task of collecting and analyzing site statistics. Your
clients will want to know who is using the site, where they are coming from, how often they
visit, and more. This type of data collection can often be revealing. For example, you can track
the success (or lack thereof) of advertising campaigns. Or you can isolate sections of your site
that generate more interest than others. By studying such statistics, you may discover why.

In any event, up until recently, generating site statistics was a complex task. At least, this was a
complex task for anyone without UNIX shell language or Perl experience.

split()

Thankfully, developers have introduced statistical data-gathering solutions for the rest of the
computing community. Today, many tools are designed expressly for this purpose. I will offer
only one: NetIntellect.

Manufacturer: WebManage Technologies
Location: http://www.webmanage.com/
Status: Commercial ($199.00) Demo Download is Available
System Requirements: Windows 95, Windows NT

Every so often, a killer app emerges. A killer app is any application that performs its tasks so
well that it fulfills (and exceeds) all expectations of the user. NetIntellect is one such tool.

NetIntellect is a utility for generating and analyzing site statistics. It analyzes many types of log
files, such as

■ NCSA

■ CERN

■ Microsoft Internet Information Server

■ WebStar

■ O’Reilly

■ Oracle

Publishing and Managing Your Content

30

In all, NetIntellect can analyze 14 types of log files on disparate platforms, including Windows
95, Windows NT, Novell, UNIX, MacOS, and more. This in itself is quite extraordinary.
However, although NetIntellect’s multiplatform, multiformat support is impressive, the granular
data it culls from such log files is dumbfounding.

When the application first opens, it looks unimpressive. It prompts for a log file and does nothing
more. (See Figure 30.22.)

After you provide a log file, however, NetIntellect immediately goes to work. Within seconds,
it slurps up the data and begins formatting it. Final results can be viewed either within
NetIntellect’s interface (my preference) or within your browser. (NetIntellect generates a com-
prehensive report in HTML, along with links to various portions of the report.) Examine Fig-
ure 30.23.

The NetIntellect
opening screen.

A NetIntellect
comprehensive report.

Managing Dynamic HTML

As you can see from Figure 30.23, the screen is split into three parts. On the extreme left, you
can choose from a variety of report formats, including

■ Technical Report

■ Executive Report (Summary)

■ Marketing Report

■ Complete Report

In Figure 30.23, I chose the Executive Report and highlighted the Top Files by Request op-
tion. This option reports which files were most requested and how often. In the upper-right
window, the information appears in plain-text. In the lower-right window is a graph that
enables you to visualize the general status of the top-requested files. If you want exact numbers
from the graph, you simply pass your mouse cursor over the desired record, and the exact number
appears.

Unfortunately, we do not have enough space here for a list of all the data that NetIntellect
gathers, but following are some of the most interesting queries you can perform:

■ By Region: List connections by the country from which they came. This option
reveals the provider (or IP) from which the request came. This can be mapped
to cities.

■ Peaks of Activity: Tells you the peak traffic times, including by month, week, day,
day of the week, and hour.

■ Client and Server Side Errors: Gives you a comprehensive report on all errors that
occurred within a specified time range. This option can also reveal errors by category,
how often they occurred, and which hosts experienced them.

■ General Statistics: You can also get a general overview that will report highest traffic
times, total number of visits, average visits per day, total bytes transferred, average
number of bytes transferred, most active day of the week, and more.

This is only a small portion of the information available in a complete NetIntellect report. This
utility not only offers this information, but it also offers you a way to automate the process of
gathering it. In addition, you can automate the distribution of this information by using
e-mail.

In short, NetIntellect offers a very complete solution to the problem of gathering statistical
data.

This chapter took you through basic concepts of publishing and managing your site. It is not
necessary that you use the tools presented. Rather, this information provides an overview of
these tasks and presents an order in which they can be performed.

Publishing and Managing Your Content

30

In closing, organization is everything. If you apply good organizational techniques to your site
from the beginning, management will be a snap. If you fail to implement such techniques,
management will be very difficult.

Publishing and managing sites developed with DHTML is a formidable task, but that’s okay.
In the process of learning DHTML, you have transcended the identity of Web author and
entered the realm of Web developer. Learning organizational techniques is a small price to pay
in exchange for such power.

Managing Dynamic HTML

drop shadows, 225
listing, 223-224
WYSIWYG editors, 657

attributes, reserved word
conflicts, 274

CSS elements, 227
CSS properties, 228
HTML, from hidden

frames, 591
layers (JavaScript), 502-506

listing, 502-505
sub-object properties,

274-275

Direct Animation, 525

inserting in pages, 446
methods, 449-450

Cancel, 449
CancelUpdate, 449
CreateRecordset, 449
MoveFirst, 449
MoveLast, 449
MoveNext, 449
MovePrevious, 449
MoveRefresh, 450
Reset, 450
SubmitChanges, 450, 455

properties, 446-449
Connect, 447
ExecuteOptions, 447

FilterColumn, 447-448
FilterCriterion, 447-448
FilterValue, 447-448
Recordset, 448
Server, 448
SortColumn, 449
SortDirection, 449
SourceRecordset, 448
SQL, 448
State, 449

updating data with, 450-455
data editing page,

450-454
SQL, 454

objects, 442-443
opening recordsets, 443
updating data, 443-445

relative to line, 98
relative to parent, 97

item() method, 276-278
listing, 277-278

length property, 276
listing, 275-276
tagName property, 276
tags() method, 277-278

listing, 277-278

balloon example, 526-528
blowing up balloons, 530
changing zOrder, 531
listing, 527-528
moving balloons, 529-530

DHTML Guru site, 585
dynamic clipping, 589-590
Guru Netcaster channel,

622-623
layers, 506-515, 585-586

changing content,
513-515

click-based animation
listing, 507-508

dynamically creating,
511-513

sliding, 506
z-Order (controlling),

509-511
text, with layers, 145

drawbacks, 6-7
JDBC Data Provider,

391-392

JavaScript object-model
reference, 636

prefabricated language
components, 634

Script Navigator, 633
syntax color-coding, 633

accessing style objects
(listing), 329-331

classes, 328
IDs, 328
layer, 502
tags, 328

! important flag

creating pages, 441-442
objects, 441
trading card database

Add Card page, 471-474
Application Setup page,

464-466
Card List page, 474-479
editing page, 466-471

updating data, 443-445

accessing, reserved word
conflicts, 274

ARCHIVE, 157, 558
DATAFLD, 395
DATAFORMATAS, 395
DATAPAGESIZE,

395-396, 428
DATASRC, 395
EVENT, 281

exposing, 305
FOR, 281
ID

<BODY> tag, 274
<SCRIPT> tag, 157
naming elements, 272
versus NAME, 273

as properties, 273-274
SRC, 155, 165-166
STYLE, applying filters, 532
TABINDEX, 23
TITLE, 22

layers, 493

color, 77-78
images, 78-82

applying to elements,
78-79

example page, 84-86
positioning, 80-81
repeating, 79-80
watermarks, 81-82
window widths,

accommodating, 84-85

color, 112
style, 113
width, 112

event path, 344

borders, 112-113
border-color, 112
border-style, 113
border-width, 112

clear, 114
float, 113-114
height, 113
margins, 111
padding, 111-112
width, 113

backward compatibility, see
degrading DHTML

checking version, 131-132
compatibility

multiple script example
listing, 52-55

multiple script tags, 50
creating, 566-570

back/forward buttons, 568
closing window, 569
find() method, 569
launchpad, 566-567
myScape.js listing,

569-570
opening canvas, 568
reload() method, 569
toolbar, 567-568

detecting version numbers,
184

hiding script from
Image object example, 183
Navigator, 163, 166
non-JavaScript browsers,

164
HotJava, 6
margins, 104
positioning issues, 220
reloading pages, <META>

tag, 7
scripting support, 130-131
variables, 184-185

canceling, 285
listing, 284
multiple events, 284

see also debugging

cancelBubble property

alwaysRaised feature, 555
browser example, 566-570

back/forward buttons, 568
closing, 569
find() method, 569
launchpad, 566-567
myScape.js listing,

569-570
opening canvas, 568
reload() method, 569
toolbar, 567-568

closing window, 556
cmIndex.html listing, 553
cmWindow1.html listing,

553
cmWindow2.html listing,

553
disabling hotkeys, 555
image gallery example,

559-566
clicker function, 561-562
closing windows, 564
finding clicks, 562-563
index.html listing, 560
listing, 564-565
mouseDown event,

560-561
opening windows,

563-566
invoking, 549
resizing screen, 556
security, 549, 552

bypassing signed scripts,
552

signing scripts, 556-559
tracking open windows, 561
uses, 548-549
window features (list),

550-551
window.open() method,

549-552
enabling expanded

privileges with, 554

versus New Window
command, 549

syntax, 549

captureEvents(event names)
method, 154

handleEvent(event object)
method, 154

releaseEvents(event names)
method, 154

routeEvent(event object)
method, 154

buying certificates from, 557

DHTML integration,
650-653

scripts, 4-5
development, 5
speed, 5

adding, 616
Add Channel button, 617

animation (Guru channel),
622-623

audio (Guru channel),
623-624

components, 616
defining, 617-619

activating channel object,
618

channel attributes,
618-619

Netcaster, 614
optimizing code, 620
resolution-specific images,

621-622
robots (controlling), 624
security, 624

object-signing protocol,
624

Webtops, 615

listing, 278-279
navigating elements, 321

accessing style objects
(listing), 329-331

<META> tag, 7

image map example,
239-244

listing, 243-244
layers, 492

CancelUpdate method

HTML Sniplets, 671

all, 275-278
item() method, 276-278
length property, 276
listing, 275-276
tagName property, 276
tags() method, 277-278

children, 278-279
listing, 278-279
navigating elements, 321

classes, 303
rules, 335
tags, 303
see also objects; elements

background, 77-78
borders, 112
CSS, 76
decreasing depth, 538
default, 76
<DIV> tag, 76
inverting, 537
light, changing, 540-541
removing from images, 537
transparent, Chroma filter,

535

DOM overview, 296
event capturing, 339-340

advantages, 364-365
binding events, 364-366
capture process, 366-367
handling events, 375-376
menu rollovers with

(listing), 365
menu rollovers without

(listing), 365
releasing events, 376
routing events, 367-375

simulating bubbling with,
371-373

top-down approach, 364
event object, 377-381

keyboard properties,
380-381

position properties,
377-379

source properties, 377
events

keyboard, 384-385
mouse, 382-383
window, 385-386

page elements
exposing, 309-312
manipulating, 323-324
navigating, 319-321

page updating, 341
style sheets

exposing, 328-331
manipulating, 336

Dynamic HTML Unleashed
Author Quiz example,
210-218

Internet Explorer, 194-207
CSS property values,

194-196
innerHTML property,

202-203
innerText property,

198-199
insertAdjacentHTML()

method, 204-207
insertAdjacentText()

method, 200-202
outerHTML property,

203-204
outerText property,

199-200

management, 678-679,
682-684

automating updates, 679
statistics, 682-684
time-based information,

680-682
Navigator, 188-194

CSS elements, 192-194
layers, 188-192

timing changes, 207-209
clearTimeout() method,

208
setInterval() method, 208
setTimeout() method,

208

creating (listing), 378-379
displaying (listing), 353-354

pseudo-classes in, 70

ActiveX, 7
ADC (Advanced Data

Control), 446-450
inserting in pages, 446
methods, 449-450
properties, 446-449
updating data with,

450-455
Direct Animation, 525

! important flag, 72
accessing elements, 227
accessing properties, 228
adding to pages, 40-43

listing, 41-43
advantages, 62
backgrounds

color, 77-78
images, 78-82

CSS (cascading style sheets)

box properties, 110-114
borders, 112-113
clear, 114
float, 113-114
height, 113
margins, 111
padding, 111-112
width, 113

canvas, 110
capabilities, 62
cascading, 71-73

rule precedence, 72-73
changing element content,

192-194
write() method, 193-194

color, 76
comments, 71
defined style sheets, 328
embedding, 64
fonts, 88-89

families, 89
properties, 89
size, 92-94
small caps, 90-91
styles, 90
weight, 91-92

formatting model, 106-110
block-level elements, 107
floating elements,

108-109
list-item elements,

107-108
replaced elements, 110

grouping styles, 65-66
height and width properties,

226
importing, 64, 328
including, 63
inheritance, 66
inlining, 64-65, 328
layers, 579-580

compared, 495
positioning, 583-585

linking, 63, 328
loading external files, 578
moving objects, 529-530

positioning
absolute, 223-225
clip property, 227
overflow property, 226
position property, 221
relative, 221-223
visibility property,

226-227
z-index property, 227,

232-239
properties

changing dynamically,
194-196

float, 108
pseudo-classes, 69-70

<A> tag, 69
combining with classes, 70

pseudo-elements, 70-71
first-letter, 71
first-line, 70

selectors
CLASS, 66-67
contextual, 68-69
default values (setting), 66
ID, 67-68

splash page example,
115-116

Style Sheet Object Model,
301-303

exposing style sheets,
301-302, 328-336

manipulating style sheets,
303, 336-339

sub-objects, 274
syntax, 62-63
text properties, 100-101

letter-spacing, 95
line-height, 100
text-align, 99
text-decoration, 96
text-indent, 100
text-transform, 99
vertical-align, 97-98
word-spacing, 95

W3C Web site, 63
z-ordering example, 114-115

listing, 402-403

current record binding, 402
listing, 402-403

DSOs, 390-394
creating, 393-394
data rendering, 391
features defined, 391
inserting, 394
JDBC Data Provider,

391-392
RDS, 392
TDC, 391, 396-399

HTML extensions, 394-396
DATAFLD attribute, 395
DATAFORMATAS

attribute, 395
DATAPAGESIZE

attribute, 395-396
DATASRC attribute, 395

page creation, 401-404
table creation, 405-406

listing, 405-406
see also trading card database

character sets, 396
creating, 400-401
delimiters, 400
escape characters, 397
field delimiters, 397
headers, 399-400
language, 398
location, 400

specifying, 396-397
row delimiters, 398
text qualifiers, 399

CSS (cascading style sheets)

connection string (setting),
447

creating, 438-440
information needed, 438

ADC (Advanced Data
Control), 450-455

data editing page,
450-454

SQL, 454
RDS (Remote Data

Services), 445-446
installing, 446
software requirements,

446
server-side, 440-445

ADO (ActiveX Data
Objects), 440-445

ASP (Active Server Pages),
440-445

comma-delimited, 16
data binding, 15-16
filtering data, 421-428

Filter property, 421
user interface, 422-428

JDBC, 16
ODBC, 16
sorting data, 411-421

push buttons, 416-421
Sort property (TDC),

411-412
user interface, 412-416

SQL, 16
table paging, 428-435

DATAPAGESIZE
attribute, 428

example, 429-435
nextPage method, 428
previousPage method, 428
removing, 428

see also trading card database

getVarDate() method, 173

CGI scripts, 650-653
example of, 639, 648-649

data manipulation
routine, 644-648

error trapping, 642-644
visual interface, 639-642

importance of, 628
tools, 633, 636, 639

Arcadia Infuse, 633-636
Microsoft Script Debugger,

636-638
Netscape JavaScript

Debugger, 638

activating channel object,
618

channel attributes, 618-619

browsers, graceful
degradation, 30

document object switch,
598-600

dynamic frame setting,
600-601

dynamic image replacement,
602-604

info box layer, 612
info box widget, 604-606
JavaScript header, 607-608
JavaScript table header, 609
main content page layer,

608
<NOSCRIPT> tag, 609-610
page scroller widget,

606-607

planning
development flow,

597-598
grouping browsers, 594,

597
Preload Manager, 601-602
scroller widget layer,

611-612
table body, 610-611

implementation, 8-10
Microsoft, 28-30
moving to/from HTML,

16-18
Netscape components,

26-27
dynamic fonts, 27
layers, 27-28
style sheets, 27

canvas window, 575-578
content changes, 590-592
design, 575
dynamic clipping animation,

589-590
image loading, 581-582
imagemap, 586-588
layer animation, 585-586
layering style sheets,

579-580
movement, 585
positioning style sheet layers,

583-585
resolution-specific images,

578-579
scrolling layers, 592
switching DOM, 581

buying, 557
CAs, 556
JAR archives, 557-558

accessing, 557
ARCHIVE attribute, 558

digital certificates

naming, 557
object-signing, 557

obtaining, 158
public keys, 557

cross-browser issues, 308
defined, 296, 308
events, 271
history, 296, 308
Level 0 standard, 25
Level 1 standard, 25
meta information, exposing,

300-301, 327
Microsoft, 21, 29-30

Internet Explorer 4
overview, 296

Netscape, 21, 25-28
Communicator 4

overview, 296
instance hierarchy, 25-26

objects, 271
page elements

exposing, 297-298,
309-319

manipulating, 300,
323-326

navigating, 299-300,
319-322

relationship with DOMs,
296

switching, 581
user agent information,

exposing, 300-301, 327
W3C requirements, 23-24

content manipulation, 24
document manipulation,

24
event model, 24
general document and

browser information, 24
structure navigation, 24
style sheet object model, 24

see also Event Model; page
updating; Style Sheet
Object Model

absolute positioning, 225
DropShadow filter, 535-536

creating, 393-394
data rendering, 391
features defined, 391
inserting, 394
JDBC Data Provider,

391-392
RDS (Remote Data

Services), 392
AdvancedDataControl

object, 392
AdvancedDataFactory

object, 392
advantages, 392

TDC (Tabular Data
Control), 391, 396-399

AppendData property,
396

CharSet property, 396

DataURL property,
396-397

EscapeChar property, 397
FieldDelim property, 397
Filter property, 398, 421
Language property, 398
Recordset property, 399
Reset method, 399
RowDelim property, 398
Sort property, 398-399,

411-412
TextQualifier property,

399
UseHeader property, 399

Arcadia Infuse, 633-636
JavaScript object model

reference, 636
prefabricated language

components, 634
Script Navigator, 633
syntax color-coding, 633

WYSIWYG, 657-661

binding events to, 347
live positioning, 12-14
naming, 272-273

listing, 272
page, see page elements
properties, 273-274
see also collections; tags

digital certificates

Communicator 4, 339-340
cross-browser issues,

340-341
delivering events, 304-305
exposing event attributes,

305
generating events, 304

system-generated, 304
user-generated, 304

Internet Explorer 4, 340

interpreting, 632-633

checking for, 671-672
logic, 649-650
on-load, 649
runtime, 649-650
see also debugging

advantages, 345-346
bottom-up approach, 344

event path, 344
bubbling process, 348-350
canceling, 350
compatibility, 349
default action, 350-351

canceling, 351
disadvantages, 349

help event example, 350
event delivery, 347
event generation, 346-347

user-generated events, 347
event path (listing), 348-349
menu rollovers with

(listing), 346
menu rollovers without

(listing), 346

simulating with event
capturing, 371-373

see also event object

advantages, 364-365
binding events, 364-366
capture process, 366-367
handling events, 375-376

handleEvent() method,
375

menu rollovers with
(listing), 365

menu rollovers without
(listing), 365

releasing events, 376
routing events, 367-375

actions performed,
367-368

handleEvent() method,
368

recursion, 374-375
routeEvent() method,

367-371
simulating bubbling with,

371-373
top-down approach, 364

event path, 364
see also events

DHTML page example
(listing), 46-49

this keyword, 143

Communicator 4, 377-381
data property, 381
keyboard properties,

380-381
position properties,

377-379
source properties, 377

Internet Explorer, 351-355
action properties, 355
keyboard properties,

354-355
position properties,

352-354
source properties, 351-352

JavaScript, 138, 152-153
properties, 152

attributes, exposing, 305
binding, 305, 347, 364-366
bubbling, 283-286

canceling, 285
listing, 284
multiple events, 284

click, 382-383
cross-browser issues,

340-341
data binding, 360-361
dblClick, 383
default, canceling, 285-286
defined, 124
delivering, 304-305
DOM, 271
dragDrop, 386
general user, 359-360
generating, 304

system-generated, 304
user-generated, 304

handling, 280-281, 375-376
adding to tags, 280
handleEvent() method,

375
VBScript, 282-283

JavaScript, 149-155
Abort, 150
Blur, 150
capturing, 153-155
Change, 150
Click, 150
DblClick, 151
DragDrop, 151
Error, 151
Focus, 151
KeyDown, 151
KeyPress, 151
KeyUp, 151
Load, 151
MouseDown, 151
MouseMove, 151
MouseOut, 151
MouseOver, 151
MouseUp, 151

events

Move, 151
Reset, 151
Resize, 151
Select, 151
Submit, 151
Unload, 151

keyboard, 357, 384-385
keyDown, 384
keyPress, 385
keyUp, 384
load, 358-359, 386
mouse, 356-357, 382-383

finding, 562-563
mouseDown, 382, 560-561
mouseMove, 382
mouseOut, 383
mouseOver, 383
mouseUp, 382
move, 385
onabort, 287
onafterupdate, 287
onbeforeunload, 287
onbeforeupdate, 287
onblur, 287
onbounce, 287
onchange, 287
onclick, 288
ondataavailable, 288
ondatasetchanged, 288
ondatasetcomplete, 288
ondblclick, 288
ondragstart, 288
onerror, 289
onerrorupdate, 289
onfilterchange, 289
onfinish, 289
onfocus, 289
onhelp, 289
onkeydown, 289
onkeypress, 290
onkeyup, 290
onload, 290
onmousedown, 290
onmousemove, 290
onmouseout, 290
onmouseover, 290
onmouseup, 290

onreadystatechange, 291
onreset, 291
onresize, 291
onrowenter, 291
onrowexit, 291
onscroll, 291
onselect, 291
onselectstart, 291
onstart, 292
onsubmit, 292
onunload, 292
page element, 360
releasing, 376
resize, 385
routing, 367-375

actions performed,
367-368

based on targets, 377
handleEvent() method,

368
routeEvent() method,

367-371
scripts, creating, 281-282
selection, 357
unload, 358-359
user-generated, 347

high-level, 347
low-level, 347

window, 385-386
see also event bubbling; event

capturing; event handlers

meta information, 300-301,
327

Communicator 4, 327
cross-browser issues, 327
Internet Explorer 4, 327

page elements, 297-298,
309-319

Communicator 4,
309-312

cross-browser issues,
316-319

Internet Explorer 4,
312-315

style sheets, 301-302,
328-336

Communicator 4,
328-331

cross-browser issues, 336
group element level,

302-303
Internet Explorer 4,

331-335
individual element level,

301-302
user agent information,

300-301, 327
Communicator 4, 327
cross-browser issues, 327
Internet Explorer 4, 327

data binding, 394-396
DATAFLD attribute, 395
DATAFORMATAS

attribute, 395
DATAPAGESIZE

attribute, 395-396
DATASRC attribute, 395

DATAPAGESIZE attribute,
428

HTML
<LAYER> tag, 21
style sheets, 9

nextPage method, 428
previousPage method, 428

events

ADC recordsets, 447-448
Alpha, 534-535
applying, 532-533
Blur, 535
chaining together, 533-534
Chroma, 535
DropShadow, 535-536
FlipH(), 536
FlipV(), 536
Glow, 536-537
Gray(), 537
Invert(), 537
Light(), 538

AddAmbient() method,
539

AddCone() method,
539-540

AddPoint() method, 540
ChangeColor() method,

540-541
ChangeStrength()

method, 541
Clear method, 541
MoveLight() method, 541

Mask(), 537
recordsets, 398, 421-428

Filter property, 421
user interface, 422-428

Shadow, 537
transition, 542-546

BlendTrans, 542
example, 545-546
RevealTrans, 542

Wave, 538
XRay(), 538

restrictions, 70

CSS formatting model,
108-109

float property, 113-114

absolute size, 92
percentage values, 94
relative size, 93
values, 92

dynamic, 15, 27
example of property use,

100-101
families (specifying), 89
generic families

cursive, 89
fantasy, 89
monospace, 89
sans-serif, 89
serif, 89

size, 92-94
absolute, 92
percentage values, 94
relative, 93

small caps, 90-91
styles, 90
weight, 91-92

block-level elements, 107
canvas, 110

floating elements, 108-109,
113-114

list-item elements, 107-108
replaced elements, 110

restricting input, keyCode
property, 355

search, trading card
database, 462

dynamic setting, 600-601
hidden, accessing HTML

from, 591

listing, 352

Cupertino, 676
JavaFTP, 676

clicker, 561-562
defineChannel(), 617-619

activating channel object,
618

channel attributes,
618-619

initDisplay, 46
report_name(), 645
ScriptEngine(), 164
ScriptEngineBuildVersion(),

165
ScriptEngineMajorVersion(),

165
ScriptEngineMinorVersion(),

165
whichVersion() (listing),

131
hiding in conditional

wrapper, 134
simplified version, 133

Fusion

system-generated, 304
user-generated, 304

cursive, 89
fantasy, 89
monospace, 89
sans-serif, 89
serif, 89

listing, 375-376

adding to tags, 280
handleEvent() method,

154, 375
listing, 375-376

VBScript, 282-283
listing, 283

layers, 491

editors, Arcadia Infuse,
633-636

language conventions,
628-629

moving to DHTML from,
16-18

<BODY> tag, 274
<SCRIPT> tag, 157
versus NAME, 273
naming elements, 272

layers, 490-491
styleSheet object, 333

accessing style objects
(listing), 329-331

clicker function, 561-562
closing windows, 564
finding clicks, 562-563
index.html listing, 560
listing, 564-565
mouseDown event, 560-561
opening windows, 563-566

creating, clip property,
239-244

DHTML Guru site,
586-588

background, 78-82
applying to elements,

78-79
example page, 84-86
positioning, 80-81
repeating, 79-80
watermarks, 81-82

window widths,
accommodating, 84-85

color, removing, 537
dynamic replacement,

602-604
flipping

horizontally, 536
vertically, 536

loading, 581-582
resolution-specific, 578-579

advantages, 265
CSS, 66
JavaScript implementation,

265-267
foster() method, 266

replacing text with (listing),
326

replacing text with (listing),
326

AfterBegin variable, 201
AfterEnd variable, 201-202
BeforeBegin variable,

200-201
BeforeEnd variable, 201

generating events

changing content, 194-207
CSS property values,

194-196
innerHTML property,

202-203
innerText property,

198-199
insertAdjacentHTML()

method, 204-207
insertAdjacentText()

method, 200-202
outerHTML property,

203-204
outerText property,

199-200
DOM overview, 296
event bubbling, 340,

344-346
advantages, 345-346
bottom-up approach, 344
bubbling process, 348-350
canceling, 350
compatibility, 349
default action, 350-351
disadvantages, 349
event delivery, 347
event generation, 346-347

events
data binding, 360-361
general user, 359-360
keyboard, 357
load, 358-359
mouse, 356-357
page element, 360
selection, 357
unload, 358-359

JavaScript implementation,
see JScript

page elements
exposing, 312-315
manipulating, 324-326
navigating, 321-322

page updating, 341
style sheets

exposing, 331-335
manipulating, 337-339

listing, 277-278

accessing, 557
script signing, 557-558

ARCHIVE attribute, 558

Command Line, see zigbert

drawbacks, 6-7

event handlers, 152
events, 149-155

Abort, 150
Blur, 150
capturing, 153-155
Change, 150
Click, 150
DblClick, 151
DragDrop, 151
Error, 151
Focus, 151
KeyDown, 151
KeyPress, 151
KeyUp, 151
Load, 151
MouseDown, 151
MouseMove, 151
MouseOut, 151
MouseOver, 151
MouseUp, 151
Move, 151
Reset, 151
Resize, 151
Select, 151
Submit, 151
Unload, 151

external scripts, 155-156
inheritance, 265-267

advantages, 265
foster() method, 266

Internet Explorer and, see
JScript

JScript, compared, 162
new features, 136-137
object-oriented code, 245
objects, 138-149

event, 138, 152-153
layer, 138-147
screen, 138, 147-149

properties
Array, 137
documents, 137
navigator, 137
String, 137
window, 137

shared methods, 137
signing scripts, 156-159

ARCHIVE attribute, 157
getting certificates, 158
ID attribute, 157
requesting privileges,

156-157
signing tools, 158

standard, 270
versions, 127
see also layers

Date object, 172-173
getVarDate() method,

173
history, 162-163
including in pages, 163-164

location, 163
JavaScript, compared, 162
new features, 167-169

shared with other engines,
168-169

unique to JScript, 168

JScript

program flow control,
169-171

do...while loop, 169
labeled statements,

170-171
switch statement, 171

regular expressions, 178-183
script engine, 164-165
String object, 173-178

charCodeAt() method,
174

concat() method, 174
fromCharCode() method,

174
match() method,

177-178
replace() method, 177
search() method, 176
slice() method, 175
split() method, 175-176

version identification,
163-165

ScriptEngine() function,
164

ScriptEngineBuildVersion
() function, 165

ScriptEngineMajorVersion
() function, 165

ScriptEngineMinorVersion
() function, 165

event object properties,
354-355

keyDown, 151, 384
keyPress, 151, 385
keyUp, 151, 384

listing, 355

DHTML, 629-631
standard HTML, 628-629

animated layers example,
145-146

layers document example,
142-143

methods, 143-144
positioning, 138-139
properties, 140-142

altering, 142
text animation, 145
transition effects with, 145
Z-order, 139

attributes, 491-493
SRC, changing, 189

accessing (JavaScript),
502-506

listing, 502-505
animating, 506-515,

585-586
click-based animation

listing, 507-508
dynamically, 511-513
sliding, 506
sun flare example

(Netcaster channel),
622-623

z-Order (controlling),
509-511

changing content, 188-192,
513-515

<ILAYER> tag, 190
load() method, 190-191
source HTML file,

189-190
write() method, 191-192

creating, 485-489
cross-browser issues,

484-485
versus CSS, 495
load method, 513
loading external files, 578
menu system example,

517-521
movement, 246-253

defining objective, 252
direction and speed, 246
initial position, specifying,

246
listing, 248-250
managing multiple

elements, 253-255
setting course, 251-253

nesting, 489-490
properties, 487, 491-495

above, 492
background, 493
below, 492
bgcolor, 493
clip, 492
height, 491
id, 490-491
left, 491
pageX, 491
pageY, 491
position, 491
src, 492
top, 489-491
visibility, 490-492
width, 491
z-index, 492

scripting, 502, 515-521
nested layers, 515-516

scrolling, 592

JScript

standards, 484
style sheets, 488-489,

579-580
positioning, 583-585

unsupported browsers
(handling), 496-499

listing, 496
storing layer file separately,

498
write() method (listing),

514-515
XYZ webcrafters example

home page (listing),
485-486

layered newsletter listing,
493-495

listing, 230-231
nesting, 231

ambient, 539
color, 540-541
directional, 539-540
moving, 541
point, 540
removing all, 541
strength, 541

AddAmbient() method, 539
AddCone() method,

539-540
AddPoint() method, 540
ChangeColor() method,

540-541

ChangeStrength() method,
541

Clear method, 541
MoveLight() method, 541

CSE 3310 HTML
Validator, 674-675

HTML PowerAnalyzer,
672-674

absolute positioning,
223-224

accessing style objects in
Communicator 4, 329-331

Active Server Page to retrieve
data into an HTML form,
444

Active Server Page to update
data received from the
HTML form, 444-445

Add Channel form button,
617

Alert Box script, 123
all collection, 275-276
animated balloon example,

527-528
applying filters, 533
attaching, detaching, and

modifying style sheets,
337-339

basic Web page, 37-39
browser compatibility

example, 52-55
card file script (z-index

property), 236-239
CARDS.TXT data file, 401
CARDS.TXT file, 410-411
children collection, 278-279
cmIndex.html, 553
cmWindow1.html, 553
cmWindow2.html, 553
column header clicks for

data sorting, 413-415

context-sensitive menu,
378-379

current record binding
example, 402-403

data-bound table example,
405-406

decoding the modifiers
property into boolean
variables, 381

default events, canceling,
286

defineChannel() function,
618

degraded DHTML site
dynamic frame setting for

4.0 and 3.0 browsers,
600

dynamic image
replacement and page
creation, 603-604

info box widget routine,
605

JavaScript header for
degraded DHTML
pages, 607-608

<NOSCRIPT> tag use,
609-610

page scroller layer, 611
pageScroll() function, 606
Preload Manager routine,

601-602
standard table HTML,

610
style sheet layer syntax,

608
table header, 609

degraded DHTML site:
browser sniffing code for
setting document object
switches, 599

DHTML Guru site
accessing HTML from a

hidden frame, 591
canvas window, 576-577
dynamic clipping

animation, 589-590

listings

dynamic layer positioning,
583-584

dynamically displaying
HTML, 591

image loading, 582
imagemap, 587-588
resolution-dependent

images (managing),
578-579

scrolling DHTML
content, 592

style sheet layers, 580
sun flare animation, 586
switching DOM, 581

DHTML page with style
sheets, scripts, and event
handling, 46-49

drop shadows with absolute
positioning, 225

dynamic positioning code,
228

event binding, 305
event bubbling, 284

canceling, 350
menu rollovers with, 346
menu rollovers without,

346
event capturing

menu rollovers with, 365
menu rollovers without,

365
routeEvent() method,

368-370
event handling with the

<SCRIPT> tag, 281-282
event handling with

VBScript, 283
event path example,

348-349
events, adding to tags, 280
exposing DIV and IMG

elements in
Communicator 4, 310-311

exposing DIV, IMG, and
FONT elements in
Internet Explorer 4, 315

exposing page elements
using cross-browser code,
316-317

exposing style sheets in
Internet Explorer 4,
334-335

exposing styles through the
style object in Internet
Explorer 4, 332-335

exposing the IMG element
under DIV’s document
object (Communicator 4),
311-312

filtering data with push-
button clicks, 423-427

fromElement and toElement
properties used to handle
events, 352

handleEvent() method,
375-376

help event handling, 350
image gallery example

index.html, 560
zoomer.js, 564-565

image map created with clip
property, 243-244

JavaScript example, 128
Jumpin’ Jack JavaScript, 126
keyCode property used to

restrict form input, 355
layer arrays used to access

layers, 502-505
layer in motion, 248-250
layers

click-based animation
example, 507-508

controlling Z-Order,
510-511

DHTML Site Navigator,
517-520

dynamic creation,
512-513

nested layers, 489
<NOLAYERS> tag, 496
scripting nested layers,

515-516
sliding, 506

storing layer file separately,
498

style sheets and, 488-489
sun flare example

(Netcaster channel), 622
writing to, 514-515
XYZ webcrafters home

page, 485-487
XYZ’s layered newsletter,

493-495
layerTool object used for

positioning, 230-231
LiveAudio JavaScript used to

play music in Guru
channel, 623

multiple resolution image
management, 621

MyScape Navigator example
launchpad.html, 567
myScape.js, 569-570
navbar.html, 567-568

naming HTML elements,
272

navigating layers
(Communicator 4),
320-321

navigating page elements
(Internet Explorer 4),
321-322

positioning techniques
combined, 256-263

preLoad() function
(Netcaster channel), 620

redirecting users based on
browser, 132-133

relative positioning, 221
replacing text with

innerHTML, innerText,
outerHTML, and
outerText properties, 326

restricting text input with
the which property, 380

rewriting contents of a layer
in Communicator 4, 324

routeEvent() method,
preventing recursion, 375

listings

routing events based on
targets, 377

script language separation,
129-130

sorting data with push
buttons, 417-420

style sheet example, 41-43
table paging example,

429-434
tags() and items() methods

used to access data in
collections, 277-278

trading card database
ASP source code for Add

Card page, 472-474
ASP source code for

Application Setup page,
465

ASP source code for Card
List page, 475-479

ASP source code for
Database Editor page,
467-471

ASP source code for setup
submission page, 466

home page, 463
transition effects, 545-546
VBScript example, 128
whichVersion() function,

131
hiding in conditional

wrapper, 134
simplified version, 133

x and y event properties used
to display context-sensitive
menus, 353-354

automating updates, 679
Search and Replace, 679
SR-HTML32, 679

statistics, 682-684
NetIntellect, 682-684

time-based information,
680-682

Xpire plus, 681-682

browser differences, 104
properties, 111
setting, 111

interpreting, 632-633

Communicator 4, 327
cross-browser issues, 327
Internet Explorer 4, 327

attributes
TABINDEX, 23
TITLE, 22

ADC, 449-450
Cancel, 449
CancelUpdate, 449
CreateRecordset, 449
MoveFirst, 449
MoveLast, 449
MoveNext, 449
MovePrevious, 449
MoveRefresh, 450
Reset, 450
SubmitChanges, 450, 455

addImport(), 337
addRule(), 337
charCodeAt(), 174

clearTimeout(), 208
concat(), 174
contains(), 321
defined, 124
foster(), 266
fromCharCode(), 174
getVarDate(), 173
handleEvent(), 368, 375

listing, 375-376
insertAdjacentHTML(),

204-207
insertAdjacentText(),

200-202
AfterBegin variable, 201
AfterEnd variable,

201-202
BeforeBegin variable,

200-201
BeforeEnd variable, 201

item(), 276-278
layer object, 143-144
Light() filter

AddAmbient(), 539
AddCone(), 539-540
AddPoint(), 540
ChangeColor(), 540-541
ChangeStrength(), 541
Clear, 541
MoveLight(), 541

load(), 190-191, 513
match(), 177-178
nextPage, 428
open(), debugging, 643
page elements, 313

getAttribute(), 313, 324
insertAdjacentHTML(),

313, 324
insertAdjacentText(),

313, 324
removeAttribute(), 313,

324
setAttribute(), 313, 324

previousPage, 428
removeRule(), 337
replace(), 177

methods

routeEvent(), 367-371
listing, 368-370
recursion, 374-375

search(), 176
setInterval(), 208
setTimeout(), 208
setZorder(), 233
shared (JavaScript), 137
slice(), 175
split(), 175-176
tags(), 277-278
TDC, Reset, 399
transitions, 544

apply, 544
play, 544
stop, 544

window.open(), 549-552
enabling expanded

privileges with, 554
syntax, 549
versus New Window

command, 549
window features (list),

550-551
write(), 191-192

CSS elements, 193-194
layers (listing), 514-515

DHTML, 28-30
DOM, 21, 29-30
graceful degradation, 30

starting, 636

decoding, 381

clicks, finding, 562-563
events, 356-357, 382-383

click, 382-383
dblClick, 383
mouseDown, 151, 382

mouseMove, 151, 382
mouseOut, 151, 383
mouseOver, 151, 383
mouseUp, 151, 382

capturing, 560-561

defining objective, 252
direction and speed, 246
initial position, specifying,

246
listing, 248-250
managing multiple, 253-255
setting course, 251-253

balloon example, 526-528
blowing up balloons, 530
changing zOrder, 531
listing, 527-528
moving balloons, 529-530

Direct Animation control,
525

history, 524
new developments, 525

back/forward buttons, 568
closing, 569
find() method, 569
launchpad, 566-567

listing, 567

myScape.js listing, 569-570
opening canvas, 568
reload() method, 569
toolbar, 567-568

listing, 567-568

digital certificates, 557
elements, 272-273

listing, 272
home pages, 462

Communicator 4, 319-321
cross-browser issues, 322
Internet Explorer 4,

321-322

canvas mode
alwaysRaised feature, 555
bypassing signed scripts,

552
closing window

(window.close()
method), 556

cmIndex.html listing, 553
cmWindow1.html listing,

553
cmWindow2.html listing,

553
disabling hotkeys, 555
invoking, 549
resizing screen, 556
security, 549, 552
signing scripts, 556-559
tracking open windows,

561
uses, 548-549
window features (list),

550-551
window.open() method,

549-552
see also image gallery

example

methods

changing content, 188-194
CSS elements, 192-194
layers, 188-192

hiding script from, 163, 166
Microsoft incompatibilities,

50
New Window command,

versus window.open()
method, 549

layers, 489-490
scripting within, 515-516

layerTool object, 231

adding, 616
Add Channel button, 617

animation (Guru channel),
622-623

audio (Guru channel),
623-624

defining, 617-619
activating channel object,

618
channel attributes,

618-619
extensions (Web site), 625
optimizing code, 620
resolution-specific images,

621-622
robots (controlling), 624
security, 624

object-signing protocol,
624

DHTML components,
26-27

dynamic fonts, 27
layers, 27-28
style sheets, 27

DOM, 21, 25-28
instance hierarchy, 25-26

JavaScript Debugger, 638

Navigator
canvas mode, 548-556
changing content,

188-194
hiding script from, 163,

166
Microsoft

incompatibilities, 50
New Window command,

versus window.open()
method, 549

Web site, 139

getting, 158

ADO, 442
connection, 442-443

AdvancedDataControl, 392
AdvancedDataFactory, 392
all, 50
ASP, 441
data source, see DSOs
Date, JScript expansions,

172-173
event

Communicator 4,
377-381

Internet Explorer,
351-355

JavaScript, 138, 152-153
JavaScript, 138-149

event, 138, 152-153
layer, 138-147
screen, 138, 147-149

layerTool, 229-231
listing, 230-231
nesting, 231

page elements, see page
elements

String, JScript expansions,
173-178

styleSheet, properties, 333
see also collections; sub-

objects

data sources (creating),
438-440

information needed, 438
setting connection string,

447

ondatasetcomplete event

events, 124
JavaScript and, 245
Jumpin’ Jack JavaScript

listing, 126
methods, 124
properties, 124

read-only, 124

replacing text with (listing),
326

replacing text with (listing),
326

defined, 296
DOMs relationship, 296
exposing, 297-298, 309-319

Communicator 4,
309-312

cross-browser issues,
316-319

Internet Explorer 4,
312-315

manipulating, 300, 323-326
Communicator 4,

323-324
cross-browser issues, 326
Internet Explorer 4,

324-326
methods, 313

getAttribute(), 313, 324
insertAdjacentHTML(),

313, 324
insertAdjacentText(),

313, 324
removeAttribute(), 313,

324
setAttribute(), 313, 324

navigating, 299-300,
319-322

Communicator 4,
319-321

cross-browser issues, 322
Internet Explorer 4,

321-322
properties, 312-313

document, 312
id, 312

offsetHeight, 313
offsetLeft, 313
offsetParent, 313
offsetTop, 313
offsetWidth, 313
parentElement, 313
sourceIndex, 313
style, 313
tagName, 313

Communicator 4, 341
cross-browser issues,

341-342
Internet Explorer 4, 341

creating, 36-37
basic page, 37-40
event handlers, 44-45
style sheet, 40-43

data-bound, 401-404
reloading, <META> tag, 7

layers, 491

layers, 491

navigating elements, 321

ScriptActive, 128

absolute, 223-225
drop shadow listing, 225
listing, 223-224
WYSIWYG editors, 657

box properties, 110-114
borders, 112-113
clear, 114

ondblclick event

float, 113-114
height, 113
margins, 111
padding, 111-112
width, 113

browser differences, 104
clip property, 227

image map example,
239-244

combining techniques
(listing), 256-263

cross-browser issues, 220
CSS, 106-110

block-level elements, 107
canvas, 110
floating elements,

108-109
list-item elements,

107-108
position property, 221
replaced elements, 110

DHTML Guru site, 575
height and width properties,

226
layerTool object, 229-231

listing, 230-231
nesting, 231

margins, 104
movement, 246-253

defining objective, 252
direction and speed, 246
initial position, specifying,

246
listing, 248-250
managing multiple

elements, 253-255
setting course, 251-253

overflow property, 226
relative, 221-223

listing, 221
scripts, 227-229

accessing CSS elements,
227

accessing CSS properties,
228

listing, 228

splash page example,
115-116

style sheet layers, 583-585
visibility property, 226-227
z-index property, 227,

232-239
card file script, 236-239
setting, 233
setZorder() method, 233

z-ordering example, 114-115

targets, 157

do...while loop, 169
labeled statements, 170-171
switch statement, 171

ADC, 446-449
Connect, 447
ExecuteOptions, 447
FilterColumn, 447-448
FilterCriterion, 447-448
FilterValue, 447-448
Recordset, 448
Server, 448
SortColumn, 449
SortDirection, 449
SourceRecordset, 448
SQL, 448
State, 449

background, 82
background-attachment,

81-82
background-image, 78-79
background-position, 80-81
background-repeat, 79-80
box (CSS), 110-114

borders, 112-113
height, 113
margins, 111
padding, 111-112
width, 113

clear, 114
clip, 227

image map example,
239-244

color, 76
defined, 124
elements, 273-274
event object

fromElement, 351-352
srcElement, 351
toElement, 351-352
type, 351

float, 108, 113-114
font (shortcut property), 94
font-family, 89

values, 89
font-size, 92-94

absolute size, 92
percentage values, 94
relative size, 93
values, 92

font-style, 90
font-variant, 90-91
font-weight, 91-92

keywords, 91
height, 226
innerHTML, 202-203, 325

replacing text with
(listing), 326

innerText, 198-199, 325
replacing text with

(listing), 326
JavaScript

Array, 137
documents, 137
event object, 152
layer object, 140-142
navigator, 137
screen object, 147-148
String, 137
window, 137

layers, 487, 491-495
above, 492
background, 493
below, 492
bgcolor, 493
clip, 492

properties

height, 491
id, 490-491
left, 491
pageX, 491
pageY, 491
position, 491
src, 492
top, 489-491
visibility, 490-492
width, 491
z-index, 492

length, 276
letter-spacing, 95
line-height, 100
outerHTML, 203-204, 325

replacing text with
(listing), 326

outerText, 199-200, 325
replacing text with

(listing), 326
overflow, 226
page elements, 312-313

document, 312
id, 312
offsetHeight, 313
offsetLeft, 313
offsetParent, 313
offsetTop, 313
offsetWidth, 313
parentElement, 313
sourceIndex, 313
style, 313
tagName, 313

read-only, 124
styleSheet object, 333

disabled, 333
href, 333
id, 333
owningElement, 333
parentStyleSheet, 333
readOnly, 333
title, 333
type, 333

sub-objects, 274-275
tagName, 276
TDC

AppendData, 396
CharSet, 396

DataURL, 396-397
EscapeChar, 397
FieldDelim, 397
Filter, 398, 421
Language, 398
Recordset, 399
RowDelim, 398
Sort, 398-399, 411-412
TextQualifier, 399
UseHeader, 399

text-align, 99
text-decoration, 96
text-indent, 100
text-transform, 99
transitions, 543-544

duration, 543
transition, 543

vertical-align, 97-98
keywords, 97-98

visibility, 226-227
width, 226
word-spacing, 95
z-index, 227, 232-239

card file script, 236-239
changing, 531
setting, 233
setZorder() method, 233

<A> tag, 69
combining with classes, 70
in contextual selectors, 70

first-letter, 71
first-line, 70

restrictions, 70

error checking, 671-672
file transfer, 675-678

Cupertino, 676
JavaFTP, 676
Mirror for Macintosh,

677-678
integrated tools, 661-662

advantages, 661
common characteristics,

661
disadvantages, 661

nonintegrated tools, 662
old methods, 656-657
site organization and

structure, 669-670
validators (syntax/link),

672-675
CSE 3310 HTML

Validator, 674-675
HTML PowerAnalyzer,

672-674
visualizing sites, 663-670

Astra SiteManager,
665-666

Fusion, 667-669
logic, 663-664
PowerMapper, 666
structure, 667-670
Web Modeler, 664

WYSIWYG editors,
657-661

AdvancedDataControl
object, 392

AdvancedDataFactory
object, 392

advantages, 392
installing, 446
software requirements, 446
see also ADC (Advanced

Data Control)

ADC, 448
TDC, 399

filtering, 398, 421-428
opening, 443

properties

listing, 221

ADC, 450
TDC, 399

HTML Sniplets, 671

listing, 368-370
recursion, 374-375

preventing, 375

properties, 147-148

ARCHIVE attribute, 157
EVENT attribute, 281
event handling (listing),

281-282
FOR attribute, 281
ID attribute, 157
multiple, 50
SRC attribute, 155

Alert Box listing, 123
browser support, 130-131

checking for version,
131-132, 184

browser variables, 184-185
CGI, 4-5

development, 5
speed, 5

debugging, 628
CGI scripts, 650-653
example of, 639-644,

648-649
importance of, 628
manually, 633-636
software tools, 636-639

dynamic positioning,
227-229

accessing CSS elements,
227

accessing CSS properties,
228

listing, 228
event, creating, 281-282

listing, 281-282
hiding from browsers

Image object example, 183
Navigator, 163, 166
non-JavaScript browsers,

164
history, 122-124
JavaScript, 26, 127

event handlers, 152
events, 149-155
external scripts, 155-156
inheritance, 265-267
Internet Explorer and, see

JScript
JScript, compared, 162
new features, 136-137
object-oriented code, 245
objects, 138-149,

152-153
properties, 137
shared methods, 137
signing scripts, 156-159
standard, 270
versions, 127

JScript, 127
Date object, 172-173
engine, 164-165
history, 162-163
including in pages,

163-164
JavaScript, compared, 162
new features, 167-169
program flow control,

169-171
regular expressions,

178-183
script engine, 164-165
String object, 173-178
version identification,

163-165
language conventions,

629-631

scripts

layers, 502, 515-521
accessing, 502-506
nested layers, 515-516

multiple languages, 129-134
redirecting users, 132-133
script language separation

listing, 129-130
multiple tags, 50

listing, 52-55
OOP, 124-126

events, 124
Jumpin’ Jack JavaScript

listing, 126
methods, 124
properties, 124

signing, 156-159, 556-559
ARCHIVE attribute, 157
bypassing Navigator

requirements, 552
digital certificates,

556-557
getting certificates, 158
ID attribute, 157
JAR archives, 557-558
JAR Packager, 558
requesting privileges,

156-157
signing tools, 158
zigbert, 558-559

SRC= attribute, 165-166
standards, 22, 126

ECMA-262 specification,
129

updates
automating, 679

VBScript, 128
accessing elements,

272-279
advantages, 270
event handling, 282-283
versus JavaScript, 128

canvas mode, 549, 552
bypassing signed scripts,

552
signing scripts, 556-559

Netcaster channels, 624
object-signing protocol,

624
signing scripts, 156-159

ARCHIVE attribute, 157
getting certificates, 158
ID attribute, 157
requesting privileges,

156-157
signing tools, 158

CLASS, 66-67
contextual, 68-69

pseudo-classes in, 70
ID, 67-68

ADO (ActiveX Data
Objects), 440-445

objects, 442
opening recordsets, 443
updating data, 443-445

ASP (Active Server Pages),
440

creating pages, 441-442
updating data, 443-445

ARCHIVE attribute, 157
getting certificates, 158
ID attribute, 157
requesting privileges,

156-157
targets, 157

signing tools, 158

Arcadia Infuse, 633-636
JavaScript object-model

reference, 636
prefabricated language

components, 634
Script Navigator, 633
syntax color-coding, 633

Microsoft Script Debugger,
636-638

downloading, 636
starting, 636

Netscape JavaScript
Debugger, 638

setting, 411

ADC, 449
TDC, see Sort property

push buttons, 416-421
listing, 417-420

Sort property (TDC),
411-412

setting, 411
user interface, 412-416

indicating sort order, 412
listing, 413-415
specifying columns, 413

databases, 16
updating data with, 454

scripts

<LAYER> tag
changing, 189-190

<SCRIPT> tag, 155

exposing style sheets,
301-302, 328-336

Communicator 4,
328-331

cross-browser issues, 336
group element level,

302-303
Internet Explorer 4,

331-335
individual element level,

301-302
manipulating style sheets,

303, 336-339
Communicator 4, 336
cross-browser issues, 339
Internet Explorer 4,

337-339

DOM, 21
scripts, 22
W3C, 20

labeled, 170-171
switch, 171

charCodeAt() method, 174
concat() method, 174
fromCharCode() method,

174
match() method, 177-178
replace() method, 177
search() method, 176

slice() method, 175
split() method, 175-176

adding to pages, 40-43
listing, 41-43

importing style sheets, 64

properties, 333
disabled, 333
href, 333
id, 333
owningElement, 333
parentStyleSheet, 333
readOnly, 333
title, 333
type, 333

DATAPAGESIZE attribute,
428

example, 429-435
listing, 429-434

nextPage method, 428
previousPage method, 428
removing, 428

DATAPAGESIZE attribute,
428

nextPage method, 428
previousPage method, 428

data-bound, creating,
405-406

degraded DHTML site,
610-611

all collection, 276

<A>, pseudo-classes, 69
<BODY>, ID attribute, 274
changing, 11-12
<DIV>, color, 76
events, adding to, 280
, problems, 88
<ILAYER>, 190
<LAYER>, 21, 27, 188, 484

attributes, 491-493
SRC attribute, 189

<META>, 7, 22
<NOLAYER>, 496-499
as objects, 271
<SCRIPT>

ARCHIVE attribute, 157
EVENT attribute, 281
event handling (listing),

281-282
FOR attribute, 281
ID attribute, 157
multiple, 50
SRC attribute, 155

<STYLE>, 64
importing style sheets, 64

<TABLE>
DATAPAGESIZE

attribute, 428
nextPage method, 428
previousPage method, 428

<THEADER>, 415
see also elements

tags

accessing style objects
(listing), 329-331

listing, 277-278

data files
creating, 400-401
delimiters, 400
headers, 400
location, 400

methods, Reset, 399
properties

AppendData, 396
CharSet, 396
DataURL, 396-397
EscapeChar, 397
FieldDelim, 397
Filter, 398, 421
Language, 398
Recordset, 399
RowDelim, 398
Sort, 398-399, 411-412
TextQualifier, 399
UseHeader, 399

recordsets, filtering, 398,
421

aligning, 97-99
relative to line, 98
relative to parent, 97

animating, with layers, 145
capitalization, converting,

99
changing dynamically,

197-207
innerHTML property,

202-203
innerText property,

198-199

insertAdjacentHTML()
method, 204-207

insertAdjacentText()
method, 200-202

outerHTML property,
203-204

outerText property,
199-200

decoration (adding/
removing), 96

drop caps, 71
indentation, 100
letter spacing, 95
line height, 100
property use example,

100-101
word spacing, 95
see also fonts

listing, 352

listing, 567-568

binding events, 364-366
event path, 364

Add Card page, 471-474
listing, 472-474

Application Setup page,
464-466

listing, 465
Card List page, 474-479

listing, 475-479
Cards table, 461
CARDS.TXT file, 410-411
database setup, 461-462
editing page, 466-471

listing, 467-471
fields, 410
home page, 462-463

listing, 463
search form, 462
setting up the Web, 459-460

PWS, 459-460
setup submission page

listing, 466
software requirements,

458-459

adding to pages, 542-543
example, 545-546
layers, 145
methods, 544

apply, 544
play, 544
stop, 544

properties, 543-544
duration, 543
transition, 543

event object, 351, 377
styleSheet object, 333

tags array

Communicator 4, 327
cross-browser issues, 327
Internet Explorer 4, 327

high-level, 347
low-level, 347

links, 672-675
CSE 3310 HTML

Validator, 674-675
HTML PowerAnalyzer,

672-674
syntax, 672-675

CSE 3310 HTML
Validator, 674-675

HTML PowerAnalyzer,
672-674

accessing elements
by name, 272-275
collections, 275-279

advantages, 270
event handling, 282-283

listing, 283
versus JavaScript, 128

keywords, 97-98

layers, 490-492

Astra SiteManager, 665-666
Fusion, 667-669
logic, 663-664
PowerMapper, 666
structure, 667-670
Web Modeler, 664

DOM Working Group,
21-25, 296

Level 0 standard, 25
Level 1 standard, 25
requirements, 23-24

standards, 20
Web Accessibility Initiative,

23
Web site, 16, 271

CSS, 63

basic page, 37-40
event handlers, 44-45
style sheet, 40-43

DHTML Guru Resource,
574

canvas window, 575-578
content changes, 590-592
design, 575
dynamic clipping

animation, 589-590
image loading, 581-582
imagemap, 586-588
layer animation, 585-586
layering style sheets,

579-580
movement, 585
positioning style sheet

layers, 583-585
resolution-specific images,

578-579
scrolling layers, 592
switching DOM, 581

HTML Guru, 517
NCompass Labs, 128
Netcaster extensions, 625
Netscape, 139
Netscape DevEdge Online,

zigbert download, 559
W3C, 16, 271

CSS, 63

resolution-specific images,
621-622

listing, 380

hiding in conditional
wrapper, 134

simplified version, 133

info box, 604-606
page scroller, 606-607

layers, 491

dragDrop, 386
load, 386
move, 385
resize, 385

enabling expanded privileges
with, 554

syntax, 549
versus New Window

command, 549
window features (list),

550-551

alwaysRaised feature, 555
bypassing signed scripts, 552
closing window

(window.close() method),
556

windows, canvas mode

cmIndex.html listing, 553
cmWindow1.html listing,

553
cmWindow2.html listing,

553
creating, 575-578
disabling hotkeys, 555
invoking, 549
resizing screen, 556
security, 549, 552
signing scripts, 556-559
tracking open, 561
uses, 548-549
window features (list),

550-551
window.open() method,

549-552
see also image gallery

example

CSS elements, 193-194
layers, listing, 514-515

listing, 353-354

listing, 353-354

card file script, 236-239
layers, 492

controlling layer order,
509-511

setting, 233
setZorder() method, 233

contents, 559
downloading, 559

windows, canvas mode

You’ll find thousands of shareware

files and over 1600 computer books

designed for both technowizards

and technophobes. You can browse

through 700 sample chapters, get

the latest news on the Net, and find

just about anything using our

massive search directories.

All Macmillan Computer Publishing books

are available at your local bookstore.

We’re open 24-hours a day, 365 days a year.

And you can be as LOUD as you want.

We don’t charge fines.

The Information SuperLibrary™

S E R V I C E

Bookstore Search What’s New Reference Software Newsletter Company
Overviews

Yellow Pages Internet
Starter Kit

HTML
Workshop

Win a Free
T-Shirt!

Macmillan
Computer
Publishing

Site Map Talk to Us

CHECK OUT THE BOOKS IN THIS LIBRARY.

The Information SuperLibrary

http://www.mcp.com/mcp/ ftp.mcp.com

Copyright © 1996, Macmillan Computer Publishing-USA, A Simon & Schuster Company

You don’t need a card.

A V I A C O M

Technical
Support:

If you cannot get the CD/Disk to install properly, or you need

assistance with a particular situation in the book,please feel

free to check out the Knowledge Base on our Web site at

http://www.superlibrary.com/general/support. We have

answers to our most Frequently Asked Questions listed there.

If you do not find your specific question answered, please

contact Macmillan Technical Support at (317) 581-3833.

We can also be reached by email at support@mcp.com.

http://www.htmlguru.com

Make sure to stop by the Sams.net Dynamic
HTML Guru Site created to showcase
Dynamic HTML technologies and to foster
discussion between our authors and readers.
Features include:

■ More information about our
Dynamic HTML books

■ Answers to your DHTML questions
with Ask a Guru

■ Tutorials and templates to get
started

■ Additional information to help you
create dynamic sites!

There is a lot going on behind the scenes
that makes this site work. The following list
summarizes the Dynamic HTML features
that the Guru site utilizes.

■ Cross browser DHTML

■ Overlapping Style Sheet Layers

■ Dynamic Image Replacement

■ Image Preload Tracking

■ Dynamic Layer Positioning

■ Dynamic Clipping Animations

■ External HTML File Loading

■ Dynamic Text Display

■ Custom Page Scroller

■ Imagemap Event Controller

■ Multiple Screen Resolution Graphics

http://www.mcp.com/info

Drop by the Companion Web Site for the source code, examples from the book, and bonus information!

	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Chapter 28
	Chapter 29
	Chapter 30

